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Abstract. “Unidirectional channel systems” (Chambart & Schnoebelen,
CONCUR 2008) are systems where one-way communication from a sender to
a receiver goes via one reliable and one unreliable (unbounded fifo) channel.
Equipping these systems with the possibility of testing regular properties on the
contents of channels makes verification undecidable. Decidability is preserved
when only emptiness and nonemptiness tests are considered: the proof relies on a
series of reductions eventually allowing us to take advantage of recent results on
Post’s Embedding Problem.

1 Introduction

Channel systems are a family of computational models where several, usually finite-
state, agents communicate via usually unbounded fifo communication channels [1].
These models are well-suited to the formal specification and algorithmic analysis of
asynchronous communication protocols [2–5]. They are sometimes called queue au-
tomata when there is only one agent using the channels as fifo memory buffers.

A particularly interesting class of channel systems are the lossy channel systems,
“LCS” for short, popularized by Abdulla, Bouajjani, Jonsson, Finkel, et al. [6–8]. Lossy
channels are unreliable and can lose messages nondeterministically and without any
notification. A bit surprisingly, this makes lossy systems easier to analyse: safety, in-
evitability and several more properties are decidable for this model [6, 7, 9–11] while
they are undecidable when channels are reliable.

It should be stressed that LCS’s have also been very useful outside the field of com-
municating systems and distributed computing. During the last decade, they have been
used to show the decidability, or (more often) the hardness, of problems on Timed Au-
tomata, Metric Temporal Logic, modal logics, etc. [12–16]. With other unreliable com-
putational models, lossy channel systems are now an important tool for the complexity
analysis of algorithms that rely on well-quasi-ordering theory [17–19].

Unidirectional channel systems, “UCS” for short, are a variant of LCS’s where a Sender
process communicates to a Receiver process via one reliable and one lossy channel.
Fig. 1 gives an example.
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Fig. 1. Unidirectional channels: Sender on the right, Receiver on the left

The presence of one reliable channel put UCS’s beyond plain LCS’s. On the other
hand, the unidirectionality (there is no channel from Receiver to Sender) is a limitation
that LCS’s do not share.

UCS’s were first studied by Chambart and Schnoebelen who considered mixed chan-
nel systems (i.e., communicating systems using both reliable and lossy channels in ar-
bitrary combinations) and showed how to reduce safety and reachability problems for
arbitrary network topologies to reachability problems on either queue automata (unde-
cidable), or LCS’s (decidable), or the previously unidentified UCS’s [20].

The reachability problem for UCS’s is quite challenging: it was proved decidable
by reformulating it more abstractly as PEP, aka the Regular Post Embedding Problem,
which is easier to analyze [21–23]. We want to stress that, while PEP is a natural variant
of Post’s Correspondence Problem, it was only identified through questions on UCS’s.
Recently, PEP has proved useful in other areas, starting with Graph Logics [24].

Testing channel contents. Basic channel machines are not allowed to inspect the con-
tents of the channels. However, it is natural to enrich the basic setup with tests (con-
ditions on channel contents) as in, e.g., Fig. 1 where some sender’s actions depend on
(the parity of) the number of messages currently in r. Adding tests goes smoothly and
painlessly for LCS’s where the main decidability results extend directly with almost un-
changed algorithms [10, sect. 3.3]. Adding even simple tests to UCS’s is a completely
different story, as we discovered. One meets two obstacles when trying to extend the
approach that worked for UCS’s:

1. The “reformulation” of UCS reachability as a Post Embedding Problem is a non-
trivial reduction that reorders the events in a UCS run, relying on the independence
(in a concurrency-theoretical sense) of sendings wrt readings. Tests on channel con-
tents introduce global dependencies that are not reflected in PEP problems.

2. One is then led to consider extensions of PEP where said dependencies can be
reflected, raising a new question: how to show the decidability of these extensions?

Our contribution. We extend UCS’s with the possibility of testing channel contents with
simple regular predicates. This makes reachability undecidable even with restricted sets
of simple tests. Our main result is that reachability remains decidable when only empti-
ness and non-emptiness tests are allowed. The proof goes through a series of reductions
that leave us with UCS’s extended by only emptiness tests on a single side of a sin-
gle channel (called “Zl

1 tests”). This minimal extension can then be reformulated as
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PEP
partial
codir , or “PEP with partial codirectness”, a nontrivial extension of PEP that was

recently proved decidable [25].

Outline of the paper. Unidirectional channel systems with tests are defined in Section 2.
Section 3 shows how undecidability creeps in when regular tests are allowed. Sec-
tion 4 presents protocols for simulating (non-)emptiness in UCST’s with only empti-
ness tests by Sender, thus reducing UCST to UCST[Z1]. Section 5 proves decidability
for UCST[Zl

1] by reducing to PEP
partial
codir . This is then leveraged in section 6 to account

for the whole of UCST[Z1]. Finally, Section 7 proves that (non-)emptiness tests strictly
enrich the basic UCS model.

2 Unidirectional Channel Systems

Structure. Formally, a UCST (for Unidirectional Channel System with Tests) is a tuple
S = (Ch,M,Q1,Δ1,Q2,Δ2), where M is a finite alphabet of messages, Q1, Q2 are disjoint
finite sets of states of Sender and Receiver, respectively, and Δ1, Δ2 are finite sets of
rules of Sender and Receiver, respectively. Ch= {r,l} is a fixed set of channel (names),
r being reliable and l unreliable, so called “lossy”.

A rule δ ∈ Δi is a tuple (q,c,α,q′) ∈ Qi × Ch×Act×Qi where the set of actions
Act contains tests R (checking whether the contents of c ∈ Ch belongs to R, a regular
language) and communications w (sending a sequence of messages to c in the case of

Sender’s actions, reading it for Receiver’s) and is thus given by Act
def
= Reg(M)∪M∗.

We write q
R:c−→ q′ for a rule where the action is a test on c, and q

c!w−→ q′ (resp., q
c?w−→ q′)

when the action is a communication by Sender (resp., by Receiver).
In graphical representations like Fig. 1, Sender and Receiver are depicted as two

disjoint directed graphs, where states appear as nodes and where rules q
α−→ q′ appear as

edges from q to q′ with action and channel name labeling the edge. We may omit the
label, or just use �, for trivial tests, R = M∗, or empty communications, w = ε.

Remark 2.1 (On separating tests from communications). Our definition requires that an
action is a test or a communication. It does not allow performing both atomically inside
a single step (but they can be chained using intermediary states). This choice, which is
no real loss of generality, lets us focus on simulating tests by other constructs (or other
tests) without having to account for accompanying communications. 	


Operational Semantics. The behaviour of S is defined via an operational semantics
defined along standard lines. A configuration of S = (Ch,M,Q1,Δ1,Q2,Δ2) is a tuple

C ∈ Conf S
def
= Q1×Q2×M∗×M∗. In C = (q1,q2,u,v), q1 and q2 are the current states of,

respectively, Sender and Receiver, while u and v are the current contents of, respectively,
r and l.

Rules give rise to transitions in the expected way. We start with so-called “reliable”
steps where the effect of a rule is deterministic. Formally, given two configurations
C = (q1,q2,u,v), C′ = (q′1,q

′
2,u

′,v′) and a rule δ = (q,c,α,q′), there is a reliable step

denoted C
δ−→rel C′ if, and only if, the following four conditions are satisfied:
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states: q = q1 and q′ = q′1 and q2 = q′2 (for Sender rules), or q = q2 and q′ = q′2 and
q1 = q′1 (for Receiver rules);

tests: if δ is a test rule q
R:c−→ q′, then c= r and u∈R, or c= l and v∈R, and furthermore

u′ = u and v′ = v;
writes: if δ is a writing rule q

c!w−→ q′, then c = r and u′ = uw and v′ = v, or c = l and
u′ = u and v′ = vw;

reads: if δ is a reading rule q
c?w−→ q′, then c = r and u = wu′ and v′ = v, or c = l and

u′ = u and v = wv′.

Now to unreliable, aka lossy, steps denoted C
δ−→los C′. As is standard, a lossy step is

defined as a combination of message losses (where the contents of l may be replaced
with a subword) with a reliable step. For v1,v2 ∈ M∗, we write v1 � v2 when v1 is a
subword of v2, i.e., a (scattered) subsequence. In particular, ε � v2 and v2 � v2 for any
v2. This is extended to configurations and we write C � D when C = (q1,q2,u,v) and
D = (q1,q2,u,v′) with v � v′.1 We now define:

C
δ−→los C′ def⇔∃D,D′ : C � D ∧ D

δ−→rel D′ ∧ D′ �C′ . (1)

In other words, a lossy step is a reliable step sandwiched between arbitrary message
losses on l. In particular, reliable steps are a special case of lossy steps. In the rest

of this paper, we consider reachability via lossy steps, and often write simply C
δ−→ C′

without a “los” subscript. (When we refer to reliable steps and runs, we always use “rel”
subscript.)

Remark 2.2 (On reliable steps). As is usual with lossy channel systems, the reliable
semantics plays a key role even though the object of our study is reachability via un-
reliable steps. First −→rel is a normative yardstick from which the unreliable semantics
depart: −→los is defined as a modification of −→rel. Then many hardness results on lossy
systems are proved with reductions where a lossy system simulates in some way the
reliable (and Turing-powerful) behaviour. 	

A run from C0 to Cn is a sequence of chained steps C0

δ1−→C1
δ2−→C2 · · · δn−→Cn, abbreviated

as C0
∗−→Cn (or C0

+−→Cn when we rule out zero-length runs).

Definition 2.3. The Reachability Problem is the question, given a UCST S and some
states pin, pfi ∈ Q1, qin,qfi ∈ Q2, whether S has a (lossy) run Cin = (pin,qin,ε,ε)

∗−→
Cfi = (pfi,qfi,ε,ε).

The Extended Reachability Problem asks, further given regular languages
U,V,U ′,V ′ ⊆ M∗, whether there exist u ∈ U, v ∈ V, u′ ∈ U ′, and v′ ∈ V ′ such that S
has a (lossy) run (pin,qin,u,v)

∗−→ (pfi,qfi,u′,v′).

In the following we only consider reachability problems with empty channels in Cin and
Cfi since this is technically convenient. There is no loss of generality:

Lemma 2.4. The extended reachability problem many-one reduces to the reachability
problem.

1 Note that (Conf ,�) is not a well-quasi-order since C � D requires equality on channel r.
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Roughly speaking, we can transform an instance of the extended reachability problem
to an “empty-channel” instance by letting Sender start with generating some u ∈ U ,
v ∈V into the channels, and by letting Receiver read some u′ ∈U ′, v′ ∈V ′ in the end.

The two problems are thus equivalent. Moreover, the reduction does not need to
introduce any new tests, and the equivalence thus also holds for UCST’s with restricted
sets of tests which we will consider.

3 Testing Channels and the Undecidability of Reachability

Despite their similarities, UCS’s and LCS’s (lossy channel systems) behave differently.
The algorithms deciding reachability for LCS’s can easily accommodate regular (or
even more expressive) tests [10, Sect. 3.3]. By contrast, this section gives several ver-
sions of the following result:

Theorem 3.1. Reachability is undecidable for UCST.

3.1 Simulating Queue Automata

We now show how even simple tests lead to undecidability. The main technique we use
is to simulate queue automata which are a Turing-powerful model already with a single
reliable channel.

UCS’s already have a reliable channel but Sender (or Receiver) cannot both read and
write from/to it. If Sender could somehow read from the head of r as well as write to its
tail, it would be as powerful as a queue automaton. Now, with regular tests on channels,
there exists a simple protocol making Receiver act as a proxy for Sender and implement
read actions on its behalf.

Described informally, the protocol is the following2:

1. Channel l is initially empty.
2. In order to “read” from r, Sender checks and records whether the length of the

contents of r is odd or even, using a regular test on r.
3. It then sends on l the message, say a, that it wants to read.
4. It checks that (equivalently, waits until) the parity of the contents of r has changed,

and on detecting this change, concludes that the read was successful.
5. Receiver waits in its initial qproxy (or qp) state and tries to read from l. When it

reads a message a from l, it understands it as an request telling it to read a from r

on behalf of Sender. Once it has performed this read on r, it returns to qproxy and
waits for the next instruction.

6. l is now empty and the simulation of a read by Sender is concluded.

If no messages are lost on l, the protocol allows Sender to read on r. If a message is lost
on l, the protocol deadlocks. Also, Sender deadlocks if it attempts to read a message
that is not at the head of r (it has to guess correctly). We note that these deadlocks do
not make the simulation incorrect since we are only concerned with reachability.

2 We describe the protocol informally but Fig. 1 page 150 depicts exactly how Receiver im-

plements a proxy on M = {a,b,c} and how Sender simulates a rule p1
r?a−→ p2 for a queue

automaton.
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3.2 Restricted Sets of Tests

In the above reduction only parity tests were used. When T ⊆ Reg(M), we write
UCST[T ] to denote the class of UCST’s where only tests belonging to T are allowed.
Thus UCST and UCS coincide with UCST[Reg(M)] and UCST[∅], respectively.

More interestingly, defining Odd,Even ∈ Reg(M) with Even
def
= (M.M)∗ and Odd

def
=

M.Even, and letting P
def
= {Even,Odd} denote the parity tests, section 3.1 shows that

reachability is undecidable already for UCST[P].
We further observe that in Fig. 1 only the sender uses tests, and only r is submitted

to tests. We denote such restricted uses of tests by qualifying test sets like T with a
subscript 1 (for Sender) or 2 (for Receiver), and/or by a superscript r or l. We can now
state the following stronger form of Theorem 3.1:

Theorem 3.2. Reachability is undecidable for UCST[Pr
1 ].

In the rest of this paper, we single out other simple test sets by letting:

Z
def
= {ε}, N

def
= M+, Ha

def
= a.M∗, H

def
= {Hx | x ∈ M}.

In other words, Z is the emptiness (or “zero”) test, N is the non-emptiness test and H
are the head tests (that allow checking what is the first message in a channel without
consuming it). Note that non-emptiness tests can be simulated with head tests, hence
are weaker. Below we abuse notation and, when R,R′ ∈ Reg(M∗), we write UCST[R]
and UCST[R,R′] rather than UCST[{R}] and UCST[{R,R′}].

One difference with parity tests and the Z,N,H tests is that parity tests are “global”
in that their outcome depends on the entire contents of a channel. With H tests, only
one message at the head needs be scanned. Still, “local” H tests are sufficient for unde-
cidability:

Theorem 3.3. Reachability is undecidable for UCST[Hr
1 ].

Proof (Idea). Sender can simulate parity tests Pr
1 by using two copies of the message

alphabet, say using different colors. It alternates strictly between the two colors when
writing on r. This requires an extra bit of memory, encoded in local states. Then the
parity of the length of r contents can be tested by looking at the first message, using
Hr

1 tests, and comparing with the color of the last written message. (This assumes that
r is never completely emptied, otherwise deadlocks will occur, but this is no loss of
generality.) 	


4 Simulating UCST[ZZZ,,,NNN] by Using Sender’s Emptiness Tests Only

This section describes two simulations that, put together, entail Theorem 4.1.
Remark. The simulations are tailored to the reachability problem. They may not pre-
serve, e.g., termination or deadlock-freedom.

Theorem 4.1. Reachability for UCST[Z,N] many-one reduces to reachability for
UCST[Z1].
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4.1 Reducing UCST[ZZZ,,,NNN] to UCST[ZZZ111,,,NNN111]

We now explain how to eliminate Z and N tests by Receiver. W.l.o.g. we assume that
x in c!x and c?x is always one symbol (x ∈ M), and we use two special new messages,
“z” and “n”, with which Sender will signal to Receiver about the status, empty or not,
of the channels.

Formally, for S ∈UCST[Z,N], where S = ({r,l},M,Q1,Δ1,Q2,Δ2), we construct S′
arising from S as follows (see Fig. 2):

– S′ uses the special new messages z,n, and it thus has alphabet M′ def
= M∪{n,z};

– for each channel c ∈ {r,l} and each sender state p ∈ Q1 we add new states p1
c, p2

c

and an “(emptiness) testing loop” p
Z:c−→ p1

c
c!z−→ p2

c
Z:c−→ p;

– for every sender rule θ of the form p
c!x−→ p′ we add a new state pθ, and the rule is

replaced in S′ by the following three rules: p
�−→ pθ, pθ

c!n−→ pθ (a “padding loop”),

and pθ
c!x−→ p′;

– every receiver rule q
Z:c−→ q′ testing emptiness of c is replaced by q

c?z−→ q′;
– every receiver rule q

N:c−→ q′ testing non-emptiness of c is replaced by q
c?n−→ q′.

q

q′ q′′

Z : c N : c′

p

p′

c!a

S

r

l

a ⇒
q

q′ q′′

c?z c′?n

p

p′

pθ

p1
c

p2
c

p1
c′

p2
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Z : c
c!z

Z : c �
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Fig. 2. From S to S′: eliminating Receiver’s N and Z tests

Lemma 4.2 (Correctness of the reduction). S has a run Cin
∗−→los Cfi if, and only if, S′

has a run Cin
∗−→los Cfi.

Proof (Sketch). The “⇒” direction. Suppose a run Cin
∗−→los Cfi of S. For each concrete

occurrence o of a message x ∈ M which is written to a channel c there is a number ko

such that the run uses ko steps where Receiver tests c for non-emptiness (i.e., performs

transitions q
N:c−→ q′) in the situation when o is the first symbol (the head) in c. We can

use this for constructing a run of S′ which mimics the above run of S. Any original

Sender’s step p
c!x−→ p′, writing an occurrence o of x to c, is replaced by p

�−→ pθ
c!n−→

pθ
c!n−→ ·· · c!n−→ pθ

c!x−→ p′ where the padding loop is used ko times; any Receiver’s step

q
N:c−→ q′ is replaced by q

c?n−→ q′. Any original Receiver’s step q
Z:c−→ q′, when Sender is in

state p, is replaced with the sequence of steps corresponding to p
Z:c−→ p1

c
c!z−→ p2

c, q
c?z−→ q′,

p2
c

Z:c−→ p. The inserted n’s (and z’s) are never lost; other message losses are the same as
originally.
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The “⇐” direction. Suppose a run Cin
∗−→los Cfi of S′. It is convenient to consider the

run as a sequence of fine-grained steps, i.e., Cin
δ1−→ C1

δ2−→ C2
δ3−→ ·· ·Cn−1

δn−→ Cfi, where

each step is either a reliable step Ci−1
δi−→rel Ci or the loss of a single message. The idea

is to repeatedly switch two consecutive steps conveniently so that the validity of the
obtained (fine-grained) runs is kept, with the aim to achieve a “straight run” which can
be easily translated to a run Cin

∗−→los Cfi of S. Imagine first that we give the priority to
Sender’s (reliable) steps: whenever some (current) δi is a Receiver’s step or a loss and
δi+1 is a Sender’s step then we switch the steps if the result is still a valid run. It is easy
to observe that the writing steps in the resulting run (in which no above switches are

possible) are only in the segments corresponding to p
�−→ pθ

c!n−→ pθ
c!n−→ ·· · c!n−→ pθ

c!x−→ p′
(uninterrupted by Receiver or message losses). Regarding the steps corresponding to

testing loops, we get segments p
Z:c−→ p1

c

c!z−→ p2
c, σ, p2

c

Z:c−→ p where σ is a sequence of
Receiver’s steps and/or message losses. Now we can switch (anyhow) inside such a

segment, with the aim to get σ1, p
Z:c−→ p1

c
c!z−→ p2

c,σ2, p2
c

Z:c−→ p for a shortest σ2. It turns

out that σ2 is, in fact, one step, either q
c?z−→ q′ or a loss of z. There is a final issue: we

arrange that the finally achieved run is also “head-lossy”, i.e. any loss-step loses the
first message (the head) of l; thus we never have only n’s in l when Sender tests the
non-emptiness of l. It is then straightforward to translate the finally achieved run of S′
to the corresponding run of S. 	


4.2 Reducing UCST[ZZZ111,,,NNN111] to UCST[ZZZ111]

When there are no receiver tests, N1 tests can be eliminated by a buffering technique on
Sender’s side. With any S ∈UCST[Z1,N1] we associate a derived system S′ as follows:

For each channel c ∈ Ch, S′ uses an auxiliary 1-place buffer between Sender and the
channel c. In any S′ configuration, a buffer is empty (containing no messages) or full
(containing a single message). Now the sender does not write to the channels, it can only
directly write to the auxiliary buffers, and it may only write to a buffer when it is empty,
making it full. Buffers may be nondeterministically flushed at any time, transferring
their contents to the actual channel (in a potentially lossy way for l). Finally, the buffers
are not actual extra peripherals, rather they are encoded in the finite control of Sender,
which also simulates the lossy behavior of writing to channel l. Within this setup, an
Nc

1 test translates to “c’s auxiliary buffer is full”, and a Zc
1 test translates to “c’s buffer

is empty and c is empty”.
Finally, S′ ∈UCST[Z1] simulates S without any need of N1 tests, as stated by the

following lemma.

Lemma 4.3 (Correctness of the reduction). S has a run Cin
∗−→los Cfi if, and only if, S′

has a run C′
in

∗−→los C′
fi (where C′

in and C′
fi are the configurations in S′ corresponding to

Cin and Cfi with empty auxiliary buffers).

5 Reachability for UCST[ZZZl
111] via Post’s Embedding Problem

This section develops a many-one reduction from the reachability problem for
UCST[Zl

1] to PEP
partial
codir , a generalization of Post’s Embedding Problem.
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Definition 5.1 (Post embedding with partial codirectness [25]).PEPpartial
codir is the ques-

tion, given two finite alphabets Σ,Γ, two morphisms u,v : Σ∗ → Γ∗, and two regular lan-
guages R,R′ ∈ Reg(Σ), whether there is σ ∈ R (called a solution) such that u(σ)� v(σ),
and such that furthermore u(σ′)� v(σ′) for all suffixes σ′ of σ that belong to R′.3

The above definition uses the same subword relation, “�”, that captures message
losses. PEPpartial

codir can be compared with Post’s Correspondence Problem, where the
question is whether there exists σ ∈ Σ+ such that u(σ) = v(σ).

Since PEP
partial
codir is decidable [25], we deduce:

Corollary 5.2. Reachability is decidable for UCST[Zl
1].

The reduction from UCST[Zl
1] to PEP

partial
codir extends an earlier reduction from UCS to

PEP [22]. Here the presence of Zl
1 tests creates new difficulties.

We fix an instance S = ({r,l},M,Q1,Δ1,Q2,Δ2), Cin = (pin,qin,ε,ε), Cfi =
(pfi,qfi,ε,ε) of the reachability problem for UCST[Zl

1]. (We again assume x ∈ M in each

c!x, c?x.) We construct a PEP
partial
codir instance P = (Σ,Γ,u,v,R,R′) intended to express

the existence of a run from Cin to Cfi.
We first put Σ def

= Δ1 ∪ Δ2 and Γ def
= M so that words σ ∈ Σ∗ are sequences of

UCST rules and their images u(σ),v(σ) ∈ Γ∗ are sequences of messages. With any
δ ∈ Σ, we associate write_r(δ) defined by write_r(δ) = x if δ is a sender rule

of the form .
r!x−→ ., and write_r(δ) = ε in all other cases. This is extended to se-

quences with write_r(δ1 · · ·δn) = write_r(δ1) · · ·write_r(δn). In a similar way we de-
fine write_l(σ) ∈ M∗, the sequence written to l by the sequence σ, and read_r(σ) and
read_l(σ), the sequences read by σ from r and l, respectively. We define Er ∈ Reg(Σ)
where Er

def
= E1 ∪E2 and

E1
def
={δ ∈ Σ | write_r(δ) = read_r(δ) = ε} ,

E2
def
={δ1 ·δ2 ∈ Σ2 | write_r(δ1) = read_r(δ2) �= ε} .

In other words, E1 gathers the rules that do not write to or read from r, and E2 contains
all pairs of sender/receiver rules that write/read a same letter to/from r.

Let now P1 ⊆ Δ∗
1 be the set of all sequences of sender rules of the form pin = p0

..−→
p1

..−→ p2 · · · ..−→ pn = pfi, i.e., sequences which take the sender state from pin to pfi.4

Similarly, let P2 ⊆Δ∗
2 be the set of all sequences of receiver rules which take the receiver

component from qin to qfi. Since P1 and P2 are defined by finite state systems, they are
regular languages. We write P1‖P2 to denote the set of all interleavings (shuffles) of
a word in P1 with a word in P2. This operation is regularity-preserving, so P1‖P2 ∈
Reg(Σ). Let Zl ⊆ Δ1 be the set of all sender rules which test the emptiness of l (which
are the only test rules in S). We define R and R′ as the following regular languages:

R = E∗
r ∩ (P1‖P2), R′ = Zl ·

(
Δ1 ∪Δ2

)∗
.

Finally, the morphisms u,v : Σ∗ → Γ∗ are given by u
def
= read_l and v

def
= write_l.

3 This problem is actually called PEP
partial
codir in [25].

4 I.e., all paths from pin to pfi in the directed graph of the sender, seeing rules as directed edges.
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Lemma 5.3 (Correctness). S has a run Cin
∗−→Cfi iff P has a solution.

Proof. We first introduce a notion bridging the difference between runs of S and solu-
tions of P . We call σ ∈ (Δ1 ∪Δ2)

∗ a pre-solution if all the following conditions hold:

1. σ ∈ P1‖P2;
2. read_r(σ) = write_r(σ);
3. read_r(σ1) is a prefix of write_r(σ1) for each prefix σ1 of σ;
4. read_l(σ)� write_l(σ);
5. for each factorization σ = σ1zσ2 where z ∈ Zl we have read_l(σ2)� write_l(σ2).

A pre-solution σ has a receiver-advancing switch if σ = σ1δδ′σ2 where δ is a sender
rule, δ′ is a receiver rule, and σ′ = σ1δ′δσ2 is a pre-solution. A receiver-postponing
switch is defined analogously, for δ being a receiver rule and δ′ being a sender rule.

It is obvious that if there is a pre-solution σ then there is an advance-stable pre-
solution σ′, which means that σ′ has no receiver-advancing switch; there is also a
postpone-stable pre-solution σ′′ which has no receiver-postponing switch.

Claim. Any advance-stable pre-solution σ is in E∗
r , and it is thus a solution of P .

Proof of the claim. Let us write an advance-stable pre-solution σ as σ1σ2 where σ1 is
the longest prefix such that σ1 ∈ E∗

r ; hence read_r(σ1) = write_r(σ1) by the definition
of Er = E1 ∪E2. Now suppose σ2 �= ε. Then σ2 = δ1δ2 · · ·δk where δ1 �∈ E1. Since now

σ1 ∈ E∗
r , hence read_r(σ1) = write_r(σ1), δ1 must be of the form .

r!x−→ . (to keep 3.).

Let us pick the smallest � such that δ� = .
r?x−→ . (which must exist by 2.) and note that

�≥ 3 since σ1δ1δ2 �∈ E∗
r . If we now pick the first j with 1 ≤ j ≤ �−1 and such that δ j is

a sender rule and δ j+1 is a receiver rule, switching δ j, δ j+1 leads again to a pre-solution
(as can be checked by inspecting 1.–5.). This contradicts the assumption that σ is an
advance-stable pre-solution.

Claim. Any postpone-stable pre-solution σ corresponds to a run Cin
∗−→Cfi of S.

Proof of the claim. Consider a presentation σ = σ1σ2zσ3 where z ∈ Zl, σ2 contains
no rules from Zl, and σ1 is either empty or finishes with some z′ ∈ Zl; recall that
read_l(σ2zσ3) � write_l(σ2zσ3) and read_l(σ3) � write_l(σ3). We then must have

read_l(σ2)� write_l(σ2): otherwise we had σ2 = σ′δσ′′ where δ is of the form .
l?x−→ .,

σ′′ contains no l-reading rules and read_l(δσ′′zσ3)� write_l(σ3); then switching the
leftmost receiver-sender pair in δσ′′z would lead to a pre-solution, as can be easily
checked. Moreover, in σ2 each sender rule precedes all receiver rules. It is now easy to

verify that there is a run Cin
δ1−→C1

δ2−→ ·· ·Cn−1
δn−→Cfi of S where δ1δ2 · · ·δn = σ.

Finally we observe that if Cin
δ1−→C1

δ2−→ ·· ·Cn−1
δn−→Cfi is a run of S then σ = δ1δ2 · · ·δn

is a pre-solution; then there is also an advance-stable pre-solution, i.e. a solution of P .
On the other hand, if σ is a solution of P then σ is a pre-solution, and then there is a
postpone-stable pre-solution, which corresponds to a run Cin

∗−→Cfi of S. 	

Actually, PEPpartial

codir and UCST[Zl
1] are equivalent (inter-reducible) problems:

Theorem 5.4. PEP
partial
codir many-one reduces to the Reachability Problem for UCST[Zc

i ]
for any i ∈ {1,2} and c ∈ Ch.
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Proof (Idea). These reductions are easy and follow basically the same pattern: a UCST
system nondeterministically guesses a solution and validates it. As an example, let us
informally describe the simplest one and show how to solve a PEP

partial
dir instance with

a UCST[Zr
1] system. We recall from [25] that PEPpartial

dir is the question whether there is
a σ ∈ R such that u(σ) � v(σ) and furthermore u(σ′) � v(σ′) for all prefixes of σ that
belong to R′ (thus PEP

partial
dir and PEP

partial
codir are equivalent problems and one switches

from one to the other by taking the mirror images of u,v,R,R′).
Given (Σ,Γ,u,v,R,R′) we build an UCST where Sender nondeterministically gener-

ates a σ ∈ R, sending u(σ) on channel r and v(σ) on channel l. A subword of v(σ) is
written on l. Receiver checks that l and r contain exactly the same sequence of mes-
sages, that is, u(σ). Whenever the prefix of σ generated so far (call it σ′) is in R′, Sender
waits for r to be empty before going on with the generation of σ. This forces Receiver
to match u(τ) with a prefix of v(τ), or more precisely, with a prefix of the subword of
v(τ) that ends up in l after message losses may have occurred.

The other three reductions are similar. 	


6 Reducing UCST[ZZZ111] to UCST[ZZZl
111]

In this section we prove the decidability of reachability for UCST[Z1] by reducing to
UCST[Zl

1]. Since this involves eliminating Z tests on r, the configurations in which r

is empty are of interest. For a UCST S, we let Confr=ε be the subset of configurations
(p,q,ε,v) in which r is empty. We abuse terminology and say that a subset W ⊆Confr=ε
is regular if there are some state-indexed regular languages (Vp,q)p∈Q1,q∈Q2 in Reg(M)
such that W = {(p,q,ε,v) | v ∈ Vp,q}. Such regular subsets of Confr=ε can be finitely
represented using, e.g., regular expressions or finite-state automata.

We have put C = (p,q,u,v)�C′ = (p′,q′,u′,v′) iff p = p′, q = q′, u = u′, and v � v′.
Confr=ε is thus a well-quasi order under �, unlike Conf .

W ⊆Confr=ε is upward-closed (in Confr=ε) if C ∈W , C �C′ and C′ ∈Confr=ε imply
C′ ∈ W . It is downward-closed if Confr=ε �W is upward-closed. The upward-closure
↑W of W ⊆ Confr=ε is the smallest upward-closed set that contains W . A well-known
consequence of Higman’s Lemma is that upward-closed and downward-closed subsets
of Confr=ε are regular, and that upward-closed subsets can be canonically represented
by their finitely many minimal elements.

For W ⊆ Confr=ε, we let Pre∗(W )
def
= {C ∈ Confr=ε | ∃D ∈W : C

∗−→ D}: observe that
Pre∗(W ) only contains configurations with empty r.

Lemma 6.1. If W is an upward-closed subset of Confr=ε and if S is a UCST[Zl
1], then

Pre∗(W ) is upward-closed and is computable uniformly from S and W .

Proof (Sketch). That Pre∗(W ) is upward-closed is an immediate consequence of the
definition of lossy steps in Eq. (1). That it is computable from S and W is more interest-
ing: this is an application of the VJGL Lemma: “an upward-closed set U is computable
if one can decideC ∈U and V ∩U �=∅ for arbitrary configurationsC and regular sets V”
(see [26, Theorem 2] for details). Here the two questions, “C ∈U?” and “V ∩U �=∅?”,
i.e., “C

∗−→ W?” and “U
∗−→ W?”, reduce to instances of the extended reachability prob-

lem for UCST[Zl
1], hence are decidable. 	
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Theorem 6.2. Reachability is decidable for UCST[Z1].

Proof (Sketch). Given a UCST[Z1] S, a run π =Cin
∗−→Cfi can be presented in the form

(Cin =)C0
∗−→S′ D1

Z:r−→C1
∗−→S′ D2

Z:r−→C2 · · · ∗−→S′ Dm (=Cfi)

where the Di −→Ci steps gather all occurrences of Zr
1 tests: note that necessarily Di and

Ci are in Confr=ε. The Ci−1
∗−→S′ Di subruns can be seen as runs of a new system S′,

which is obtained from S by removing all Zr
1 testing rules from Δ1. The point is that we

can apply Lemma 6.1 to S′ since it is a UCST[Zl
1 ].

So for k = 0,1, . . ., we define T ′
k and Tk by letting T ′

0 = ↑Cfi, Tk = Pre∗S′(T
′

k ) and

T ′
k+1 = T ′

k ∪{C | ∃D ∈ Tk : C
Z:r−→ D} (note that Tk is defined with a Pre∗S′ restricted to S′).

Tk collects all configurations C ∈ Confr=ε from which one can reach T0 with at most
k uses of a Z : r test. We observe that all T ′

k ,Tk are upward-closed subsets of Confr=ε,
that Tk is computable from T ′

k by Lemma 6.1, and that T ′
k+1 is obviously computable

from Tk and T ′
k . Furthermore, the Tk’s are increasing: T0 ⊆ T1 ⊆ ·· ·Tk ⊆ Tk+1 · · · . Since

they are upward-closed, they eventually stabilize by the well-quasi-ordering property:

letting Tω
def
=

⋃
k∈N Tk, there is n such that Tn = Tn+1 = Tω. Since there is a run Cin

∗−→Cfi

of S iff Cin ∈ Tω, the proof is finished. 	

Observe that Lemma 6.1 and Theorem 6.2 exhibit a Turing reduction (from reachability
for UCST[Z1] to reachability for UCST[Zl

1]) and not a many-one reduction like all the
other reductions in this paper.

With the results of sections 4 and 5, one obtains the following corollary.

Theorem 6.3. Reachability is decidable for UCST[Z,N].

Remark 6.4 (On complexity). Based on known results on the complexity of PEPpartial
codir

(see [17, 25]), our reductions prove that reachability for UCST[Z,N] is at level Fωω

in the extended Grzegorczyck hierarchy, and at level Fωm−1 , where m = |M|, when we
restrict to systems with a fixed-sized alphabet of messages. 	


7 Some Undecidable Problems for UCST[ZZZ,,,NNN]

The main result of this paper is that reachability is decidable for UCST[Z,N] (Theo-
rem 6.3). In this section we argue that emptiness and non-emptiness tests strictly add to
the expressive power of UCS’s. This point is made in two different ways.

We start with recurrent reachability. Formally, the Recurrent Reachability Problem

asks whether a given S has an infinite run Cin
+−→ (p,q,u1,v1)

+−→ (p,q,u2,v2)
+−→ ·· ·

visiting infinitely often a given control pair (p,q)∈ Q1 ×Q2 (but with no constraints on
channel contents).

Theorem 7.1. Recurrent reachability is undecidable for UCST[Zr
1].

Proof (Idea). We prove Theorem 7.1 by reducing from the undecidable question
whether a length-preserving string rewrite system (aka semi-Thue system) has a loop
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x
+−→ x. We design a UCST S where Sender guesses a word y0, writes it on l, and then

guesses pairs xi,yi for i = 1,2, . . . such that each xi −→ yi is a rewrite step. It writes xi

on r and yi on l. Receiver’s job is to check that yi−1 = xi. With Zr
1 tests, Sender can

wait for a check on xi to be concluded before issuing the next pair. This way we ensure
progress of the checking phase and avoid confusion between pairs if a separator is lost.
Since the rewrite system is length-preserving, any infinite run of S must eventually stop
losing messages and witness a loop. 	

Since recurrent reachability is decidable for UCS (see [22]), Theorem 7.1 shows that Z
tests, even just Zr

1 tests, cannot be simulated in UCS’s.
As another illustration, we consider UCST’s with write-lossy semantics, that is,

UCST’s with the assumption that messages are only lost during steps that (attempt to)
write them to l. Once they are in l, they are never lost. This is formalized via a new
transition relation C −→wrlo C′ (definition omitted, but as expected) that is intermediary
between −→rel and −→los.

In many cases the two lossy semantics coincide:

Lemma 7.2. Assume S is a UCST[Z] system. Then Cin
∗−→los Cfi iff Cin

∗−→wrlo Cfi.

Proof (Idea). Prove that C
δ−→los C′ iff D

δ−→wrlo C′ for some D �C. Deduce Cin
n+1−−→los C′

iff Cin
n+1−−→wrlo C′ by induction on n. See [18, App. A]. 	


Corollary 7.3. Reachability is decidable for UCST[Z] with write-lossy semantics.

Remark 7.4. Write-lossy semantics is meaningful when modeling unreliability of the
writing actions as opposed to unreliability of the channels. However, in the literature,
write-lossy semantics is mostly used as a way of restricting the nondeterminism of lossy
channel systems without losing any essential generality, as stated by Lemma 7.2. 	

Write-lossy and (plain) lossy semantics do not coincide when N tests are allowed. In
fact, Theorem 6.3 does not extend to write-lossy systems.

Theorem 7.5. Reachability is undecidable for UCST[Zl
1 ,N

l
1 ] with write-lossy seman-

tics.

Proof (Idea). As before, Sender simulates queue automata using tests and the help of
Receiver. See Fig. 3. Channel l is initially empty. To read a from r, Sender does the
following: (1) write a on l; (2) check that l is nonempty (hence the write was not lost);
(3) check that, or wait until, l is empty. Meanwhile, Receiver reads identical letters
from r and l. 	


qproxy

r?a

l?a

r?b l?b

r?c

l?c

p1

p2

l!a

N : l

Z : l

r

l

a b c a c

Fig. 3. Write-lossy Sender simulates “p1
r?a−→ p2” with N and Z tests and proxy Receiver
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Thus, at least in the write-lossy setting, we can separate UCST[Z] and UCST[Z,Nl
1 ]

w.r.t. decidability of reachability.

8 Conclusion

UCS’s are communicating systems where a Sender can send messages to a Receiver
via one reliable and one unreliable, lossy, channel, but where no direct communication
is possible in the other direction. We introduced UCST, an extension of UCS’s where
steps can be guarded by tests, i.e., regular predicates on channel contents. This exten-
sion introduces limited but real possibilities for synchronization between Sender and
Receiver. For example, Sender (or Receiver) may use tests to detect whether the other
agent has read (or written) some message. As a consequence, adding tests leads to un-
decidable reachability problems in general. Our main result is that reachability remains
decidable when only emptiness and non-emptiness tests are allowed. The proof goes
through a series of reductions from UCST[Z,N] to UCST[Zl

1] and finally to PEP
partial
codir ,

an extension of Post’s Embedding Problem that was motivated by the present paper and
whose decidability was recently proved by the last two authors [25].

We see two main directions for future works:

1. The limits of decidability: is it possible to characterize precisely the families of
tests T ⊆ Reg(M) for which UCST[T ] has a decidable reachability problem? We
gave positive and negative examples, but a precise characterization would help un-
derstand the phenomenon at hand.

2. Beyond reachability: we focused on reachability questions since they are the most
natural starting point as far as verification is concerned. However several other nat-
ural verification problems, e.g., termination, are known to be decidable for UCS’s.
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