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Abstract. Distortion correction is applied to endoscopic duodenal imagery to
improve automated classification of celiac disease affected mucosa patches. In a
set of six edge- and shape-related feature extraction techniques, only a single one
is able to consistently benefit from distortion correction, while for others, even a
decrease of classification accuracy is observed. Different types of distortion cor-
rection do not lead to significantly different behaviour in the observed application
scenario.
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1 Introduction

Computer-aided decision support systems relying on automated analysis of endoscopic
imagery receive increasing attention [1].

A specific type of degradation, present in all endoscopic images, is a barrel-type
distortion. This type of degradation is caused by the wide-angle (fish eye) nature of the
optics used in endoscopes.

The aim of correcting this distortion in endoscopy is manifold. Barrel type distortion
is claimed to affect diagnosis [2], since it introduces nonlinear changes in the image,
due to which the outer areas of the image look significantly smaller than their actual
size. Therefore, the estimation of area or perimeter of observed lesions can be signif-
icantly incorrect depending on the position in the image [3]. In a recent study [4] it
has been demonstrated, that in classification of celiac disease based on duodenal im-
ages, in fact misclassification cases can be related to the extent of barrel distortion of
the texture patches involved in classification. Using the same image material, the im-
pact of distortion correction on classification accuracy has been investigated [5], [4]. In
these studies it turned out that most feature extraction methods considered failed to take
advantage of applying distortion correction as a pre-processing step to the endoscopic
images, resulting in an even decreased classification accuracy. It has been suspected that
these unexpected results might be due to the (i) (too) simple distortion correction tech-
nique applied. The only feature extraction techniques exhibiting improved classification
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when applied to distortion corrected images were based on edges and geometrical fea-
tures [5]. Therefore, it was also speculated that in general, (ii) edge and shape-related
feature types would be able to benefit from distortion correction.

In this work we focus on those two conjectures (i) and (ii) stated as conclusions after
result analysis in the mentioned studies. First, we employ the more recent parameter-
free distortion correction approach of Hartley and Kang [6]. Second, we use a set of
features related to edge and shape information instead of the mostly texture-oriented
descriptors in [5,4]. Further contributions of this work are the usage of a more realistic
evaluation protocol for classification assessment (leave-one-patient-out (LOPO) cross
validation) and the application of a richer set of classifiers to avoid bias due to the use
of a single classifier.

The manuscript is structured as follows. Section 2 explains the background of apply-
ing duodenal mucosa texture classification for diagnosis and staging of celiac disease
and describes the image database used with the corresponding histological ground truth.
In Section 3, we describe the experimental setup by first explaining the distortion cor-
rection techniques and their respective application to our image test and subsequently,
by reviewing the feature extraction (and classification) techniques employed. Section 4
presents and discusses experimental results and in Section 5 we finally conclude this
work.

2 Classification of Duodenal Texture for Celiac Disease Diagnosis

Celiac disease, commonly known as gluten intolerance, is a complex autoimmune disor-
der that affects the small bowel in genetically predisposed individuals of all age groups
after introduction of food containing gluten. Endoscopy with biopsy is currently con-
sidered the gold standard for the diagnosis of celiac disease. During standard upper
endoscopy at least four duodenal biopsies are taken. Microscopic changes within these
specimen are then classified in a histological analysis according to the Marsh classifi-
cation. The modified Marsh classification [7] distinguishes between classes Marsh-0 to
Marsh-3, with subclasses Marsh-3a, Marsh-3b, and Marsh-3c, resulting in a total num-
ber of six classes. An automated system identifying areas affected by celiac disease in
the duodenum can help to improve biopsy reliability (by indicating areas eventually
affected by celiac disease), can aid to improve less invasive diagnosis techniques avoid-
ing biopsies, and can reduce the costs of interpreting video material captured during
capsule endoscopy [7]. Prior approaches dealing with the computer-aided diagnosis of
celiac disease using endoscopic still images images include feature extraction based
on Local Binary Pattern based operators, band-pass type Fourier filters, histogram and
wavelet-transform based features, as well as smoothness/sharpness measures [7]. Tech-
niques involving temporal information computed from video-capsule endoscopy have
been also described [8].

The image test set used in this work (see [7] for example images) stems from three
pediatric gastroscopes without magnification, types GIF-Q165 and GIF-N180, Olym-
pus, with two of the first type and one of the latter type, respectively. The patients
presented in the pediatric Department because of celiac-like symptoms. Diagnostic
evaluation was indicated because of dyspeptic symptoms, positive celiac serology,
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anaemia, malabsorption syndromes, inflammatory bowel disease, and gastrointestinal
bleeding. For the endoscopy, the modified immersion technique was applied. This pro-
cedure is based on the instillation of water into the duodenal lumen for better visibility
of the villi. Then, the tip of the gastroscope is inserted into the water in order to take
images of meaningful regions. The images were taken from the Duodenal Bulb and the
Pars Descendens. Most importantly, these regions differ by their geometric properties.
Thus, it is necessary to treat these image sets separately.

From the acquired images, an experienced endoscopist extracted 128 × 128 pixels
patches significant for diagnosis. The images and patients were pre-classified by the di-
agnostic outcome of the biopsy of the significant region at the hospital into the modified
Marsh classification as shown in Table 1.

Table 1. Number of images/patients in the data sets and Marsh-classes

Data-Set Marsh-0 Marsh-3a Marsh-3b Marsh-3c
Bulbus 163/60 47/8 54/8 23/8
Pars Descencens 141/72 47/10 60/8 72/12

3 Experimental Study

3.1 Distortion Correction

The following stages are applied to the entire endoscopic images before the extraction of
the texture patches used for classification. Each colour image has been transformed into
a grayscale image with the usual conversion formula and subsequently, the MATLAB
built-in function for histogram equalisation (flat histogram) has been applied.

We use a planar checkerboard pattern (with points on a known grid) for distortion
calibration (see Fig. 1.a). Fig. 1.b shows an example of a distortion corrected calibra-
tion pattern. The first distortion correction technique applies the MATLAB software
developed by J.-Y. Bouguet1. For each gastroscope, 10 images were chosen to extract
calibration points and distorted points. The algorithm to extract the grid corners of a
checkerboard requires clicking on the four extreme corners of the rectangular checker-
board pattern. The calibration images that were used in this study contain only parts
of a checkerboard, so that for each image some sensible area of the checkerboard was
decided to contain the most extreme corners. Since the distortion in this study is quite
significant, providing a manual estimation for radial distortion was required for all im-
ages. After computing the intrinsic and extrinsic camera parameters, the undistort-tool
as provided in the tool-box is used (which is also used for computing the centres of the
texture patches as mentioned below).

Barreto et al. [9] have found the parameter-free approach of Hartley and Kang [6]
being better suited for endoscopic imagery as compared to Bouguet’s approach – there-
fore, we have developed a corresponding MATLAB implementation of their technique.
After a manual extraction of calibration points and their adjustment using Bouguet’s

1 http://www.vision.caltech.edu/bouguetj/calib_doc/

http://www.vision.caltech.edu/bouguetj/calib_doc/
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(a) (b) (c) (d)

Fig. 1. Distortion correction applied to checkerboard (taken with Olympus GIF-Q165) and to
entire endoscopic image (Bouguet distortion correction applied)

tool, the implementation of Peter Kovesi2 was applied to all images to calculate the
fundamental matrix. The reminder of the algorithm is implemented as described in the
paper, partially using MATLAB built-in functions for e.g. optimisation (“fmincon”).

Since after distortion correction the squared texture patches using for classification
do no longer correspond to squares (see Fig. 1.c and 1.d) these cannot be used im-
mediately for subsequent classification (most feature extraction techniques implicitly
assume at least a rectangularly shaped texture patch). Therefore we apply the following
technique to generate square-shaped texture from distortion corrected image material:
Based on the original (distorted) endoscopic images, we record the coordinates of the
centre of the extracted 128× 128 pixels. Subsequently, distortion correction is applied
to the entire original images and the recorded centre coordinates are mapped into the
distortion corrected image. Using these coordinates, a 128× 128 pixels texture square
is extracted from the distortion corrected image which is then used for classification.

3.2 Feature Extraction and Classification

To be able to assess the impact of distortion correction techniques on the classification
accuracy, we use a set of different feature extraction techniques. Contrasting to earlier
studies, emphasis is given to edge- and shape-related strategies.

Fractal Dimension: Boxcounting [10]: A texture signature is computed from binary
images obtained from original images using different thresholds and application of the
box-counting fractal dimension on each thresholded image. In our implementation, all
gray-level thresholds from 50 to 175 were used to generate binary images, for box-
counting, Moisy’s tool3 is used with box-sizes from 22 - 232. For the final signature,
the mean and standard deviation over the values for the box sizes are used for each
threshold value.

Locally Invariant Fractal Features [11]: Local fractal dimension (also termed local
density) is computed for each pixel in an image after applying the MR8 filterbank. For
each class, the 8-dimensional local density vectors of all training images are aggregated
and subjected to k-means clustering resulting in cluster centres termed textons. For an
image to be classified, local density vectors are computed and each one is labelled with

2 www.csse.uwa.edu.au/~pk/research/matlabfns/
3 www.fast.u-psud.fr/~moisy/ml/

www.csse.uwa.edu.au/~pk/research/matlabfns/
www.fast.u-psud.fr/~moisy/ml/
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the texton that is closest to it. The frequency histograms of the texton occurrences are
used as feature descriptors. Custom MATLAB code is developed for this approach.

Gray-Level Co-occurrence Matrix (GLCM [12]): The GLCM is defined over an im-
age as the distribution of co-occurring values at a given offset Δx and Δy for a n×m
image as follows:

CΔx,Δy(i, j) =

n∑

p=1

m∑

q=1

{
1, if I(p, q) = i and I(p+Δx, q +Δy) = j
0, otherwise

(1)

For classification, the Haralick features contrast, correlation, energy, and homogene-
ity are used for offset-values 1,2,4, and 8 in 4 directions (vertical, horizontal, diag-
onal 45◦ and 135◦). Calculations are performed with the MATLAB built-in function
”graycomatrix”.

Edge Co-occurrence Matrix (ECM [13]): For this approach (custom MATLAB im-
plementation), a Sobel edge detection approach using the Robinson compass masks is
applied to the images. Subsequently, a co-occurrence matrix is constructed using 1,2,3,
and 4 as distances in 8 directions. Again, the Haralick features computed from this
matrix as mentioned above are used as feature vector.

Edge Orientation Histogram (EH [14]): The EH is one of three MPEG-7 texture
descriptors. The EH requires dividing the image into 4 × 4 sub-images, where each
sub-image is sub-divided again into blocks of typically 4 × 4 pixels. The EH finds
vertical, horizontal, diagonal and non-directional edges. This makes the EH specifically
well suited for natural images with non-uniform edge distribution. Each image block
is filtered to obtain the most prominent edge in the block. If the block is monotone, no
edge is counted. As a consequence, a histogram with 5 bins can be computed over all
the image blocks in each of the 16 sub-images. Thus, this results in an 80 bin histogram
which is computed using the implementation of OConaire4.

Spatial Size Distributions (SSD [15]): The difference of the autocorrelation for a given
image and the autocorrelation of the same image after applying a morphological open-
ing is computed. To be able to capture texture properties of different sizes, these com-
putations are performed using scaled versions of the structure element used. The results
obtained for the different structure element sizes are then summed up and normalised
by the square of the sum over all grayscale values within the image. The result is a
cumulative distribution function. The probability density associated with this cumula-
tive distribution is called a spatial size distribution. The features which are then used
to classify textures are obtained by computing first-order and second-order moments of
the probability density.

While the shape variants of the structuring element have been chosen in accordance
to the original suggestion, the number of scales of the structuring element and the

4 clickdamage.com/sourcecode/index.php

clickdamage.com/sourcecode/index.php
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number of different support disc sizes have been reduced to 4 and 2 in our MATLAB
implementation, respectively, to limit the very demanding computations.

Classification: To avoid over-fitting phenomena the leave-one-patient-out cross-
validation protocol is used to estimate classification accuracy. In each validation run,
MATLAB built in classifiers are used: Discriminant analysis with a diagonal quadratic
function, knn classification (with Euclidean distance metric and k = 1), and classifica-
tion with SVM using a linear or a quadratic kernel function, respectively. Classification
is performed separately for the two topographical regions of the duodenum. From the
resulting classes that are assigned to the images, the performance of the classification
was evaluated by calculating sensitivity, specificity and overall accuracy.

3.3 Experimental Results

In Tables 2 - 4 we display classification results. Configurations where results obtained
from distortion corrected material are superior in terms of overall accuracy are marked
in bold face.

Table 2. Classification performance for fractal dimension-based feature extraction

Fractal dimension: Boxcounting
class. region images Sens. Spec. Acc.

diag. Bulbus distorted .51 .66 .59
quad. Hartley .58 .82 .72

Bouguet .46 .86 .69
Pars Desc distorted .46 .52 .49

Hartley .51 .65 .57
Bouguet .66 .57 .62

knn Bulbus distorted .40 .75 .60
Hartley .48 .79 .66
Bouguet .85 .65 .65

Pars Desc distorted .47 .57 .52
Hartley .50 .57 .53
Bouguet .45 .59 .51

SVM- Bulbus distorted .38 .72 .57
linear Hartley .52 .79 .67

Bouguet .53 .82 .69
Pars Desc distorted .57 .43 .51

Hartley .63 .50 .57
Bouguet .59 .45 .53

Locally invariant fractal features
class. region images Sens. Spec. Acc.

diag. Bulbus distorted .35 .91 .67
quad. Hartley .30 .93 .66

Bouguet .19 .96 .62
Pars Desc distorted .64 .72 .68

Hartley .65 .64 .65
Bouguet .47 .70 .57

knn Bulbus distorted .73 .65 .69
Hartley .71 .54 .61
Bouguet .56 .82 .71

Pars Desc distorted .73 .51 .63
Hartley .56 .58 .57
Bouguet .55 .51 .53

SVM Bulbus distorted .73 .90 .83
linear Hartley .59 .85 .74

Bouguet .70 .88 .80
Pars Desc distorted .73 .68 .71

Hartley .72 .62 .68
Bouguet .78 .68 .74

The only feature extraction technique where distortion corrected images consistently
lead to better results is the “fractal dimension: boxcounting” technique. Also, for edge
co-occurrence features we notice a few improvements (e.g. for knn classification and
Bouguet distortion correction applied to Pars Descendens images also for the other two
classifiers). For the other four feature extraction techniques improvements are sParse
and in the majority of configurations result degradations are observed.

There are absolutely no trends which justify the much more complicated parameter-
free distortion correction as compared to Bouguets software. The tendency that Pars
Descendens imagery is more difficult to classify can be confirmed with the results in
this study. In most cases SVM classification delivers the best results, but there are also
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Table 3. Classification performance for grayscale co-occurrence and SSD feature extraction

Gray scale Co-occurence features
class. region images Sens. Spec. Acc.

diag Bulbus distorted .70 .79 .75
quad. Hartley .75 .76 .76

Bouguet .77 .81 .79
Pars Desc distorted .74 .59 .68

Hartley .61 .72 .66
Bouguet .67 .67 .67

knn Bulbus distorted .75 .79 .77
Hartley .62 .83 .74
Bouguet .64 .77 .71

Pars Desc distorted .70 .68 .69
Hartley .68 .65 .67
Bouguet .68 .54 .62

SSD features
class. region images Sens. Spec. Acc.

diag. Bulbus distorted .53 .78 .67
quad. Hartley .49 .79 .66

Bouguet .26 .91 .63
Pars Desc distorted .57 .67 .62

Hartley .71 .54 .63
Bouguet .57 .71 .63

knn Bulbus distorted .82 .83 .83
Hartley .73 .82 .78
Bouguet .75 .83 .79

Pars Desc distorted .71 .67 .69
Hartley .71 .66 .69
Bouguet .65 .69 .67

Table 4. Classification performance for edge co-occurrence and edge orientation features

Edge Co-occurrence features
class. region images Sens. Spec. Acc.

diag Bulbus distorted .51 .67 .60
quad. Hartley .59 .58 .58

Bouguet .51 .58 .55
Pars Desc distorted .45 .67 .55

Hartley .49 .59 .52
Bouguet .53 .65 .58

knn Bulbus distorted .39 .57 .49
Hartley .48 .55 .52
Bouguet .45 .54 .50

Pars Desc distorted .53 .38 .46
Hartley .54 .48 .51
Bouguet .56 .48 .53

SVM Bulbus distorted .68 .78 .74
linear Hartley .56 .72 .56

Bouguet .66 .76 .72
Pars Desc distorted .64 .45 .55

Hartley .61 .40 .52
Bouguet .63 .49 .57

Edge orientation features
class. region images Sens. Spec. Acc.

diag. Bulbus distorted .69 .68 .68
quad. Hartley .68 .72 .70

Bouguet .73 .72 .72
Pars Desc distorted .49 .57 .53

Hartley .44 .55 .49
Bouguet .37 .57 .46

knn Bulbus distorted .85 .45 .62
Hartley .72 .39 .53
Bouguet .81 .45 .57

Pars Desc distorted .45 .52 .51
Hartley .48 .57 .52
Bouguet .58 .43 .51

SVM Bulbus distorted .77 .62 .69
quadratic Hartley .63 .56 .59

Bouguet .63 .58 .60
Pars Desc distorted .59 .55 .57

Hartley .46 .42 .44
Bouguet .62 .56 .60

a few exceptions. The best result with 0.83 accuracy is obtained with locally invariant
fractal features and SSD on the distorted Bulbus image set using SVM classification and
knn classification, respectively. Overall, classification accuracy is found to be lower for
the considered set of feature descriptors as compared to transform-based or LBP-related
methods.

4 Conclusion

Distortion correction does not improve classification of celiac-disease related duodenal
image material in many cases, even if edge- and shape-related feature descriptors are
used. The role of interpolation as used in all distortion correction techniques needs to
be investigated in more detail – especially in the corner regions of the images, where
distortion correction is most crucial due to the strong barrel distortion, interpolation
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artefacts are most severe due to the large extent of distances to be corrected. Further-
more, the validity of the conclusions found so far needs to be checked for other types of
endoscopes (e.g. high-magnification or high-definition endoscopes) and other types of
classification tasks (e.g. colon polyp classification, stomach mucosa classification etc.).
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