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Abstract. Random walk plays a significant role in computer science. The pop-
ular PageRank algorithm uses random walk. Personalized random walks force
random walk to “personalized views” of the graph according to users’ prefer-
ences. In this paper, we show the close relations between different preferential
random walks and label propagation methods used in semi-supervised learning.
We further present a maximum consistency algorithm on these preferential ran-
dom walk/label propagation methods to ensure maximum consistency from la-
beled data to unlabeled data. Extensive experimental results on 9 datasets provide
performance comparisons of different preferential random walks/label propaga-
tion methods. They also indicate that the proposed maximum consistency algo-
rithm clearly improves the classification accuracy over existing methods.

1 Introduction

Random walk model [1] is a mathematical formalization of the paths that consist of
taking successive random steps, i.e., at each step the walk jumps to another site accord-
ing to some probability distribution. The random walk model plays an important role in
computer science, and it has many applications in information retrieval [2], social net-
work [3], etc. PageRank [4] is a link analysis algorithm, which uses the idea of random
walk to measure the webpages’ relative importances. Personalized Page Rank [5] is pre-
sented to create “personalized views” of the web searching results based on redefining
importances according to users’ preferences.

Semi-supervised learning(SSL) has connections with random walks on graphs. In
SSL, only a small number of data points are labeled while a large number of data
points are unlabeled. The goal of SSL is to classify the unlabeled data based on la-
beled data. SSL has attracted more attention because the acquisition of labeled data is
quite expensive and time-consuming, while large amount of unlabeled data are easier to
obtain. Many different methods have been proposed to solve SSL problems [6,7], e.g.,
classification-based method [8], clustering-based method [9], graph-based
method [10,11,12], etc. Among all these methods, the graph-based method is the most
popular way to model the whole dataset as undirected weighted graph with pairwise
similarities(W), and the semi-supervised learning can be viewed as label propagation
from labeled data to unlabeled data, like a random walk on a similarity-graph W. Our
work is inspired by previous graph-based semi-supervised methods, especially by the
works of consistency labeling [11] and Green’s function [12].

In this paper, we first show the close relations between preferential random walks
and label propagation methods. We show that the labeled data points act as the prefer-
ential/personalized bias vectors in the personalized random walks. This provides much

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 339–354, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



340 D. Kong and C. Ding

insight to the existing label propagation methods, and suggest ways to improve these
methods. In addition, we perform extensive experiments to compare the performances
of different methods used in preferential random walks.

Furthermore, we observe that current label-propagation approach may not achieve
best available results, especially when the propagation operator, inferred from both la-
beled and unlabeled data points, does not exactly reveal the intrinsic structure of data.
Many label propagation methods are done in one shot from source (labeled data) to all
unlabeled data. This can not guarantee many newly-labeled data, which lie far-away in
the data manifold of both labeled and unlabeled data, are labeled reliably. Motivated by
this observation, in this paper, we present a novel maximum consistency approach to
improve the performance of existing label propagation methods. Our approach focuses
on propagating labels from source to nearby unlabeled data points only, and thus reli-
ably labeling these data points. This propagation expands progressively to all unlabeled
data, to ensure maximum consistency from labeled data to unlabeled data. Maximum
consistency algorithm leverages existing propagation methods and repeatedly utilizes it,
which incurs almost the same computational complexity as other existing propagation
methods.

Here we summarize the contribution of our paper.

– We show the direct relations between preferential random walks and existing la-
bel propagation methods. Extensive experiments on 9 datasets are performed to
demonstrate the performance of different methods.

– We present a maximum consistency algorithm to improve existing label-propagation
methods. Extensive experiments performed on 9 datasets indicate clear perfor-
mance improvement.

The rest of this paper is organized as follows. §2 gives a brief overview of personalized
random walk. Next in §3, we establish the connections between the preferential random
walks and label propagation methods. In §4, we emphasize the concept of score distri-
bution in semi-supervised learning methods. In §5, we propose maximum consistency
label propagation method. §6 reviews the related work to our paper. In §7, extensive ex-
periments on 9 datasets are performed to provide the performance comparisons of both
different preferential random walks/label propagation methods and proposed maximum
consistency algorithm. Finally, we conclude the paper.

2 A Brief View of Personalized Random Walk

On an undirected graph with edge weights W, let D be the diagonal matrix with D =
diag(We), e = (1, . . . , 1)T , then P = (Pij) is the transition probability from node i
to node j,

P = D−1W (1)

Let fi be the stationary probability of one random walker on site i. The following prop-
agation

f = (1− α)y + αPT f , (2)

governs the random walker. The converged stationary distribution gives the score.
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Here y is the personalized (bias) probability distribution; this fixed vector represents
the personal interest or other preferential treat of different nodes. In PageRank [4], y =
(1, . . . , 1)T /n, α = 0.9. In personalized random walk [5], y encodes the personalized
preferences. For example, for a random walker who prefers to visit sites i1, i2. Then
yi = 1/2 if i = i1, i2; yi = 0 otherwise.

2.1 Personalized Random Walk for 2-Class Semi-supervise Learning

To do classification for partially labeled data for 2-class, we divide the data into X+,
X−, and Xu for positively labeled, negatively labeled, and unlabeled datasets. We do
two random walks: (1) one for the positive class with preferential vector y(+) where
y
(+)
i = 1/|X+| if i ∈ X+; y(+)

i = 0 otherwise. The converged score of Eq.(2) gives

f (+). (2) one for the negative class with preferential vector y(−) where y(−)
i = 1/|X−|

if i ∈ X−; y(−)
i = 0 otherwise. The converged score of Eq.(2) gives f (−). We then

assign for each unlabeled data xi ∈ Xu the class with higher stationary distribution:
k = max(f

(+)
i , f

(−)
i ).

Note that because the propagation of Eq.(2) is linear, we can do the semi-supervised
learning using only one random walk with the preferential vector y = 1

2 (f
(+) − f (−)).

We then assign for each unlabeled data xi the class with k = sign(fi). This is a simple

algorithm. Note that here
∑

i yi = 0, since
∑

i y
(+)
i = 1 and

∑
i y

(−)
i = 1. This will

be useful in deriving the Green’s function method below.

2.2 Generalized Preferential Random Walk for Multi-class

In multi-person random walks, there areK random walkers. Each random walker k(1 ≤
k ≤ K)has a distribution vector fk and a personalized preference vector yk,

fk = (1− α)yK + αPT fK . (3)

Let F = (f1, · · · , fK) and Y = (y1, · · · ,yK), from Eq.(2), we obtain the transition

F = (1− α)Y + αPTF. (4)

The solution for the final stationary distributions of the K random walkers are

F =
1− α

I− αPT
Y. (5)

Method 1:
Here we use standard random walk transition probability of Eq.(1) and obtain the sta-
tionary distributions of the K random walkers:

F =
1− α

I− αWD−1
Y =

1− α

(D− αW)D−1
Y = D

1− α

(D− αW)
Y. (6)
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Method 2:
If we use the “pseudo transition probability” P = D− 1

2WD− 1
2 , we obtain the station-

ary distributions of the K random walkers as:

F =
1− α

I− αD− 1
2WD− 1

2

Y. (7)

Method3:
If we use another “pseudo transition probability”P = WD−1, we obtain the stationary
distributions of the K random walkers as:

F =
1− α

I− αD−1W
Y =

1− α

D−1(D− αW)
Y =

1− α

(D− αW)
DY. (8)

So far, we have discussed random walks on a graph. Next, we make connections to semi-
supervised learning. The significance of relation analysis between preferential random
walks and label propagations is to help to capture the essence of these algorithms and
better interpret the experiment results. To our knowledge, so far there is a lack of sys-
tematic study to explore the commonalities and differences of these algorithms, and
their relations to label propagation algorithms.

3 Relations between Preferential Random Walks and Label
Propagations

In semi-supervised learning, we have n = n� + nu data points {xi}ni=1 , where first
n� data points are already labeled with {yi}n�

i=1 for c target classes. Here, xi ∈ �p

and yi ∈ {1, 2, ...,K}, such that yi = k if xi belongs to the k-th class. The last nu

data are unlabeled. The goal of semi-supervised learning is to learn their class labels:
{yi}ni=n�+1. Let Y ∈ �n×K be a class indicator matrix, Yij = 1 if xi is labeled as
class yi = j; and Yij = 0 otherwise.

3.1 Local - Global Consistency Method(LGC)

Local and global consistency(LGC) [13] utilizes sufficiently smooth assumptions with
respect to the intrinsic structure collectively revealed by known labeled and unlabeled
data points. Given the graph edge matrix W, LGC constructs the normalized matrix
S = D− 1

2WD− 1
2 , where D is a diagonal matrix with D = diag(We). Then the

predicted label matrix F is,

F = QY, Q = β(I− αS)−1, (9)

where Q is the label propagation operator, α = 1
1+μ , β = μ

1+μ , and μ is a parameter.

Relations with Preferential Random Walk. Compared with method 2 in generalized
preferential random walk of Eq.(7), we can see LGC is identical to it. This is because
constant β will not change the classification results.
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3.2 Green’s Function Method(GF)

Green’s function for semi-supervised learning and label propagation is first presented
in [12]. GF is defined as the inverse of graph laplacian L = D − W with zero-mode
discarded. Using the eigenvectors of L: Lvk = λkvk , where 0 = λ1 ≤ λ2 ≤ ... ≤ λn

are the eigenvalues. Green’s function computes the predicted label matrix F,

F = QY, Q = L−1
+ =

1

(D−W)+
=

n∑

i=2

viv
T
i

λi
, (10)

where Q is label propagation operator, (D − W)+ indicates zero eigen-mode is dis-
carded.

Relations with Preferential Random Walk. From Method 1 of generalized preferen-
tial random walk, the stationary distribution F of Eq.(6) is related to Q in Eq.(10). As
α −→ 1, we have

(D− αW)−1 −→ (D− αW)+ =
n∑

i=2

viv
T
i

λi
. (11)

Indeed, for classification purpose, the GF approach is the limit of Method 1 of gener-
alized preferential random walk of Eq.(6). This is further explained below:

(1) In semi-supervised learning, the classification result for object i is determined by
the location of the largest element in i-th row(See Eq.12).

(2) Given a distribution A and a diagonal matrix D = diag(d1 · · · dn), DA will
multiply the i-th row of A by di. The relative distribution of this row does not change.
Thus D applied to distribution A does not change the classification results.

(3) The multiplicative constant (1− α) does not change the classification too.
(4) The physical reason of discarding zero mode is the use of the Von Neumann

boundary condition. Algorithmically, this is also consistent: First, the discarded zero
mode in Eq.(11) is v1v

T
1 /λ1 = eeT /(nλ1) where λ1 = 0. As discussed in §2.1,

the multi-class random walk can be equivalently viewed as a single random walk with
preference vector y = 1

2 (y
(k) − y(k̄)), where y(k) is the preference vector for class k,

and y(k̄) is the preference vector for other classes k̄. Note
∑

i yi = 0, since
∑

i y
(k)
i =

1 and
∑

i y
(k̄)
i = 1. Thus we have (v1v

T
1 /λ1)y = 0, indicating including the zero

mode in Eq.(11) does not alter the final results of label propagation.

3.3 Comparison of Preferential Random Walk Results

In label propagation of Eq.(9) or Eq.(10), once the distribution score (a.k.a propagation
score) F are obtained, each unlabeled data point xi is assign a class label according to

k = argmax
1≤j≤c

Fij (12)

Note the key difference of LGC with GF is the computation of propagation operator
Q: LGC uses Eq.(9) while GF uses Eq.(10), which leads to different label propagation
results. Another popular label propagation method is Harmonic function [10], which
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emphasizes harmonic nature of the label diffusive process. It is very different from
LGC and Green’s function, thus we did not discuss it here.

We have done extensive experiments to compare the above discussed methods for
semi-supervised learning. We defer the presentation of these results in the experiment
§7. We next discuss another contribution of this paper, i.e., the maximum consistency
algorithm on these preferential random walk/label propagation methods.

4 Score Distribution: Confidence of Label Assignment

We begin the presentation of our maximum consistency with analysis of the distribu-
tion scores of the propagation. Our approach is motivated by careful examinations of
experiment results. One conclusion is that although label propagation methods are ef-
fective, their current achieved results can be improved significantly. Below we illustrate
the reasons.

In both LGC (Eq.9) and GF (Eq.10) methods, the propagation is done in one shot.
All unlabeled data obtain their class labels immediately. However, some unlabeled data
points may lie near labeled data in the data manifold (embedding subspace), while many
other unlabeled data lie far-away from the labeled data. Therefore, the reliability or
confidence of the class labels obtained in propagation vary from high (for those lie near
labeled data) to low (for those lie far-away from labeled data).

However, in the currently standard class assignment procedure of Eq.(12), the class
decision is simply the largest one among the c classes in the propagation score distribu-
tion across c classes. For example, for xi, the score distribution maybe

(Fi1 · · ·Fic) = (0.1, 0.2, 0.8, 0.3, 0.05),

in a data with c = 5 classes. For xj , the score distribution maybe

(Fj1 · · ·Fjc) = (0.2, 0.35, 0.38, 0.05, 0.3).

Even though both xi,xj are assigned class label=3, the confidence of the assignments
are different. Clearly, xi is assigned with higher confidence because Fi3 = 0.8 is much
higher than other classes. xj is assigned with lower confidence because Fj3 = 0.38 is
marginally higher than some other classes. In other words, for xi the propagation score
distribution has a sharp peak while for xj the propagation score distribution has a rather
flat peak.

There could be many reasons that xi’s score distribution is much sharper than the
score distribution for xj . xi could lie much closer to class= 3 labeled data point than xj .
It could also be that there are more class= 3 labeled data near xi than near xj . It is also
possible that there are many unlabeled points near xi such that they mutually enhance
the class= 3 probability than those near xj . More possibilities exist. Fortunately, it is
not necessary to dig out these details — they are collectively reflected in the propagation
score distribution.

In existing label propagation approaches, both xi,xj are assigned labels in one shot.
Now consider a different approach where we break the actual label assignment into
several rounds. We first assign class label for xi and move it to the pool of already-
labeled data, while defer the decision for xj in later rounds. As the pool of already-
labeled data expands to the neighborhood of xj , the propagation score distribution for
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xj is likely to become sharper. At this time/round, we assign class label to xj . Thus
the class label assignment is always occurring at the situation where the assignment
is done with high confidences, i.e., the assignment is done such that the data point is
the most consistent with other members of the same class, both globally and locally, as
reflected by the sharp score distribution. From these observations and discussions, we
design a maximum consistent(MC) label propagation algorithm, which uses the label
propagation operator Q defined in both LGC and GF methods. We call our approach as
MC-LGC and MC-GF. Detailed algorithm is presented in next section.

5 Maximum Consistency Label Propagation

5.1 Design of the Algorithm

Our algorithm design is guided by maximum consistency assumption, which consists
of multiple label propagations,

F1 = QY0,

F2 = QY1,

· · ·
Ft = QYt−1, (13)

where Q is the propagation operator which can be computed from Eq.(9) or Eq.(10),
and Ft is the label prediction matrix during each propagation. In each label propagation
process, we use the current labeled data matrix Yt to update the label prediction matrix
Ft.

At the end of each propagation, only those unlabeled data points whose class labels
are reliably predicted are actually assigned class labels and moved into the pool of
labeled data (Lpool). The rest of unlabeled data points remain in the pool of unlabeled
data (Upool). Thus the pool of unlabeled data decreases with each propagation, and the
pool of labeled data expands with each propagation. At last propagation, all remaining
unlabeled data are assigned class labels.

Because of class balance consideration, the pool of labeled data should get approx-
imately the same number of new members for each class. In our algorithm, each class
gets one new member after each propagation. We call this procedure as “balanced class
expansion (BCE)”. The number of unlabeled data are shrinking while the number of
labeled data are increasing during this repeated BCE procedure. The critical issue in
this BCE procedure is how to select this new member for each class. i.e., how to decide
“reliably predicted” data points in each BCE. As analyzed in above section, the relia-
bility of label propagation is reflected in score distribution. Thus, in our algorithm, we
use the score distribution to decide the most “reliable predicted” data points from the
data points in Upool in each BCE. We will illustrate more details in the next section.

Discussion. If we add different number of new members to different classes, it will
produce unbalance. Even if the discriminant scores of one class are much higher than
those of another class, we still consider add one number for each class. Although it is
inefficient, we believe this conservative way will result in selection of more “reliable”
data points.
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class 1

class 2

class 3

a

b

c d

Fig. 1. Selection of discriminative data in balanced class expansion. Data points: a, b, c, d.

5.2 Normalization on the Distribution Score

Although data in Lpool expands in a class-balanced way, there are always the situa-
tion where classes become unbalanced. In the label propagation, we need to properly
normalize the contributions from each class.

Suppose, a subset of data are labeled and there exists a class prior probability πk. Let
π = diag(π1 · · ·πk), and Z be the multi-class label assignment matrix from labeled
data, i.e.,

Zik =

{
1, if xi belongs to class k
0, otherwise

(14)

then the balanced source of propagation is defined as

Y = Zπ =

⎛

⎝
π1Z1,1 · · · πcZ1,c

· · · · · · · · ·
π1Zn,1 · · · πcZn,c

⎞

⎠ . (15)

In our algorithm, we set the prior to πk = 1∑
i Zik

. therefore, each class contributes the

same total weight to the propagation:
∑

iYik =
∑

iYi� for any two class k, �. In our
algorithm the initial label matrix Y0 is constructed as

Y0 = Z0π0, (16)

where Z0 is the initial label assignment matrix constructed as Eq.(14) from the ini-
tially labeled data in Lpool. In the t-th iteration, let Zt be the label assignment matrix
constructed from current data in Lpool,

Yt = Ztπt. (17)

5.3 Reliable Assigning Class Labels with Score Distribution

After obtaining the assignment score Fik for all data in Upool, our goal is to pick up the
“reliable” assigned data points, one for each class, and add them to the Lpool whereas
remove them from the Upool. Afterwards in the actual label assignment for each class,
we (1) find out all the currently unlabeled data assigned to this class, (2) pick the one
with the highest discriminative score and assign it to this class.

A Motivating Example to Illustrate Discriminant Score. Fig.(1) illustrates the idea
of selecting discriminative unlabeled data points. Class 1 selects data a instead of data
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b, because a is far away from classes 2 and 3; although b is slightly closer to class 1,
but b is also closer to class 2. In other words, a is more class discriminative than b.
Similarly, class 2 selects data c instead of d, because c is more discriminative than d.

Now we discuss the discriminative score computation. For each unlabeled data point
xi, it has been assigned to k scores(Fik, 1 ≤ k ≤ c). The c scores are then sorted as,

Fik1 ≥ Fik2 ≥ Fik3 ≥ ... (18)

3 classes with the highest scores are recorded as the three closest classes for xi: Fk1 ;
Fk2 , Fk3 . As discussed above, even two data points xi and xj have been assigned to
the same class ck, they may have different discriminant scores depending on the scores
which how xi,xj may be assigned to other classes. Here we consider the target class
the data points will be assigned to and other two competing classes which we wish
to be discriminant against. The discriminative scores for the 1st choice target class are
defined as (if there is only 2 classes, we do not need ck3),

E(i, ck1) = F2
ick1

|Fick1 − Fick2 |+ |Fick1 − Fick3 |√
Fick1 + Fick2 + Fick3

. (19)

The score difference achieves the discriminative affects. The denominator provides
a mild scale normalization. Without this term, the class with largest Fik scale may
dominate the score computation process. Note that these scores are computed once for
each balanced class expansion. For each unlabeled data point xi in Upool, it is assigned
to class k, which has the largest Fikscores among all class k. For each class k, we select
the data points xi, which has the largest discriminative score E(xi, ck) among all data
points in Upool assigned to class k. This procedure is designed to maximize the label
assignment consistency, which is consistent with LGC/GF approach.

Discussion on the Discriminant Score. Actually, we can define other formulations of
discriminant score. (1) Without the denominator of Eq.(19), discriminant score can be
written as,

E2(i, ck1) = F2
ick1

(|Fick1 − Fick2 |+ |Fick1 − Fick3 |). (20)

(2) Without the square for the 1st term of Eq.(19), discriminant score can be written as,

E3(i, ck1) = Fick1

|Fick1 − Fick2 |+ |Fick1 − Fick3 |√
Fick1 + Fick2 + Fick3

. (21)

(3) Select more top (e.g., 4, 5, 6, 7, ··) classes to compute the discriminant score, then
discriminant score for T classes is given by,

E4(i, ck1) = F2
ick1

∑T
t=1 |Fick1 − Fickt |√∑T

t=1 Fickt

. (22)

Our experiments results(see §7.4) show Eq.(19) achieves slightly better results than
other discriminant scores defined in Eqs.(20,21,22). For Eq.(20), the denominator is
removed. When some Fick has very large values, it may dominator the score. For
Eq.(21), square of score Fick is removed, which makes the score less sharper than that
of Eq.(19). For Eq.(22), more top classes are fetched to achieve discriminant effect. In
our experiments, we find when we select 3 classes, we can get very good results. When
we select more classes, the results change slightly, but sometimes even worse.
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(a) Data distribution.
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(b) LGC result
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(c) MC-LGC result

Fig. 2. Illustration of maximum consistency approach on a synthetic dataset. Labeled data shown
in thick symbols: red squares, green diamonds, blue circles for 3 classes. Initially unlabeled data
are shown in black stars and, after obtaining labels, shown in open symbols.

Algorithm 1. Maximum consistency label propagation algorithm (MC algorithm)
Input: labeled data L = {(xi, yi)}�

i=1, unlabeled data U = {xj}�+u
j=�+1 , MaxIter

Output: predicted class labels for unlabeled data
Procedure:
1: compute propagation operator Q with Eq.(9) or Eq.(10), compute initial label matrix Y0 using Eq.(16), t = 1
2: while t < MaxIter & U is not empty do
3: Ft = QYt−1

4: for each unlabeled data do
5: compute its corresponding discriminative score using Eq.(19)
6: end for
7: for k = 1 to c do
8: search all unlabeled data whose 1st choice target class is k. {Balanced class expansion}
9: if not empty then
10: pick the one with the largest discriminative score, add it to class k, remove it from U
11: end if
12: end for
13: Update Yt with Eq.(17) using current label assignment Zt {new labeled data added to Lpool}
14: t = t + 1
15: end while

Demonstration of Algorithm Performance on Toy Data. We illustrate the advantage
of the MC approach (on LGC methods) in Fig.2. A 3-class synthetic dataset is displayed
in Fig.(2a). For each class, three data points are labeled while the rest of data points
are unlabeled. Results of standard LGC methods and MC-LGC methods are shown in
Figs.(2b, 2c). It is clear that MC approaches achieves better results. One can get similar
results if making the comparisons of GF against MC-GF methods.

Complete algorithm is listed in Algorithm 1. This algorithm wraps around the label
propagation operator Q, and it can also use other label propagation operators.

Time Complexity Analysis. Note we only need to compute propagation operator Q
(through Eq.10 or Eq.9) once as in standard LGC or GF, and the extra time cost is
the iteration cost in balanced class expansion(BCE) process, which includes (1) the
iteration time of BCE process which is proportional to number of iteration t; (2) the
discriminant score table computation in lines 7 − 13 of Algorithm 1, which is propor-
tional to the number of current unlabeled data points nl and the number of class label
c. In our experiment, we find that the extra time cost is very limited as compared to the
propagation operator computation in step 1.
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6 Related Works

Here we discuss the previous works related to our algorithm. The related methods can
be roughly divided into three categories, (1) personalized random walk (RW); (2) semi-
supervised learning(SSL); (3) belief propagation (BP).

Random Walk is a popular technique widely used for PageRank algorithm [4].
Many variations of random walk methods are proposed, including personalized page
rank [5], lazy random walks [14], fast random walk with restart [15], center-piece sub-
graph discovery [16], using ghost edge for classification [17], analysis [18] and so on.

Semi-Supervised Learning methods are widely used in real applications.
Graph-based semi-supervised methods are the most popular and effective methods in
semi-supervised learning. The key-idea of graph-based semi-supervised methods is to
estimate a (label propagation) function on a graph, which maximizes (1) consistency
with the label information; (2) the smoothness over the whole graph. Several represen-
tative methods include harmonic function [10], local and global consistency [11] and
Green’s function [12].

Belief Propagation [19] is widely used for inference in probability graphical model.
Belief propagation methods can be used for collective classification for network data [20],
grouping nodes into regions for graphs [21] and so on. However, the computational cost
for BP method is usually very high.

Maximum consistency label propagation is an improvement of state-of-the-art semi-
supervised learning methods, which can be extended for collective classification [20]
and community detection [22]. Due to space limit, we omit the discussions here.

7 Experiments

In this section, we perform two groups of experiments. One group is to compare three
different methods in preferential random walks of Eqs.(6-8), and the other group is to
evaluate the effectiveness of maximum consistency (MC) algorithm.

7.1 Datasets

We adopt 9 data sets in our experiments, including two face datasets AT&T and umist,
three digit datasets mnist [23], binalpha and digit1, two image scene datasets Cal-
tec101 [24,25] and MSRC [25], and two text datasets Newsgroup2 and Reuters3. Table 1
summarizes the characteristics of the datasets.

7.2 Experiments Results on 3 Methods of Generalized Preferential Random
Walks of Eqs.(6-8)

In §2, we give three methods for generalized preferential random walks. We show
method 2 is equivalent to LGC method. When α = 0.1, GF method is the limit of

1 http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.html
2 http://people.csail.mit.edu/jrennie/20Newsgroups/
3 http://www.daviddlewis.com/resources/testcollections/
reuters21578/

http://www.kyb.tuebingen.mpg.de/ssl-book/ benchmarks.html
http://people.csail.mit.edu/jrennie/20Newsgroups/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
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Table 1. Descriptions of datasets

Dataset #Size #Dimension #Class
AT&T 400 644 40
Caltech 600 432 20
MSRC 210 432 7
Binalpha 1014 320 36
Mnist 150 784 10
Umist 360 644 20
Newsgroup 499 500 5
Reuters 900 1000 10
digit 1500 241 2
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Fig. 3. Experiments results on 4 methods of Generalized Preferential Random Walks:
GF, method1, method2(=LGC), method3. x-axis represents the different α settings(α =
0.1, 0.3, 0.5, 0.7, 0.9), y-axis is the average classification accuracy over 10 independent runs.

method 1. In all the methods except in GF, parameter α will influence the
semi-supervised classification results. For image datasets, we use Gaussian kernel to
construct the graph edge weights Wij = e−γ||xi−xj||2 , where γ is fine tuned according
to [10]. For text datasets, we use linear kernel to compute graph similarity. We randomly
select 20% of all data as the training data. In Fig.3, we show the average classification
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Fig. 4. Experiments results on 4 methods of label propagation: GF, MC-GF, LGC, MC-LGC.
x-axis represents the different percentage of labeled data, y-axis is the average classification ac-
curacy over 10 independent runs

results on 4 methods (GF, method1, method2(=LGC), method3) by using 5-fold cross-
validation. In Fig.3, x-axis represents different α settings(α = 0.1, 0.3, 0.5, 0.7, 0.9),
y-axis is the average classification accuracy over 10 independent runs.

Experiment Result Analysis. From Fig. 3, we can observe: (1) method 1 and GF per-
form well on all the datasets; (2) parameter α does not influence very much for the
classification results obtained from method 1; (3) method 2 and 3 perform reasonably
well when α ≤ 0.5, but their performances degrade much when α is approaching 1.

7.3 Experiment Results on Maximum Consistency Algorithm

We compare maximum consistency algorithm with standard LGC and GF methods.
The α in LGC and MC-LGC methods are set to α = 0.5 as suggested in [13]. We use
Eq.(19) as the discriminant score in the balanced class expansion process. The max-
imum iteration time T is set according to the number of data points in the unlabeled
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(a) MSRC with Eq.(19)
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(b) MSRC with Eq.(20)
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(c) MSRC with Eq.(21)
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(d) binalpha with Eq.(19)
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(e) binalpha with Eq.(20)
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Fig. 5. Experiments results on 4 methods of label propagation: GF, MC-GF, LGC, MC-LGC using
different discriminant score computations of Eqs.(19,20 and 21) on datasets MSRC and binalpha.
x-axis represents the different percentage of labeled data, y-axis is the average classification ac-
curacy over 10 independent runs

pool. If there are more than θ = 90% of the whole data labeled, we stop the proposed
maximum consistency algorithm, and do one-shot label propagation.

We show the classification results of 4 methods (LGC, MC-LGC, GF, MC-GF) by
randomly selecting different percentages of labeled data in Fig.4, where x-axis rep-
resents different percentages of labeled data (i.e., 10%, 20%, · · · ·), and y-axis is the
average classification accuracy over 10 independent runs.

Experiment Results Analysis. From Fig. 4, we observe, (1) MC-LGC consistently
performs better than LGC especially when the percentage of labeled data is very small
(e.g., 10%); (2) MC-GF performs much better than GF; (3) on text dataset, MC-GF’s
superiority is much more significant (more than 5% improvement). Next, we discuss
maximum consistency algorithm experiment results with different parameter settings.

7.4 Discussion on the Parameter Settings of Maximum Consistency Algorithm

Discussion on Discriminant Score Computation. Discriminant score computation
is very important for the decision of data to be propagated. The first issue is how to
compute the discriminant score. Here we show the experiment results of classification
when alternative discriminant score computation formulations of Eq.(20, 21) are used.
The other settings of the experiments are the same as those described in §7.3. Fig. 5
shows the classification results of 4 methods of label propagation (GF, MC-GF, LGC,
MC-LGC) by using different discriminant score computations of Eqs.(19, 20, 21) on
datasets MSRC and binalpha. We observe that, most of the time, the classification results
obtained from Eq.(19) are slightly better on both datasets for both MC-GF and MC-LGC
methods. These experiment results suggest us to use Eq.(19) in our algorithm.



Maximum Consistency Preferential Random Walks 353

0.1 0.2 0.3 0.4 0.5
42

43

44

45

46

47

48

49

50

Percentage of randomly labeled points

av
er

ag
e 

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy
 

 

 

GF
MC−GF
LGC
MC−LGC

(a) Caltec (θ = 60%)
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(b) Caltec (θ = 70%)
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(c) Caltec (θ = 80%)
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(d) Caltec (θ = 90%)
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(e) Caltec (θ = 100%)

Fig. 6. Experiments results on 4 methods of label propagation: GF, MC-GF, LGC, MC-LGC by
using different parameter θ on dataset Caltec. x-axis represents the different percentage of labeled
data, y-axis is the average classification accuracy over 10 independent runs

Discussion on the Iteration Number. Another key parameter is related to the extent to
which the procedure is designed for maximizing the label assignment consistency. As
described in §7.3, we use the number of labeled data points in labeled pool as a criteria
to stop our algorithm. We use parameter θ to represent the percentage of currently
labeled data of the whole dataset. In §7.3, we set θ = 0.9. We try different settings of
θ = {60%, 70%, 80%, 90%, 100%} and report the experiment results on dataset Caltec
in Fig. 6. The other settings of the experiments are the same as those described in §7.3.
We find, on most of the datasets, if we set θ = 90%, we can achieve the best results.
Thus we set θ = 90% as the default setting for our maximum consistency algorithm.

8 Conclusion
We analyze the relations between 3 methods of generalized preferential random walks
and label propagation methods. A maximum consistency algorithm is presented to im-
prove current label propagation methods. Extensive experiments on 9 datasets show the
effectiveness of MC algorithm and different generalized preferential random walks.
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