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Abstract. Having to determine an adequate number of fiber directions
is a fundamental limitation of multi-compartment models in diffusion
MRI. This paper proposes a novel strategy to approach this problem,
based on simulating data that closely follows the characteristics of the
measured data. This provides the ground truth required to determine
the number of directions that optimizes a formal measure of accuracy,
while allowing us to transfer the result to real data by support vector
regression. The method is shown to result in plausible and reproducible
decisions on three repeated scans of the same subject. When combined
with the ball-and-stick model, it produces directional estimates compara-
ble to constrained spherical deconvolution, but with significantly smaller
variance between re-scans, and at a reduced computational cost.

1 Introduction

Multi-compartment models are a traditional way of estimating more than a single
fiber orientation in diffusion MRI [1,2]. The number of fiber compartments used
in such models can have a profound effect on the estimated directions, making
it mandatory to decide on a setting that is adequate for any given voxel.

Despite this, only few systematic approaches to this problem are available: Au-
tomated Relevance Determination [2] has been used to force the weights of fiber
compartments with insufficient statistical support to zero. However, it requires
computation in a full Bayesian framework. The Bayesian Information Criterion
has been demonstrated to produce suboptimal results even on idealized syn-
thetic data [3]. Approaches based on peaks of the fiber ODF [3,4] require setting
a threshold, and suffer from noise-induced spurious peaks.

This work proposes a novel strategy for setting the number of fiber compart-
ments. It formalizes the pragmatic view that it is best to use the number that
leads to the most accurate estimates of the desired parameters. Since the in vivo
data lacks ground truth, the optimal number of compartments is determined in
simulated data that closely follows the characteristics of the experimental data.
Based on this synthetic data, a classifier is trained to recognize voxels that are
best analyzed by a ball-and-stick model [2] with a single, two, or three fiber com-
partments, and thereby achieves reliable and efficient fiber direction estimates.
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2 Defining the “Most Adequate” Number of Directions

When analyzing a diffusion MRI signal that arises as an average over n fiber
compartments with principal directions vi and relative weights wi, two or more
of the vi may be so close to collinearity that, given noisy measurements with
limited angular and spectral resolution, it becomes impossible to separate them
with reasonable precision. In this case, we prefer to describe them with a single
estimate v̂j . Similarly, when some of the weights wi are so small that the asso-
ciated directions can no longer be reliably estimated, we prefer to set them to
zero in order to obtain a less complex model that is more robust to noise.

This tradeoff is formalized by the following definition of weighted average
angular error (WAAE), which measures the average angle between each true
direction vi and its nearest estimate v̂j , weighted by its true volume fraction wi:

WAAE :=

n∑

i=1

wimin
j

arccos(|vi · v̂j |) (1)

Given a model that requires choosing the number of fiber compartments, we
define the number that minimizes WAAE as the one most suitable for analysis.
Even though WAAE is used throughout this paper, the fundamental idea is
to use some formal error measure like it to decide on the “right” number of
directions, not necessarily its exact definition. In particular, when dealing with
advanced multi-compartment models that additionally estimate parameters such
as axon diameter [5] or account for fiber fanning or bending, learning could be
based on an objective function that penalizes errors in those.

3 Learning the Number of Fiber Compartments

Since evaluation of WAAE requires ground truth, it cannot be computed di-
rectly for in vivo data. Instead, we use machine learning to train a classifier that
predicts the best number of fiber compartments for experimental data based on
its similarity to simulated data, for which WAAE can be computed.

3.1 Support Vector Regression

Given a suitable representation x of the diffusion-weighted signal S(θ, φ), we seek

a function f̂(x) whose value provides an estimate of the most adequate number

of directions to analyze S. We obtain f̂(x) through support vector regression,
which produces functions of the form

f̂(x) =

�∑

i=1

(αi − α∗
i )k(xi,x) + b. (2)

Support vector regression requires us to decide on a representation x of the
signal, to specify training samples xj for which the value of f(xj) is known,
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and to specify a kernel function k(xj ,x) that measures the similarity between
any input x and the training data xj . Based on this, an optimization procedure
automatically finds a subset {xi}�i=1 of the training data and suitable parameters

αi, α
∗
i , and b, so that a given distance measure between f̂(xj) and the training

values f(xj) is minimized, subject to additional constraints. Full details of the
method are beyond the scope of this paper and are given in [6].

3.2 Feature Definition and Kernel Selection

The representation x from which Eq. (2) is computed is known as a feature
vector. Ideally, it should encode the available prior knowledge about f . For
example, the number of fiber compartments clearly should not be affected by
joint rotations of all fibers. Therefore, x should be invariant under rotations of
the measurement frame, while providing information that can be used to infer a
suitable number of directions.

The experiments reported in this paper use the three sorted eigenvalues of a
single diffusion tensor per voxel as the feature vector. Even though the diffusion
tensor is insufficient to resolve the directions of more than a single compart-
ment, the results show that it reliably indicates their number. Experiments with
more complex features based on rotational invariants of various HARDI models,
including ADC profiles [7], Q-Balls, and fiber ODFs, have led to small improve-
ments on simulated data, but reproducibility on real data was much reduced.

As the kernel k(xj ,x), we use a standard radial basis function, k(xj ,x) =
exp(−γ‖xj − x‖2). The parameter γ, as well as two additional parameters, C
and ν, which control the number � of support vectors in Eq. (2), have been fixed
automatically using cross-validation [6].

3.3 Training Data and Labels

In order to successfully transfer the learned function f̂(x) to real data, it is es-
sential that the characteristics of the training data xj be as similar as possible
to the experimental data. Therefore, we generate it directly from the measure-
ments, with random weights wi > 0, w1 + w2 + w3 = 1, and random directions
vi. Note that even though we always simulate three compartments, modeling
them with only one or two compartments may lead to a smaller WAAE when
some wi are very small, or at least two vi are nearly collinear.

As in [8], the N voxels with largest FA in the measured data are assumed
to contain a single dominant direction, indicated by the principal diffusion di-
rection. It is our goal to reproduce the natural variability of these single fiber
voxels, including the bending and spreading which is present even in the most
anisotropic voxels. Therefore, we randomly select one of the N voxels as a tem-
plate for each simulated fiber compartment. In order to get a sufficiently realistic
estimate of the variability, we use N = 1000, corresponding to FAmin ≈ 0.68.

Since the classifier should be able to handle partial voluming with cere-
brospinal fluid (CSF) or gray matter, we include it in our training data. For this,
we use the N least anisotropic voxels each from a CSF mask, obtained by Otsu
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segmentation [9] on mean diffusivity, and a brain mask excluding CSF, respec-
tively. Each simulated voxel V selects a near-isotropic signal I(θ, φ) from either
gray matter or CSF, and weights it by a uniform random factor wiso ∈ [0, 0.5].

Taken together, the simulated signal S is given by the following weighted com-
bination of a randomly selected near-isotropic signal I, three randomly selected
single-fiber signals Ri, rotated to match the directions vi, and error terms ε that
are estimated using residual bootstrapping [10]:

S(θ, φ) = wiso(I(θ, φ) + εiso) + (1 − wiso)
3∑

i=1

wi (Ri(θ, φ) + εi) (3)

From the simulated data, eigenvalue features xj are computed, and directional
estimates v̂j are obtained from the ball-and-stick model [2] with one, two, and
three fiber directions. The number of compartments that led to the smallest
WAAE is used as the true value of f(xj) in the support vector regression. No
cases other than {1, 2, 3} are considered, since we assume a separate classifier
defines a white matter mask, and no prior work has plausibly reconstructed more
than three fiber directions from a single voxel.

Since we only use discrete values f(xj) ∈ {1, 2, 3} in our training data, we
should avoid including boundary cases in which two settings perform similarly
well. Therefore, we simulate a large number of voxels (250,000) and only train on
the 1,000 examples xj of each class for which the difference in WAAE between the
optimal choice of compartment number and the second-best choice was largest.

4 Results on Experimental Data

Three repeated diffusion MR acquisitions have been obtained within the same
session at 3 T, with voxel size 2×2×2mm2, 71 gradient directions, 8 B0 images,
b = 1000 s/mm2. Eddy current distortions and head motion have been corrected
for using FSL (www.fmrib.ox.ac.uk), and the B matrix has been rotated accord-
ingly [11]. In order to evaluate reproducibility, results that use all available data
are compared to results obtained from the three individual repeats.

4.1 Number of Fibers

We clamp the values of f̂(x) to range [1, 3] and round them to obtain discrete
classes {1, 2, 3}. The percentages of voxels that were marked as being best ana-
lyzed with one, two, or three fiber compartments are listed in Table 1 for a brain
mask (excluding CSF), and for two different thresholds of Fractional Anisotropy.

A comparison to constrained spherical deconvolution (with lmax = 8) was
performed using the software MRtrix [8]. Applying an FOD threshold of 0.1 as in
[4] results in a much smaller number of single fiber voxels than with our classifier.
Moreover, compared to the combined data from all three repeats, deconvolution
systematically reported a smaller number of single-fiber voxels in the individual
repeats (between 2.3% and 2.4%, rather than 3.4%).
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Table 1. Counting the peaks in constrained deconvolution (CSD) estimates fewer
single-fiber voxels than our classifier, consistent with known effects of noise on CSD

Learned Classifier Non-Neg. Deconvolution
non CSF FA > 0.1 FA > 0.2 non CSF FA > 0.1 FA > 0.2

1 Fiber 7.6% 9.8% 15.8% 3.4% 4.4% 7.3%
2 Fibers 20.3% 26.1% 43.6% 18.6% 24.1% 40.6%
3 Fibers 72.1% 64.1% 40.6% 78.0% 71.5% 52.1%

(a) (b) (c)

Fig. 1. While fiber ODFs from constrained deconvolution (top row) show reasonable
agreement with the ground truth (bottom row) in simulated two- and three-fiber cases
(b/c), large spurious peaks arise in two out of the three shown single directions (a)

This indicates that the reduced effective SNR in the individual measurements
leads to spurious peaks in the fiber ODFs, which reduces the reliability of their
number as an indicator of distinct fiber compartments. Figure 1 illustrates the
problem using three examples each from the training sets that define the single-,
two-, and three-fiber cases (a–c). The rods in the bottom row indicate the ground
truth directions vi, lengths indicating relative weights wi (radii being reduced
in (a) and (b) to avoid occluding the smaller contributions in (b)).

The strong spurious peaks that arise in two out of the three single-fiber cases
(a) are a known problem of deconvolution, particularly in the presence of partial
voluming with isotropic compartments [12]. They are caused by the fact that the
regularization introduced in [8] suppresses negative peaks, but does not address
spurious positive peaks. In contrast to this, the fraction of fibers assigned to each
class by our classifier was stable across re-scans. The percentage of single-fiber
voxels in the individual repeats varied between 7.5% and 7.9%.

The reproducibility of our estimates is further confirmed by Table 2, which
lists the percentage of voxels in which the classification in each individual mea-
surement agreed with the class assigned based on the combined data, as well as
the mean difference and the 95% confidence interval of the value of f̂(x).

Figure 2 presents a visual comparison between our classification (a/c) and the
results from fODF thresholding (b/d) in a coronal (a/b) and an axial (c/d) slice.
As in [4], red, green, and blue indicate one, two, and three directions, respectively.

In (a/c), the values of f̂(x) are mapped before rounding, to demonstrate the
smooth transition between the classes.
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Table 2. Good agreement between classification of the combined data and individual
repeats supports the reproducibility of our method

Learned Classifier Non-Neg. Deconvolution
Agreement Mean 95% Conf. Agreement Mean 95% Conf.

1st Repeat 94.5% 0.062 0.215 89.7% 0.106 1.0
2nd Repeat 95.3% 0.056 0.189 90.0% 0.103 1.0
3rd Repeat 95.3% 0.056 0.192 90.1% 0.102 1.0

(a)

(b)
(c) (d)

Fig. 2. Compared to the fiber number estimate from constrained deconvolution (b/d),
our classifier (a/c) provides more coherent clusters of single fiber voxels (red), and
smooth transitions between the classes

4.2 Estimates of Fiber Direction

Since the parameter we are ultimately interested in is fiber orientation, let us now
consider the reproducibility of directional estimates based on the ball-and-stick
model [2] when the number of sticks is determined by our function f̂(x).

Table 3 reports the weighted average angular deviation (WAAD) within a
white matter mask (FA > 0.2). It is computed from Eq. (1), by treating the
estimates from the combined data as “ground truth”. The results from all three
repeats were very similar and have been averaged for presentation. Compared to
constrained deconvolution, ball-and-stick achieves slightly lower precision in the
two-fiber case, but higher reproducibility in the one- and three-fiber cases. The
unfavorable 90% confidence bound on deconvolution-based single fiber estimates
is consistent with the emergence of spurious peaks as observed in Figure 1 (a).

The mean WAAD over the whole white matter was 9.8◦ when combining
ball-and-stick with our classifier, which improves over the WAAD achieved by
deconvolution (11.0◦). According to a two-sided t-test on the distribution of
WAADs from all white matter voxels, this difference is highly significant (p <
10−20), in each of the three repeated measurements. In contrast, fitting the ball-
and-stick model with three compartments in all voxels led to a larger average
WAAD (11.9◦). This confirms the importance of selecting an adequate number
of fibers based on the data.
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Table 3. Reasonable agreement is achieved between direction estimates from the com-
bined data and individual measurements for one- and many two-fiber voxels

Ball-and-Stick Non-Neg. Deconvolution
Mean Median 90% Conf. Mean Median 90% Conf.

1 Fiber 2.0 1.2 3.0 4.0 1.9 10.5
2 Fibers 8.7 5.7 20.9 7.1 5.4 14.7
3 Fibers 14.1 13.5 23.6 15.0 14.6 24.6

(a) Ball-and-Stick Result (b) Constrained Deconvolution Result

Fig. 3. The triple crossing between corpus callosum (red), corticospinal tract (blue) and
superior longitudinal fasciculus (green) was the only region that produced reproducible
three-fiber estimates. Closeup shows a slanted view onto an axial slice.

Large absolute errors indicate that many of the voxels that have been labeled
as “three-fiber” by both methods do not afford reliable directional estimates us-
ing either model. However, inspecting all voxels in which three-fiber estimates
were consistently obtained with less than 10◦ WAAD revealed two clear clusters:
The triple crossing between corpus callosum, corticospinal tract, and superior
longitudinal fasciculus, in both hemispheres. Visual inspection of a detail of that
region in Figure 3 suggests that, when combined with an appropriate classi-
fier, ball-and-stick fitting produces directional estimates that are very similar to
constrained deconvolution.

The proposed method is computationally efficient. It took less than 10 seconds
to propose a fiber number for all 96,000 voxels within the brain mask. Subsequent
fitting of the ball-and-stick model took 74 seconds. In comparison, constrained
deconvolution and subsequent peak finding with the implementation from [8]
took almost 10 minutes on the same 2.7GHz workstation.

5 Conclusion

A novel strategy to select the number of fiber directions in multi-compartment
models has been presented, which explicitly aims to minimize a formal measure
of error in the estimated model parameters. Since accuracy cannot be measured
in vivo, a machine learning approach is used to automatically transfer insights
from simulated data with known ground truth to experimental data.
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On the conceptual side, the main contribution of this work is to demonstrate
that such a transfer produces plausible and reproducible results. As a practical
benefit, combining the proposed classifier with the ball-and-stick model produces
directional estimates that are similar overall, but more reproducible than the
ones from constrained deconvolution across re-scans, particularly in single-fiber
voxels. They are also obtained at a markedly reduced computational cost. This
seems particularly relevant when performing bootstrapping-based tractography,
which requires repeated model fitting [13].
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