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Abstract. In this paper, we propose to track multiple previously unseen
objects in unconstrained scenes. Instead of considering objects individ-
ually, we model objects in mutual context with each other to benefit
robust and accurate tracking. We introduce a unified framework to com-
bine both Individual Object Models (IOMs) and Mutual Relation Models
(MRMs). The MRMs consist of three components, the relational graph
to indicate related objects, the mutual relation vectors calculated within
related objects to show the interactions, and the relational weights to bal-
ance all interactions and IOMs. As MRMs are varying along temporal
sequences, we propose online algorithms to make MRMs adapt to current
situations. We update relational graphs through analyzing object trajec-
tories and cast the relational weight learning task as an online latent
SVM problem. Extensive experiments on challenging real world video
sequences demonstrate the efficiency and effectiveness of our framework.

1 Introduction

Visual object tracking is a major component in computer vision and widely ap-
plied in many domains, such as video surveillance, driving assistant systems,
human computer interactions, etc. As an object to be tracked is unknown in
many applications, many researchers adopt online algorithms [1H3] to extract
the object from background, which mainly encounters the great challenges from
occlusions, changing appearances, varying illumination and abrupt motions. Re-
cently, some authors utilized the context (e.g. feature points [4] and regions in
similar appearances to the target [5]) for robust single object tracking.

Problem Statement: In this paper, we propose to track multiple previously
unseen objects. A direct solution for this problem is to consider objects indi-
vidually and utilize some approaches designed for single object tracking. Such
a solution relies heavily on individual object models (IOMs). Once IOMs be-
come inaccurate, the targets tend to be lost easily. In fact, the mutual relations
among objects are another important kind of information and worth taking into
account. If we have obtained reliable mutual relation models (MRMs) at a given
time, we can use them to predict more accurate locations of objects as shown in
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Learned mutual relations
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Fig. 1. Examples of mutual relations. (a,b,c) demonstrate a toy example, where mu-
tual relation models (MRMs) can benefit robust tracking when some individual object
models (IOMs) are inaccurate (For the scene in (a), the reason is occlusions). The
switching error in (b) is due to similar appearances of ‘right eye’and ‘left eye’. As all
objects have rigid-like relations and they come from the same object, robust MRMs can
be easily learned for this toy. However, they are difficult to be learned in many other
scenes, such as in (d)(top) illustrating objects with abrupt motions and (d)(bottom)
showing objects which are originally different. We propose to online learn MRMs for
multi-object tracking.

Fig. [ This visual tracking scenario tracks multiple objects simultaneously and
understands their mutual relations, termed group tracking for simplicity.

Proposal: Our main idea is to model objects in mutual context with each other
and combine both IOMs and MRMs for robust and accurate tracking. The usage
of MRMs needs to answer two crucial questions in the following.

When do MRMs work? The most ideal situation is that all IOMs are accurate
enough, and MRMs are not necessary. However, when IOMs are inaccurate,
MRMs will play an important role in robust tracking. In fact, it is not easy to
know whether IOMs are accurate enough to ignore MRMs. Moreover, if all IOMs
lost accuracies simultaneously, MRMs will become useless because any estimates
of objects are unreliable at these moments. Therefore, we assume that MRMs
exist all the time and there are some accurate IOMs during tracking.

How do MRMs work? MRMs provide mainly three kinds of helpful information
for tracking. The first is to indicate mutually related objects (i.e. objects impact
on each other), termed the relational graph. The second is to know how much
impact one object has on another one, named as the mutual relation vectors. The
last is to balance all interactions of objects and the responses of IOMs, called
as the relational weights. When these three kinds of information are properly
determined, MRMs will play an important role in robust tracking.

Contribution: Our main contribution can be summarized into two folds. (1) We
model objects in mutual context, and propose a unified framework to integrate
individual object models and mutual relation models for multiple previously un-
seen objects tracking (Sec.3). (2) We extend latent SVM into an online version for
learning the relational weights (Sec.4.1). To the best of our knowledge, our online
algorithm is the first one to take advantage of LSVM for the tracking problems.
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Organization: Related work is presented in the next section. Then, problem
formulation, the mutual relation modeling and the inference are described con-
secutively in Sec.3, Sec.4 and Sec.5. Experimental results and discussions are
provided in Sec.6. Finally, the conclusion and future work are given in Sec.7.

2 Related Work

Object Tracking. Adam et al. [6] represented the target based on histograms
of local patches and combined votes of matched local patches using templates
to handle partial occlusions. Since the templates are not updated, it may fail
in handling appearance changes. In order to cope with appearance variations,
Babenko et al. [1] proposed an online multiple instance learning algorithm to
learn a discriminative detector for the target. To avoid drifting over time, Kalal
et al. [7] combined an adaptive Kanade-Lucas-Tomasi feature tracker and several
restrictive learning constraints to establish an incremental classifier. To further
deal with non-rigid motion or large pose variations, Kwon et al. [3] extended
the conventional particle filter framework with multiple motion and observation
models to account for appearance variations caused by changes of pose, illumi-
nation and scale as well as partial occlusions. Considering that bounding box
based representations provide a less accurate foreground /background separation,
Godec et al. [2] extended Hough Forests to online domain and coupled the vot-
ing based detection and back-projection with a rough segmentation based on
GrabCut for accurately tracking non-rigid and articulated objects.

Besides these single object tracking approaches, there are also lots of ap-
proaches for multi-object tracking, where most of them assume that the object
category is known and depend on offline trained specific object detectors, such
as |8-10]. Breitenstein et al. |8] used detection as their observation model and
integrated pedestrian detectors into a particle filtering framework to track mul-
tiple persons. Huang et al. [9] proposed to associate detected results globally,
assuming that the whole sequence is achieved in advance. Different from |8, 9]
considering object objects individually, Pellegrini et al. [10] modeled human in-
teractions to some degree and introduced a dynamic social behaviors to facilitate
multi-people tracking. Similar to |L0], group tracking considers mutual relations
among objects.

Human Pose Estimation. Felzenszwalb et al. [11] utilized Pictorial Structure
(PS) to estimate human poses in static images. Sapp et al. [12] proposed Stretch-
able Models to estimate articulated poses in videos with rich features like color,
shape, contour and motion cues. Since the object is human, relations of human
parts can be predefined and their distributions can be learned on annotated hu-
man pose datasets in [11, [12]. But these priors do not exist in group tracking,
because objects are previously unseen.

Structural Learning and Latent SVM. We propose an online latent struc-
tural learning algorithm to update relational weights. Tsochantaridis et al. [13]
optimized a structural SVM objective function, which is a convex optimization
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Fig. 2. An illustration of our problem formulation. We combine IOMs and MRMs for
group tracking, where MRMs consist of relational weights, the relational graph and
mutual relation vectors.

problem widely applied to a variety of problems in computer vision [@, @] Bran-
son et al. ﬂﬂ] utilized online structural learning algorithm to train deformable
part based model interactively. By introducing latent variables, Felzenszwalb et
al. proposed Latent SVM to handle object detection challenges. Ramanan
et al. ,] made some improvements on Latent SVM and demonstrated state-
of-the-art results in object classification and human pose estimation.

3 Problem Formulation

We denote the sequences of observations and object states from frame 1 to
frame T as O1.p = {O1,...,07} and S1.p = {51, ..., Sr}. Observations consist
of image features which can include image patches, corner points or the outputs
of specific generative/discriminative models. We encode the states of M objects
at time t as S; = {s;.m}M_,. Each object state is represented by its center
x = [z y|T, width w and height h. Thus, we formalize the state of mth object
at time ¢ as S¢.m = (X¢,m, We,m, Ae,m). We can now write the full score associated
with a configuration of object states as

FOL8) = wip b1p(Onsip) + D Wipg: Prpa(sepsig) (1)
peEV; (p,a)EE:

where ¢, is the response of the individual model for object p, and ¢y 4 is
the mutual relation vector between two objects p and q. w;, and wyy are
weight parameters. Gy = (V;, F;) represents the relational graph whose nodes
are objects and edges indicate mutually related objects. For concise descriptions,
we write B; = [{wep}; {wep.q}] and (O, Si) = [{btp}; {¢t.p,q}], and thus the
scoring function in Eq.([I)) can be rewritten as f(Oy, St) = B¢ - ¥(O¢, St). This
formulation is illustrated in Fig.

Individual object models (IOMs) compute the local score of placing one object
at a specific frame location, corresponding to ¢ ,. The larger score indicates the
higher probability of the object at this location. As reviewed in Sec.2, there
are many algorithms for single object tracking and most of them can be easily
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integrated into our framework. Taking MIL [1] as an example, MIL represents
each object by a bag of samples and online learns a discriminative classifier. The
learned MIL classifier can return the confidence of an image patch to an object.

Mutual relation models (MRMs) consist of the relational weights, the mutual
relation vectors and the relational graph, corresponding to S, ¢¢pq and Gy
respectively. Firstly, relational weights balance the two terms in Eq.(). If rela-
tional weights {wy p } are set to zero, Eq.(d) will equal to the case that ignores
mutual relations. Secondly, mutual relation vectors are calculated between re-
lated objects to show the interactions. Thirdly, the inferences of Eq.() for cyclic
and acyclic graphs are very different. In the next section, we will present details
of modeling mutual relations.

4 Modeling Mutual Relations

In this section, we describe particularly how to learn relational weights, calculate
mutual relation vectors and update relational graphs.

4.1 Learning Relational Weights through Online LSVM

Given a set of frames and object configurations {(0O1, S1), ..., (Or, St)}, the task
is to learn proper relational weights (8;) to balance the two terms in Eq.(I). We
cast this task as a maximum margin structured learning problem (Structured
SVM |13]), where we consider mutual relation vectors as latent variables. In
addition, there is no need to depict the objects in a long time ago and they
might differ a lot with the current one in appearances, and therefore we only
consider samples in a short time period 7. Similar to [14], we formulate this
problem to search the optimal weight 8* that minimize the error function Fr(f)

Fe(8) = 1817+ L 3 u() &)
. t=T—71+1 .
1:(8) = max 8- (O, S1) — B - (01, S4) + A(Ss, §1) 3)

St

where S; is a particular object configuration and A(Sy, St) is the loss function,
equaling to the number of missing objects when the ground truth is S;. This
criterion attempts to learn a set of weight parameters 3, so that the score of any
other choice of object configurations (- ¢(Os, St) is less than that of the ground
truth configuration - (O, St) by at least A(St, 5})

Comparison with [14]. Before designing efficient algorithms to learn relational
weights, we should consider three main issues. (1) Labeled samples. In our
tracking problem, we have only one labeled result S; at t = 1, while {S;}7_, are
tracked results, which are assumed as ground truths and will not change after
T. In contrast, |[14] have many well-labeled ground truths for training but there
are no consistencies between images. To some extent, video consistencies are
the most important information to make our problem tractable. (2) Working
samples. We exploit recent 7 frames to depict object relations, while [14] utilizes
all possible training samples to learn a powerful model. (3) Learning speeds.
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The frames come one by one during tracking, which is an incremental way similar
o |14]. Thus, it requires a fast online learning algorithm.

Optimization. The form of our learning problem is a Structured SVM. There
exist many well-tuned solvers such as the cutting plane solver of SVM5!ru<t [1§]
and the Online Stochastic Gradient Descent (OSGD) solver [19]. While SVMstruet
solver is most commonly used, OSGD solver has been observed faster in practice
[17]. Since the speed is important for tracking, we choose the OSGD solver for
our learning problem. When an example (O, S;) comes, [19] proposed to take

an update as 1
B = Bi-1 — \ (Bi—1 + Vi) (4)

¢
where VI;(3) is the sub gradient of the hinge loss (), which can be computed

by solving a problem similar to an inference problem

Vi(8) = (O, St) — ¢(Or, St) (5)
St = argAmaX 6 . ’(/J(Ot, St) =+ A(St, St) (6)
St

The update in Eq.(#]) needs at least one whole iteration for each new sample and
is designed to keep the learning ability on all samples. Because of characteristics
of our task (objects in a short time period and video consistencies), we modify

Eq.@) as
) 1 lt—l(ﬁt—l))
— By — : Vi 1. 7
B = Bi—1 mln<>\t1 1Vl 2 t—1 (7)

Our update directly combines the weights and the sub-gradient of the hinge loss
in the previous time. It is non-iterative because B;—1, Vi;—1 and l;_1(B8;—1) are
all calculated before time fll. Note that, the coefficient of Vi;_; in Eq.([) might
be tuned, which is different from ;tl in Eq. ). Relatively, our update is more
reasonable for tracking. In addition, there is no need to determine 7 explicitly
in this online update.

Computation. The computationally taxing portion of Eq. () is to calculate the
sub-gradient of I;(8) using Eq.(@). It is too computationally expensive to sample
locations around the ground truths of objects like |14,|17]. Thus, we select S, from
O, where ©; contains all configurations inferred by Eq.( ) except the tracked
result, whose details will be described in Sec.5. Then, one needs to loop over
O, to get the most violated configuration S;. For each testing on St, one needs
to compute (O, 5',5) containing scores of IOMs and mutual relation vectors,
and A(Sy, 5}) comparing a predicted configuration with the ground truth, both
of which make the computation as O(M). Therefore, the sub gradient can be
calculated in O(M|6;|). Moreover, if some objects are missing (i.e. very small
scores of IOMs), there is no need to update weights related to these objects.

4.2 Calculating Mutual Relation Vectors

Mutual relation vectors show the interactions between related objects. They
can be interpreted as a spring model that represents the relative placement of

! This update can be extended easily to an iterative way. However, we have not found
significantly improvements in our experiments.
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two objects. Ideally, more accurate locations of related objects indicate higher
scores. Unfortunately, only the first frame is labeled as stated before. Motivated
by deformable part based model in |16, [17], we calculate mutual relation vectors
with the changes of relative locations between two objects.

Following denotations in Sec.3, the relative location of p with respect to ¢ at
time ¢ is 2¢ ¢ = X¢,p—X¢,q and the estimated relative location is z; ,, ¢ = X¢.p—Xt.q,
where X; , and X, are estimated locations for object p and ¢ respectively. The
Kalman Filter |20] is adopted as the algorithm to estimate object locations,
where both linear Gaussian observation and motion models are assumed for
each object. Then, we define the mutual relation vectors as ¢ p q(St.p, St.q) =
[de dy dx? dy?|T where [dx dy]T = 2 pq — Ztpq- Although 7, , is always
biased from the ground truths, it does not have a direct impact on the whole
tracking system because mutual relation vectors are taken as latent variables
and relational weights are updated online.

4.3 Updating Relational Graphs

The relational graph determines the complexity of inferring Eq.( ). A general
representation is a full connected graph. However, there is no guarantee to get
global optimizations on it. As our goal is to make use of frames in a short
time period, we suggest that a simplified graph, i.e. tree, is reasonable enough,
where dynamic programming can be used for efficient inferences which will be
explained in Sec.5. However, after a long time period or when some objects move
violently, one graph may lose the effectiveness and even interfere with tracking

Table 1. Our tracking algorithm

Input: video sequences O1.7.
Initialize: multiple objects S1 = {s1,1,...,51,m}, the relational graph G1 = (V1,E1) by
E;, = 0, the relational weight 81 = [1;0] by default (w1,p=1,w1,p,¢=0), the frame number
of updating relational graphs Ng7, the object speed threshold 6,, and the frame number of
updating relational weights k.
Output: tracked objects in all frames Sy.7.
Learn individual object models at the first frame.
Fort=1:T
— Apply individual object models at sampled locations.
— Find the best configuration by inferring Eq. ().
— Store the other inferred results into ©;.
— Update individual object models in predicted locations St.
— Update relational weight B:41 by Eq.(@) on 6.
—If t == k (i.e. constructing the relational graph), or t > k&&(t%Ny == 0||2: # 0)
where 2 = {vt,p|vt,p > 0y}, (i-e. updating the relational graph).
+ Evaluate connected weights between objects by Eq.(®).
+ Generate the Minimum Spanning Tree on a full connected graph.
+ If the graph structure is changed, set 8;_;+1 = [1;0], update ;1 on O;
fori=t—k+ 1 to t, and obtain S¢y1. End If.
— End If
End For
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performances. Although this interference may be reduced to some extent by
relational weights, it is supposed to be more reasonable to update the relational
graph over video sequences.

Adaptive Relational Graphs. Intuitively speaking, a reasonable adaption en-
courages linking objects moving similarly and disconnecting those moving differ-
ently. Therefore, we learn reasonable relational graphs through analyzing object
trajectories and define the connected weights between two objects based on their
motion similarities in the latest k frames

t
Tipg = 1/(1+ Z IVip = Vig

i=t—k+2

2) (®)

where v;; = X;; — Xi—1,;(j = p,q) and || - || is L2 norm. After calculating
all connected weights, one can perform Minimum Spanning Tree algorithms to
generate a new tree structure. Once the graph structure is changed, the relational
weights should be re-learned correspondingly. It is not reasonable to set the
relational weights by default, and thus we utilize stored results of latest k frames
{Qi}§=t—k+1 to learn P41, in which we set 5;_r41 by default.

5 Inference

The inference of our formulation is to maximize Eq.(I]) over all involved objects,
S argsmax f(Oy, Sy). (9)
t

Since we restrict the relational graph to be a tree, the inference can be efficiently
solved by dynamic programming. Letting child(p) be the set of children of object
p in Gy, we compute the message of p passing to its parent ¢ as follows.

score(p) = w,p - Gtp(Or, St.p) + Z my(p) (10)
bechild(p)
my(p) = max (score(b) + wi.pp - Pt.b.p(St.by St.p)) (11)

Eq.([0) computes the local score of p at all possible locations, by collecting
all messages from its children. Eq.(d)) computes the messages at all possible
locations of b and finds the best scoring location. Once all messages are passed
to the root object, one can generate object configurations by starting from a root
location and backtrack to find the location of each object in each maximal point
with the aid of keeping track of the argmax indices. The configuration with the
maximum root score corresponds to the tracked result in a frame.
Computation. After applying IOMs in one frame, we have scores of objects
at a number of locations. For considering the efficiency of online tracking, we
only keep L highest scoring locations for each object. Then, we have to traverse
over L possible parent locations and compute over L possible child locations in
Eq.(IT), resulting the computation O(L?) for each object. Therefore, the total
complexity of M objects is O(M L?). As each root location corresponds to an
inferred configuration, there are totally L inferred configurations. Except the
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tracked result, other inferred configurations are stored in ©; for learning rela-
tional weights as in Sec.4.1. Thus, we have |©;| = L — 1 and the complexity of
learning relational weights is O(M|6|) = O(ML).

Till now, we have elaborated our framework for group tracking. For easy
references, we summarize the whole tracking algorithm in Tab[Il

6 Experiment

In this section, we carry out experiments to demonstrate the advantages of
MRMs for multi-object tracking, where tracking objects are not constrained
to be within a specified class. Besides MRMs, IOMs are also very important for
the whole tracking algorithm. As stated in Sec.3, many approaches for single
object tracking can be used as IOMs. But in this paper, we focus on showing
the performance of MRMs combined with one kind of IOMs. In the experiment,
we select MIL [1] as IOMs, which has achieved promising results in [1]. We use
the default parameters of MIL as in |I] and will demonstrate in the following
that the combination of MIL and MRMs improves tracking performances fur-
ther. Combining other kinds of IOMs with MRMs is one direction of the future
work. All experiments below are conducted on an Intel Core(TM)2 2.33GHz PC
with 2G memory.

6.1 Experimental Setup

Parameters. We select at most L = 100 locations for each object in each frame
and always set the weight update parameter A\; = 1000 in Eq.(d). We update
the relational graph every Ny = 50 frames or if the speed of one object is larger
than 6, = 8. If the change of the relational graph is detected in Tab. [l we use
the tracked results of latest k = 3 frames to learn new relational weights.

Datasets. To build up and utilize mutual relations efficiently, a proper test
sequence requires that objects are fully or partially visible in most frames. Cur-
rently, there are no standard datasets for this objective. Therefore, we select ten
sequences from [1, 13, 21, 122] for evaluations, where we can easily label multi-
ple objects for tracking. We select david indoor, occluded face, occluded face2,
coke and cliffbar from [1] and shaking, animal and skating1® from [3], which
are widely used for single object tracking and cover the difficulties of occlu-
sions, changing appearances, varying illumination and abrupt motions. [21] is a
widely used dataset for pedestrian tracking. We select a relatively challenging
sequence, Seq.#3, because of frequently and significantly light changes. [22] is a
sign language dataset which focuses on locating arms and hands. Abrupt mo-
tions of hands, similar appearances of hands and relatively low resolutions make
this dataset very difficult for online visual tracking. The whole sequence is very
large, and we select a representative clip (#191~#490) for evaluation.

2 There are no several objects existing simultaneously in most frames of skating! due
to abrupt motions. To track several objects, we select #210~#345 for evaluations.
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Metrics. Center location errors along with frame numbers are widely used for
evaluating single object tracking algorithms and the mean error over all frames
is a summarized performance. However, if a tracker tracks a nearby object but
not the concerned one for a long time, location errors fail to correctly capture
tracker performances. Another metric is the overlap criteria, where a result is
positive only if the intersection is larger than 50% of the union comparing to
the object with the same label. Using this metric, we can calculate the detection
rate by TruePos/(FalseNeg+ TruePos).

Compared Algorithms. To our knowledge, there are no implementations avail-
able publically for group tracking, and thus we compare our approach with
the algorithms applying IOMs individually. Some applied state-of-the-art algo-
rithms for single object tracking are Online-AdaBoost (OAB) [23], FragTrack [6],
MIL [1], TLD [7] and VTD [3]. We utilize the codes provided by the authors
and carefully adjust the parameters of the trackers for fair comparisons. We use
the best five results from multiple trials and average the location errors and
detection rates, or directly take results from the prior works.

6.2 Performance Evaluation

6.2.1 Evaluation on Two Objects

First, we evaluate our approach on the simplest situation, tracking two objects
together as illustrated in red in Figl3, where the relational graph always con-
nects the two objects. We show the location error plots of some objects in Figldl
and summarize the average location errors and detection rates in Figlhl Gener-
ally, our approach has improved MIL significantly in most sequences with lower
location errors and higher detection rates. Due to the challenges of the testing
sequences, MIL does not perform as well as VI'D and TLD in many sequences,
while our approach performs as well as or even better than TLD and VTD in
some sequences. Note that Figll(a) demonstrates the reduced average location
errors of MRMs+IOMs compared to only IOMs where MIL is selected as IOMs.
Although our current implementation is not the best in average location errors,
we believe that our framework can also improve their performances to some
extent if we select other algorithms as IOMs.

We mention some typical results on face, coke, shaking and skatingl. Because
of frequent occlusions in face, MIL performs much less precisely than Frag, TLD
and VTD. Our approach utilizes effective MRMs to achieve as precise results
as Frag, TLD and VTD. The evaluated object in coke is specular, which causes
some difficulties to learn generative models and discriminative classifiers for it.
Thus VID and MIL drift easily, while TLD obtains more stable results with
structured constraints on samples. With the help of effective MRMs, our ap-
proach achieves the highest detection rate in coke. Because of abrupt motions
and severe illumination changes in shaking and skatingl, TLD and MIL become
inaccurate and lost objects in early frames. Our approach obtains a lower de-
tection rate than VTD in shaking. The main reason might be that our approach
can learn relatively robust mutual relations, but the applied individual model,
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Fig. 3. Qualitative results on david, face, face2, coke, cliffbar, shaking, animal and
skatingl sequences from left to right and top to down
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Fig. 4. Location error plots of some objects on test sequences

MIL is not designed to handle with both abrupt motions and severe illumination
changes. Moreover, our detection rate in skatingl is higher than that of VTD.
The reason is that the tracking objects in skating! move violently from the very
beginning and undergo large variations of poses and scales, which causes many
difficulties for building holistic appearance models.

6.2.2 Evaluation on More Objects

Then, we carry out experiments in more complex situations, tracking more than
two objects. Different from fixed relational graphs previously, we show the perfor-
mances of adaptive relational graphs in this subsection. We select two challenging
sequences, Seq.#3 [ﬂ] and Sign ﬂﬂ], and numerate fixed relational graphs to
compare with adaptive relational graphs as shown in Figlil(a,c).
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david 32 46 12 26 23 15 8  david 034 006 059 072 065 09 031
face 39 6 10 10 27 10 17 face 044 1 1093 077 1 0.23
face2 21 15 15 9 20 14 6  face2 080 084 085 096 087 096  0.09
coke 25 63 9 45 21 11 10 coke 0.8 006 043 006 026 064 038
ciftar 14 34 6 12 12 1 1 clibar 054 022 079 068 071 08 009
shaking 16 62 6 8 34 I3 21 shaking 063 0.3 016 095 049 073 024
animal 73 91 19 10 35 21 14 animal 006 002 072 093 044 048 004
skatingl 66 86 10 13 60 48 12 skatingl 029 012 01 037 041 056 015
(a) Average location errors (pixels) (b) Detection rates

Fig. 5. Quantitative results. After comparing our approach with MIL, A; in (a) shows
reduced mean location errors, and Az in (b) shows improved detection rates.
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Fig. 6. Tracking results on Seq.#3 (a,b) and Sign(c,d). (a,c) show tracking objects in
rectangles and numerated trees of relational graphs. (b) compares the detection rates
on Seq.#3 and (d) compares average location errors on Sign, where RGada indicates
the approach of using adaptive relational graphs.

Tracking objects in Seq.#3 are man, woman and their entirety which are
walking together with frequently light changes. As Seq.#3 is fully annotated
with rectangles, we use detection rates to compare our approaches with MIL
in Figle(b). Due to frequently light changes, MIL drifts easily on the man and
woman. Qur approaches, with fixed relational graphs and the adaptive relational
graph, all show significantly improvements than MIL on the man, and particu-
larly the adaptive relational graph improves the detection rate by about 25%.
However, the improvement of the adaptive structure on the woman is slightly
(about 3.7%) and RG3 drops the tracking performance slightly, mainly because
light changes on the woman are more severe than those on the man.

Tracking objects in Sign are head, left hand and right hand, whose motions
are abrupt. Because Sign is sparsely annotated with masks while tracked results
are in fixed ratios, we use average location errors to compare our approaches with
MIL in Figlt(d). MIL tracks the left hand well, and our approaches with mutual
relations also keep the accuracies on it. However, due to violently motions and
changed appearances of the right hand, MIL and fixed relational graphs drift
easily. In contrast, the adaptive relational graph performs more accurate and
always tracks the real objects as shown in Fig[l
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Fig. 7. Tracking results of MIL(top) Fig. 8. Examples for the impacts of selected
and OUR(bottom) on #1, #11, #24, objects on tracking. Please see Sec.6.2.3 for
#32 and #163 from Sign. more details.

6.2.3 Impacts of Selected Objects

Our framework consists of IOMs and MRMs. Accurate IOMs are the basis of
learning robust MRMs, and in return the improved accuracies of object locations
by robust MRMs will make IOMs more accurate. If selected objects encounter
great challenges, IOMs may be inaccurate in some frames and the entire per-
formances are also affected. For example, the detection rates of coke, shaking,
animal and skatingl are less than those of other sequences in Sec.6.2.1, mainly
because of severe illumination changes and abrupt motions. If the connections
of selected objects are relatively strong, robust MRMs can be efficiently learned,
such as the sequences in Sec.6.2.1. Due to frequently light changes, the con-
nection of pedestrians in Seq.#3 is weak, leading to the reduced performance
of RG3 in Figlf(b). Similarly, the connection of hands in Sign is weak due to
abrupt motions and fixed relational graphs drift easily.

As our main contribution is in MRMs, we give more analysis on MRMs,
especially in two-object tracking because it is the most basic situation. We choose
a typical sequence cliffbar, where the evaluated object is bar as shown in red in
FigBl(a). We select five candidates, head, box, torso, hand and elbow, and then
track both bar and one candidate each time, resulting in the five groups G1~G5
in Fig[8(b)(top). As MIL performs similarly on these objects, the performances
are mainly influenced by MRMs. The connections between objects in G3/G4/G5
are relatively stronger than those in G1/G2. It is because bar directly links with
hand, elbow and torso, and their motions are related with each other, but these
connections are much weaker between bar and head or box. This explains the
results in Fig[B(b) (bottom), where G3/G4/G5 achieve slightly better results than
MIL, but G1/G2 reduce the performance a lot.

Overall, our approach can exploit MRMs well for robust tracking when se-
lected objects have relatively strong connections and some of the IOMs are rel-
atively accurate. To enhance connections between objects, we need more proper
models to measure interactions of objects and construct relational graphs. To
cope with inaccurate IOMs, we may utilize proper IOMs for different objects.
They are both beyond the scope of this paper and will be studied in the future.
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6.3 Discussion

Speed. The inference is highly efficient in our experiment (less than 10ms),
while the bottleneck of our implementation is online learning IOMs. We ob-
serve that the overall speed except the inference is slightly slower than tracking
objects individually. A partial reason might be that inferred locations are not
discriminative and it causes some difficulties for online learning object models.

Comparison with Other Works. Although [8,9] and our approach are all pro-
posed for multi-object tracking, their concentrations are different. Since tracked
objects are known in [8,19], |8, 9] are provided with relatively good offline learned
object models (detectors) and are able to cope with many objects simultaneously.
Thus, [8, 9] focus on handling with ID switches because the offline models could
not distinguish objects in the same category, and coping with fragments because
the offline models could not cover all kinds of objects in this category. However,
as objects are previously unseen in our problem, we should online build models
for objects, where great challenges come from changes of objects and the sur-
roundings. Therefore, our main concern is to build up proper IOMs and MRMs
to avoid drifting and switching errors particularly when tracked objects are in
similar appearances.

7 Conclusion and Future Work

In this paper, we present a novel framework of combining IOMs and MRMs
to track multiple previously unseen objects. In MRMs, the relational graph in-
dicates related objects, the mutual relation vectors show the interactions, and
the relational weights balance all interactions and IOMs. We use online LSVM
to learn relational weights and analyze object trajectories to update relational
graphs. Various experiments show the advantages of our framework.

There are several interesting ways to extend this work in the future. Firstly,
there is no single algorithm that can cover all difficulties in visual tracking.
Fortunately, our framework provides an easy way to integrate different IOMs
and we will try to find if some models can complement each other. Secondly, we
will collect proper real world datasets for direct evaluations on tracking multiple
(> 3) previously unseen objects. Finally, our framework can be extended to track
some specific object if we online select some regions or points like [4].
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