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Abstract. We demonstrate the Advanced Data mining And Machine
learning System (ADAMS), a novel workflow engine designed for rapid
prototyping and maintenance of complex knowledge workflows. ADAMS
does not require the user to manually connect inputs to outputs on a large
canvas. It uses a compact workflow representation, control operators,
and a simple interface between operators, allowing them to be auto-
connected. It contains an extensive library of operators for various types
of analysis, and a convenient plug-in architecture to easily add new ones.
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1 Introduction

Many of today’s data mining platforms offer workflow engines allowing the user
to design and run knowledge workflows, from cleaning raw data to building mod-
els and making predictions. Most of these systems, such as Kepler [1], Rapid-
Miner [2] and KNIME [3], represent these dependencies in a directed graph.1

Many of them take a “canvas”-based approach, in which the user places op-
erators on a large canvas and then connects the various inputs and outputs
manually, thus introducing each dependency as a line on the canvas.

Though this is a very intuitive approach that greatly appeals to many end
users, it is also a very time consuming one. When inserting additional operators,
one has to move and rearrange the entire workflow to keep the design tidy. If
an operator is replaced, all connections have to be redrawn. Moreover, scientific
workflows often grow very complex, including hundreds of independent steps [5].
On a canvas, this leads to very large and complex graphs with many intercon-
nections. This means that oversight is easily lost, even with useful features such
as zooming, hierarchical workflows or meta-operators with internal workflows.

In this paper, we present ADAMS (Advanced Data mining And Machine
learning System), a novel workflow engine specifically designed for rapid pro-
totyping of complex scientific workflows, taking away the need to manually lay
out and connect operators on a canvas. It presents the workflow in a compact
tree structure in which operators can quickly be dragged in or pulled out, and

1 For an in-depth overview and comparison of scientific workflow systems, see [4,5].
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auto-connected to the surrounding operators. It includes an extensive library of
operators, including a range of control operators to create and direct sub-flows.
Moreover, new operators can be added very easily, either by dropping them in
a folder, or writing them on-the-fly, without compilation, in scripts.

2 Workflow Representation

Fig. 1. Data visualization flow

Figure 1 illustrates an ADAMS work-
flow. It reads files from a direc-
tory with sensor data and plots the
raw and convoluted data (scale-space
composition). Operators (called ‘ac-
tors’) are dragged from a library
into the flow, and will automatically
‘snap’ into the tree structure depend-
ing on where they are dropped. Ac-
tors are shown as nodes with a name
and a list of parameter settings (op-
tions). They are color-coded based
on whether they are a source (only
output, e.g. DirectoryLister ),
transformer (input and output, e.g.
Convolution ), sink (only input,
e.g. SequencePlotter ) or stan-
dalone (no in/output, e.g. Global-

Actors ). Branches can be col-
lapsed, and clicking actors opens a
settings dialog. Some actors are fine-
grained, allowing data to be manipu-
lated within the flow, instead of requir-
ing new actors.

Tokens. Data are passed as tokens
wrapping a single Java object (e.g. a string or an entire dataset), as well as
provenance information: a trace of actors affecting the data. Tokens can assume
any level of granularity: actors can receive a single token (e.g., a dataset) and
emit many (e.g., data points), or vice versa, buffer tokens and emit an array
(e.g., the SequenceToArray actor). Actors with several outputs can attach a key
to each token, creating key-value pairs. Such pairs can be combined in a con-
tainer, and actors can extract tokens by key. For instance, MakePlotContainer
attaches ‘X’ and ‘Y’ keys so that data can be plotted.

Control actors can branch or merge sub-flows and define how data is passed
between their sub-actors. Sequence executes its sub-actors in sequence, pass-
ing tokens from one to the next. Branch forwards each received token to all
underlying actors and executes them in parallel. Tee splits off each input
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token, feeds it to its sub-flow and waits until it finishes before passing the to-
ken on. Trigger simply starts its sub-flow upon receiving a token (without
feeding the token to its sub-flow). Injector passes each received token on,
but also injects a new token. Some actors are conditioned on the value of the
received token: ConditionalTee runs its sub-flow only if a stated condition
holds, If-Then-Else runs one of two sub-workflows depending on a test, and
WhileLoop loops over its sub-flow as long as its condition holds.

N-to-M semantics. While a tree representation cannot represent N-to-M re-
lationships, ADAMS solves this shortcoming through variables, key-value pairs,
and global actors. String tokens can be assigned to a variable using a SetVariable
actor (e.g., @{sensor} in Fig.1), and used as an actor parameter or reintroduced
elsewhere as a token by the Variable actor2. Similarly, any object token can be
stored as a key-value pair by the SetStorageValue actor and reintroduced by
the StorageValue actor. Finally, actors and their sub-flows can be made global:
for instance, all tokens sent to a GlobalSink actor are passed to the referenced
global actor, as shown in Fig. 1.

Interactivity. Actors can interact with the user when needed through dialog. For
instance, they can ask the user to locate an undefined file, or display a number
of results and allow the user to make a subselection before proceeding.

3 Plug-In Architecture

Fig. 2. ADAMS architecture

ADAMS contains an extensive
library of actors enabling the in-
clusion of techniques from many
existing libraries in a modular
framework (see Fig.2). This in-
cludes actors for machine learn-
ing techniques, importing and

exporting spreadsheets, generating graphics and PDF files and sending email. A
concise overview of currently supported libraries is shown in Table 1. In addition,
ADAMS has a plug-in architecture to easily add new actors. A new actor can
be written as a single Java class implementing a simple API. When this file is
dropped into a specific folder (icon optional), ADAMS will find it and show the
actor in the workflow interface. Using one of the scripting languages, actors can
be developed on-the-fly without compilation.

4 Applications

ADAMS is being used in two practical applications involving large, complex
workflows. First, Gas Chromatography Mass Spectrometry (GC-MS) is a tech-
nique used to detect concentrations of compounds of interest, but the raw, high-
dimensional data produced is generally not amenable to processing with machine

2 The scope of variables can be limited to one specific sub-flow by a LocalScope actor.



836 P. Reutemann and J. Vanschoren

Table 1. Overview of currently supported tools, available through actors

Task Support for

Machine learning WEKA, MOA, parameter optimization, experiment generation
Data Streams MOA, Twitter
Spreadsheets MS Excel, ODF, CSV
Graphics BMP, JPG, PNG, TIF, PDF
Imaging ImageJ, JAI, ImageMagick, Gnuplot
Scripting Groovy, Jython
Other HTTP, FTP, SFTP, SSH, Email, tar/zip/bzip2/gzip

learning systems. Using ADAMS, effective data flows were designed to entirely
automate this process [6]. Second, in the InfraWatch project [7], a heteroge-
neous sensor network of over 150 sensors is monitoring the dynamic behavior
and structural health of a highway bridge. The token-based design of ADAMS
proved ideal for online processing of sensor data, and its quick workflow proto-
typing facilitates experimentation with novel time series analysis techniques.

5 Conclusions

Most scientific workflow engines use a canvas on which operators are manually
arranged and connected. While this is certainly very intuitive and appealing
for many end users, it is not ideal for handling very large, complex workflows.
ADAMS is a rapid prototyping workflow engine designed for researchers and
practitioners dealing with large workflows. It offers a wide range of operators, a
plug-in architecture to include new ones on-the-fly, and a very compact workflow
representation in which operators are auto-arranged, appreciatively speeding up
workflow design and maintenance. Many examples and documentation can be
found on ADAMS’ website: https://adams.cms.waikato.ac.nz/
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