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Abstract. The geometry of white matter tracts is of increased interest
for a variety of neuroscientific investigations, as it is a feature reflective of
normal neurodevelopment and disease factors that may affect it. In this
paper, we introduce a novel method for computing multi-scale fibre tract
shape and geometry based on the differential geometry of curve sets. By
measuring the variation of a curve’s tangent vector at a given point in all
directions orthogonal to the curve, we obtain a 2D “dispersion distribu-
tion function” at that point. That is, we compute a function on the unit
circle which describes fibre dispersion, or fanning, along each direction
on the circle. Our formulation is then easily incorporated into a contin-
uous scale-space framework. We illustrate our method on different fibre
tracts and apply it to a population study on hemispheric lateralization
in healthy controls. We conclude with directions for future work.

1 Introduction

The brain consists of diverse structures, each with a characteristic shape and an
intricate architecture. Their shape varies across the normal population, and is
an important feature thought to reflect genetic and environmental factors that
may contribute to disorders of neurodevelopmental origin or neurodegenerative
diseases (e.g., [1]). In this context, the study of white matter geometry is of
importance to the neuroscience of white matter and disorders that affect it.

A large group of methods for white matter geometry analysis in diffusion MRI
compute the curvature and torsion of individual fibres recovered with a tractog-
raphy algorithm (e.g., [2]). The geometry of sets of curves is usually obtained
by mapping individual curves to medial axes/surfaces (e.g. [3]) or an average
representation (e.g., [4l5]). However, this type of mapping may involve heuristic
decisions in the choice of corresponding points and fibre similarity measures. An
elegant alternative was recently introduced on the basis of the currents frame-
work [0], which represents fibre tracts as a smooth vector field and captures
global tract shape while avoiding the need for specific point correspondences [7].

All geometry analysis methods based on fibre tractography are inherently lim-
ited in that tractography does not, in general, produce stable and reproducible
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results. Recognizing this limitation, a method for computing white matter ge-
ometry indices directly from diffusion imaging data without requiring prior trac-
tography was proposed in [§]. This method, however, is currently only defined
for the single tensor model of diffusion, itself with well known limitations.

In the present work, we propose a scale-based white matter geometry analysis
method that is situated logically between that of [§], and vector field based
methods such as [7]. While our method is based on vector fields derived from
tractography and is therefore subject to all associated limitations, its advantage
with respect to [§] is that it is not limited by the tensor model of diffusion,
and also allows for a more precise characterisation of fibre fanning at different
spatial scales, as detailed in Section [[Jl As for the currents method of [7],
it is optimized to capture global tract shape and its modes of variation in a
population. In contrast, our method computes local geometrical features based
on the differential geometry of curve sets, which makes possible subsequent tract-
based statistical analysis with methods such as [3]. We note, however, that our
method is complementary to the currents framework of [7], and both may be
used in conjunction in order to analyse the geometry of a currents vector field.

1.1 Comparison to Tensor-Based Model of Dispersion

Both our method and the method of [8] compute macrostructural white matter
geometry. However, they approach this problem in diametrically opposed ways,
which makes them complementary to each other. The method of [8] works di-
rectly with DTI data within a 3D neighborhood, without any prior knowledge
about fibre tracts. This is an advantage, as it allows to avoid tractography and
its limitations. This, however, comes at a price: the geometry of all the white
matter present in the 3D neighborhood is represented by a single scalar, which
may be less informative when distinct fibre populations pass near each other.

In contrast, our new method works with the tangent vector field of tracts
obtained by tractography. This reliance on tractography is a limitation, but it
also allows the analysis of a specific tract independently of the influence of other
nearby tracts. Furthermore, no constraints are imposed on the underlying model
of diffusion. Unlike the method of [8], defined only for diffusion tensor fields, our
method can be used even with high quality HARDI data. Finally, instead of
computing a single scalar to represent fibre dispersion at a point, we compute
directional dispersion in a “dispersion distribution function”, as detailed below.

The two methods therefore exploit the two sides of a basic trade-off: avoiding
the uncertainty inherent in tractography [§], vs. exploiting information about
tract structure provided by tractography, as proposed here.

2 Geometrical Framework

The work in [9] models white matter fibre geometry by associating an orthonor-
mal frame (Ep, Fn, Eg) with each point along each 3D curve. Here E7 is the
curve’s tangent vector, and Ey and Ep are the normal and binormal vectors. The
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local tract geometry can then be characterized, with respect to the local frame,
by computing the variation of Er in the frame’s three orthonormal directions.
In this work, we propose to measure the rate of change of the tangent vector
E7 not only in the direction of the normal Fxn and the binormal Eg, but in
all directions in the plane orthogonal to Ep. This allows to avoid the need to
define Frenet frames, which can be unstable. By computing the rate of change
of Ep along the entire circle orthogonal to Erp, instead of only 2 directions, we
insure against missing “interesting events”, and we describe more completely
the complex geometry of white matter tracts. The function on a circle thus
computed is a 2D “dispersion distribution function” (DDF), i.e. a function on
the circle with values proportional to the amount of fibre dispersion in each
direction orthogonal to the fibre. This function provides a richer description of
dispersion than the scalar measure of [§], and constitutes our main contribution.

3 Approach

3.1 Problem Statement

The goal of our method is the following: given a set C of curves C; that represent
the output of some streamline tractography algorithm, with a tangent vector Ep
defined at each point p on each curve C; € C, we compute the function

¥ (0) = VyEp. (1)

Here V Ep represents the covariant derivative of the tangent vector Fp in di-
rection v, with the constraints that {v|v € S'(\v L Er}, i.e., v is a direction
on the unit circle centered at p in the plane orthogonal to Ep, and is denoted
by angle # in this plane. This function is computed at each p along each C;, re-
sulting in a DDF at each p describing the local fibre dispersion pattern relative
to the local tangent vector E, as illustrated in Fig. [l (left).

We note that () is defined only for continuous vector fields. That is, a line
passing though point p on curve C; with direction v must always intersect
another curve C; at point p’ with a tangent vector Ef. defined at p’, otherwise
VyEr will not exist. Since we work with a vector field F' = |J, Er of tangent
vectors of 1D curves in 3D Euclidean space R?, F is not continuous, specific point
correspondences cannot always be established and (] is not always defined.

To resolve this issue, we construct a continuous vector field F(x,y, z) at each
(x,y,2) € R? by averaging F over a neighborhood A centered at (x,, 2):

. 1
Filw,y,2) = > Fujw (2)

(i.3,k)EN

where N is some neighborhood of R? centered at location (x,y, z), and N is the
number of vectors of F' that occur within N.

We note that F' is discrete because it is obtained from a discrete set of curves,
but also because of the discrete nature of diffusion MRI data, which causes
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Fig.1. LEFT: Our method computes at each point p a function on the unit circle
orthogonal to the tangent vector Er at p which measures the rate of change of Er in
all of these directions, thus computing a 2D “dispersion distribution function”. RIGHT:
To compute Vy Er at location p at scale S, we define a disk-shaped neighborhood
with radius S around p, over which vector field F' = |J, Er is averaged. The same
averaging is performed over a neighborhood centered at p + Sv (orange). VyEr is
then approximated as the angular difference between the two vectors thus obtained.

each curve C; not to be continuous, but rather a polyline approximation to a
continuous curve. Each Cj is therefore a sequence of small linear segments, with
one tangent vector Er per segment. There is thus a countable number of vectors
belonging to F' in each neighborhood N, which allows the summation in (2)).
The spatial location of these vectors is denoted with the (i, j, k) subscript in (@),
which are floating point coordinates with sub-voxel resolution.

We also note that a priori, the tangent vectors can be presented either as Er
or as —E7. To avoid arbitrary sign changes from one location to the next which
can drastically affect the result of (), we ensure a sign consistency over the
entire dataset relative to a global coordinate frame, such as that derived from
the principal components of the tracts’ spatial distribution.

3.2 Scale Space

Since we seek to characterize the variation of curve orientation in directions
orthogonal to the curves, in our implementation we choose the neighborhood A/
to be shaped as a disk lying in the plane orthogonal to Fp, with a small thickness
chosen to be 1 voxel. The radius of this disk is treated as a scale parameter. To
compute ([l for a given direction v at a given location p, we first apply (@) at p
in order to obtain a value for Ep at scale S, E; Then, we apply () at location
p + Sv (i.e., at a distance S from p in direction v), in order to obtain a value
for the tangent vector E;«S at location p 4+ Sv. Finally, we approximate Vy Ep
(at scale S) as the angular difference between ES and E;°:

Vv Er /= arccos (<E7€,E} >) ) (3)

with (.,.) denoting the standard dot product in R3.
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Fig. 2. The total dispersion (TD) visualized for tracts forming part of the corpus
callosum. Here and in subsequent figures, yellow indicates high TD values.

These steps are illustrated in Fig. [l (right). The inclusion of a scale parameter
in this manner allows for a simple way to construct a continuous scale space.

4 Validation

Our method is a high-level analysis that is applied after tractography. We assume
the particular tractography method has already been tested on synthetic data
or phantoms, and its limitations are known. The focus of the experiments in this
paper is the macrostructural geometric analysis of already-traced fibre tracts.

Our method was tested on tracts traced with a filtered tractography algorithm
for HARDI data [10]. This method was run on diffusion-weighted imaging data
acquired from a volunteer on a GE Signa HDxt 3.0T scanner using an echo planar
imaging sequence with a double echo option, an 8 Channel coil and ASSET with
a SENSE-factor of 2. The acquisition consisted of 51 directions with b = 900
s/mm?, and 8 images with b = 0 s/mm?, with scan parameters TR=17000 ms,
TE=78 ms, FOV=24 cm, 144 x 144 encoding steps, 1.7 mm slice thickness. 85
axial slices covering the whole brain were acquired.

As described previously, our method computes 2D DDFs at each point along
each curve in the tract set. In order to summarize this large amount of informa-
tion and present it visually, in the following figures we show fibres where each
point is colored by a measure of total dispersion (TD), such that yellow indicates
high TD values. We define TD as the average value of ¥(6) () at a point.

In Fig. Bl we show the TD measure for a set of fibres passing through the
corpus callosum. Here TD was computed with a scale parameter S = bmm. As
expected, the measure is highest in regions with highest overall dispersion.

We next explore the effect of varying the scale parameter S on a fibre tract
which connects the substantia nigra of the brain stem to the caudate nucleus, a
sub-cortical grey matter structure. This tract was selected for illustration pur-
poses because it presents a well-defined fanning structure.

In Fig.[Bl we present views of this tract colored by TD, computed at scales S
ranging from 1.7mm to 13.6mm. At the smallest scale only very local dispersion
features are highlighted. With increasing scale, the larger fanning structure is
highlighted more strongly, while small features are progressively lost.



Multi-scale Characterization of White Matter Tract Geometry 39

(b) S = 3.4mm

(e) S =8.5mm (f) S =10.2mm (g) S=11.9mm (h) S =13.6mm

Fig. 3. A fibre tract colored by TD, for a range of values for scale parameter S

5 A Study of Lateralization in Healthy Controls

We illustrate the applicability of the method to population studies via an inves-
tigation of lateralization in healthy controls. Diffusion MRI data was acquired
from 16 adult healthy male volunteers using the protocol described in Section [l

Our study was focused on tracts associated to the inferior frontal cortex, as
this area has been shown to be lateralized in healthy males, for example in terms
of functional connectivity [I1], and it has also been implicated in disorders such
as autism and schizophrenia (e.g., [I1]). We extracted fibre tracts connecting
the pars orbitalis cortical area (part of the inferior frontal cortex) of each hemi-
sphere, using the filtered HARDI tractography algorithm of [10]. We first com-
puted whole-brain tractography, from which we extracted the interhemispheric
tracts connecting both cortical regions as defined by an automated FreeSurfer
(http://surfer.nmr.mgh.harvard.edu) parcellation of the cortex. The tracts were
then cut within 5 mm from the midsagittal plane. For each subject, we computed
the mean TD at scale S=5mm over these tracts in each hemisphere. An example
of these tracts for one subject is shown in Fig. dl

The lateralization results are presented in Fig. il and they indicate an overall
increase of TD in the right hemisphere, with a p-value of 0.030 (two-tailed T
test). The male inferior frontal cortex has been previously shown to be right-
lateralized in terms of volume and functional connectivity (e.g., [T1]). Anatomical
differences in white matter geometry are less well known, and our method can be
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Fig. 4. LEFT: The set of tracts used in our group study shown for one subject. The
fibres are colored by TD (computed at scale S=5mm), and are overlaid on an axial slice
through the FA volume. RIGHT: The same fibre tract shown with both a sagittal and
an axial slice though FA| as well as a semi-transparent model (blue) of the FreeSurfer
cortical segmentation of the pars orbitalis.
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Fig. 5. Comparison of the mean TD value (units of rad/mm) for each individual, shown
for each hemisphere. A t-test between the two groups yields a p-value of p=0.030.
Horizontal red lines: group mean. The error bars indicate + 1 standard deviation. L:
left hemisphere. R: right hemisphere.

used in this context. While our current results are preliminary, they do illustrate
the applicability of the method to population studies.

6 Discussion and Conclusion

In this paper, we presented a multi-scale approach for computing white matter
fibre geometry, based on the local differential geometry of curve sets. The method
works with curves traced by fibre tractography algorithms, and has both advan-
tages and weaknesses. The main drawback of this method is its dependence on
the quality of the tractography algorithm used to generate the fibres. With this
limitation in mind, we reviewed in Section [Tl several advantages of our method
relative to a non-tractography method such as [8]. In addition, we note that
fibre tracts provide an explicit correspondence between the white matter and
locations on the cortical surface where they originate or terminate. This is very
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important for establishing a connection between white matter and grey matter
geometry, as the relationship between the two may provide novel insights into a
variety of neuroscientific applications, regarding for example brain development
or atrophies caused by disease. We will address these questions in future work.

Finally, we note that the TD measure reduces the information in ¥(#) to a
directionless scalar. In order to better take advantage of the directional infor-
mation contained in ¥(6), one may define an inner product between ¥(¢) and
a vector field, in order to measure dispersion in a specific direction. We will
analyse such directional information in future work.
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