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Abstract. Extraction of bone contours from radiographs plays an im-
portant role in disease diagnosis, pre-operative planning, and treatment
analysis. We present a fully automatic method to accurately segment the
proximal femur in anteroposterior pelvic radiographs. A number of can-
didate positions are produced by a global search with a detector. Each is
then refined using a statistical shape model together with local detectors
for each model point. Both global and local models use Random Forest
regression to vote for the optimal positions, leading to robust and accu-
rate results. The performance of the system is evaluated using a set of
519 images. We show that the fully automated system is able to achieve a
mean point-to-curve error of less than 1mm for 98% of all 519 images. To
the best of our knowledge, this is the most accurate automatic method
for segmenting the proximal femur in radiographs yet reported.
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1 Introduction

In clinical practice, plain film radiographs are widely used to assist in disease
diagnosis, pre-operative planning and treatment analysis. Extraction of the con-
tours of the proximal femur from anteroposterior (AP) pelvic radiographs plays
an important role in diseases such as osteoarthritis (e. g. diagnostics and joint-
replacement planning) or osteoporosis (e. g. fracture detection and bone density
measurements). In addition, accurately segmenting the contours of the proximal
femur in radiographs allows monitoring of disease progression.

Manual segmentation of the femur is time-consuming and hard to do con-
sistently. Our aim is to automate the segmentation procedure. Fully automatic
proximal femur segmentation is challenging for several reasons: (i) The quality of
radiographs may vary a lot in terms of contrast, resolution and the region of the
pelvis shown. (ii) AP pelvic radiographs only give a 2D projection, and hence
are susceptible to rotational issues; the same 3D shape may yield a different 2D
projection depending on the view point. (iii) Plain film radiographs do not pro-
vide homogeneous values for the same structure due to overlapping body parts.
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(iv) Deformities of the proximal femur may cause the loss of distinguishable
radiographic key features.

Automatically extracting the contours of the proximal femur comprises two
key steps: Firstly, the femur is detected in the image and secondly, the contours
are segmented. Behiels et al. [1] have shown the suitability of statistical shape
models for proximal femur segmentation. Recent work on automatically seg-
menting the femur in radiographs using statistical shape models includes [11,12].
Object detection in the latter as well as in the atlas-based approach of Ding et
al. [8] is based on edge detection. We use Random Forest regression in a sliding
window approach to automatically segment the proximal femur.

Random Forests (RF) [2] describe an ensemble of decision trees trained in-
dependently on a randomised selection of features. They have been shown to
be effective in a range of classification and regression problems [6,10]. Recent
work on Hough Forests [9] has shown that objects can be effectively located by
training RF regressors to predict the position of a point relative to the sampled
region, then running the regressors over a region and accumulating votes for
the likely position. To detect the femur, our global search uses a RF regressor
that votes for the centre of a reference frame, resulting in a response image of
accumulated votes. The approximated position is then used to initialise a local
search to segment the femur, combining local detectors with a statistical shape
model. Following [3], we apply RF regression in the Constrained Local Model
(CLM) framework to vote for the optimal position of each model point. Here,
feature detectors are run independently to generate response images for each
point and then a shape model is used to find the best combination of points [7].

Using RF regression voting for both object detection and CLM-based contour
extraction yields a robust and fully automatic segmentation system. We use the
latter to segment the femur in pelvic radiographs, and demonstrate that results
are very accurate. The local search and the fully automatic search outperform
alternative matching techniques such as Active Shape Models [5], CLMs using
normalised correlation and RF classification-based search. We believe this to be
the most accurate fully automatic femur segmentation system yet published.

2 Methods

The fully automated segmentation system comprises a global search detecting
the object and a local search segmenting the contours. Both global and local
search use RF regression voting to predict object and point positions.

2.1 Voting with Random Forest Regression

We use RF regression in a similar manner to the Hough Forests approach [9].
However, we do not require voting to be dependent on a class label, allowing all
image structures to vote. In the voting-regression approach, we evaluate a set of
points in a grid over a region of interest. At each point z, a set of features f(z) is
sampled. A regressor, R(f(z)), is trained to predict the most likely position(s) of
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the target point relative to z. During training, given the samples at a particular
node, we seek to select a feature and threshold to best split the data. Let fi
be the value of one feature associated with sample i. The best threshold, t, for
this feature at this node is the one which minimises GT (t) = G({di : fi <
t})+G({di : fi >= t}) where G(S) is a function evaluating the set of vectors S,
and di the predicted displacement of sample i. We aim at minimising the entropy
in the branches when splitting the nodes using G({di}) = Nlog|Σ|, where N is
the number of displacements in {di} and Σ the respective covariance matrix.
Criminisi et al. [6] showed that a related measure of information gain was effective
for regression.

Hough Forests use RFs whose leaves store multiple training samples. Thus
each sample produces multiple votes, allowing for arbitrary distributions to be
encoded. Each leaf of our decision trees only stores the mean offset and the
standard deviation of the displacements of all training samples that arrived at
that leaf. During search, these predictions are used to vote for the best position in
an accumulator array. Predictions are made using a single vote per tree yielding
a Hough-like response image. To blur out impulse responses we slightly smooth
the response image with a Gaussian.

Below, we use Haar features [13] as they have been found to be effective for a
range of applications and can be calculated efficiently from integral images.

2.2 Object Detection

Training. A reference frame, or bounding box, is set to capture the object
of interest. For each training image, a number of random displacements (scale,
angle and position) of the bounding box are sampled. To train the detector,
for every sample we extract features fi at a set of random positions within the
sampled patch and store displacement di from the original centre of the reference
frame. We then train a RF on the pairs {fi,di}. To train a single tree, we take
a bootstrap sample of the training set, and construct the tree by recursively
splitting the data at each node as described in Section 2.1. The extracted features
are a random subset of all possible Haar features and at each node, we choose
the feature and associated threshold which minimise GT to split the data.

Search. To detect the object in an image, we scan the image at a set of coarse
angles and scales in a sliding window approach. The search is speeded up by
evaluating only positions on a sparse grid rather than at every pixel. For every
angle-scale combination, we scan the bounding box across the image. We obtain
the relevant feature values from each box and get the RF to make predictions on
the reference frame centre. Predictions are made using a single Gaussian weighted
vote per tree, where the weights relate to the spread of the displacements of the
training samples that arrived at the particular leaf. The resulting response image
is then searched for local maxima. Once a response image has been obtained for
every angle-scale combination, all maxima are ranked according to their total
votes. Every maxima is associated with an angle, a scale and a prediction of the
reference frame centre. This results in candidate positions for the object.
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2.3 Segmentation Using Constrained Local Models

CLMs combine global shape constraints with local models of pattern of intensi-
ties. Based on a number of landmark points outlining the contour of the object
in a set of images, we train a statistical shape model by applying PCA to the
aligned shapes [5]. This yields a linear model of shape variation which represents
the position of each landmark point using xi = Tθ(x̄i +Pib+ r) where x̄i gives
the mean in the reference frame, Pi is a set of modes of variation, b are the shape
model parameters, r allows small deviations from the model, and Tθ applies a
global transformation (e. g. similarity) with parameters θ. Similar to Active Ap-
pearance Models [4], CLMs combine this shape model with a texture model but
only sample a local patch around each landmark rather than the whole object.

To match the CLM to a new image, we seek the shape and pose parameters,
p = {b, θ}, which optimise the fit of the model to the image. Given an initial
estimate of every landmark’s position, an area around each landmark point is
searched. At every position i, a quality-of-fit value, describing the similarity
between the template texture for this landmark learned from the model and the
texture at that position, is obtained and stored in a response image Ri. We then
find the shape and pose parameters which optimise Σn

i=1Ri(Tθ(x̄i +Pib+ r)).
In [3] it is shown how RF regression voting produces useful response images

for the CLM framework. Here we summarise the key steps.

Training. CLMs in their original form use normalised correlation as quality-
of-fit measurement for each response image. In the RF regression approach, we
train a regressor to predict the position of a landmark point based on a random
set of Haar features. The quality-of-fit values here relate to the votes of the RF.

For every landmark i, we sample local patches at a number of random dis-
placements di from the true position. For every sample we extract features fi
and train a RF on the pairs {fi,di}. As with the global search, we train every
tree taking a bootstrap sample and constructing it recursively by splitting the
data at each node as described in Section 2.1.

Search. To match the RF regression-based CLM to a new image, for every land-
mark i, we sparsely sample local patches in the area around an initial estimate
of the landmark’s position. We extract the relevant features for each sample and
get the RF to make predictions on the true position of the landmark. Predictions
are made using a single vote per tree. This yields a response image Ri for every
landmark i. We then aim to combine voting peaks in the response images with
the global constraints learned by the shape model.

2.4 Automated System

The fully automated system performs a global search at multiple scales and
orientations to produce a number of candidate poses which are ranked by total
votes. The local search is then applied at each of the best l search candidates,
and the final results are ranked by the total CLM fit (sums of votes).
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3 Experiments and Evaluation

The aim is to fully automatically segment the femur by putting a dense annota-
tion of 65 landmarks along its contours as demonstrated in Figure 1; (a) gives the
manual annotation and (b)-(c) the result of the fully automated system. We use
a front-view femur model that excludes both trochanters and approximates the
superior lateral edge (points 43 to 47) from an anterior perspective. All points
were defined using anatomical features mixed with an evenly spaced subset.

(a) (b) (c)

Fig. 1. Segmentation of the proximal femur: (a) 65 landmarks outlining the ‘front-view’
femur (ground truth); (b)-(c) automatically segmented femur in AP pelvic radiograph

Our data set comprises AP pelvic radiographs of 519 females suffering from
unilateral hip osteoarthritis. All images were provided by the arcOGEN Consor-
tium and were collected under relevant ethical approvals. The images have been
collected from different radiographic centres resulting in varying resolution levels
(555-4723 pixels wide) and large intensity differences. In addition, the displayed
pelvic region and the pose of the femur in the images vary a lot. For each im-
age, a manual annotation of 65 landmarks as in Figure 1(a) is available. In the
following we performed two-fold cross-validation experiments, averaging results
from training on each half of the data and testing on the other half.

3.1 Global Search: Automatic Femur Detection

We set up a detector that samples the whole proximal femur and three regions
of interest (shaft, femoral head, greater trochanter). For each of the latter, we
train a RF of 10 trees using samples at 20 random pose and scale displacements.

During search, the object detector scans the image at a range of coarse orienta-
tions and scales, and provides the 40 best fits. Each match determines candidate
positions for points 16 and 43 (see Figure 1), defining a reference length. All can-
didates are clustered using a cluster radius of 10% of the reference length. We
evaluate the mean point-to-point error as a percentage of the reference length,
and give results for the best (minimal mean error) cluster only. When averag-
ing over both reference points, the detector yields an error of less than 11.4%
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for 95% of all 519 images. Our data set contains 15 calibrated images suggesting
an average reference length of 57mm. Using the latter, the error of the global
search relates to less than 6.5mm for 95% of all images.

3.2 Local Search: Accurate Femur Segmentation

We train a RF regression-based CLM using a reference frame that is 200 pixels
wide and a patch size of 15x15 pixels within the reference frame. For each training
image and every landmark, we sample 20 patches using random displacements of
up to 20 pixels in x and y in the reference image, as well as random displacements
in scale (±5%) and rotation (±6◦). We train a RF of 10 trees for every landmark.

To compare the performance of the RF regression-based CLM with alternative
techniques, we train a correlation-based CLM and a RF classification-based CLM
using the same settings, as well as an ASM. All models are trained to explain
95% of the shape variation given by the training set, and start searching from
the mean shape at the correct pose. Figure 2(a) shows the mean point-to-curve
error as a percentage of the shaft width. We define the latter as the distance
between landmarks 0 and 64 (see Figure 1). We use this as a reference length
as it tends to be relatively constant across individuals; our calibrated subset
suggests an average length of 37mm. Results show that the RF regression-based
CLM performs best with a mean point-to-curve error of within 2.0% for 95% of
all images, which relates to a local search accuracy of within 0.7mm.
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Fig. 2. Quantitative evaluation: (a) local search results starting from mean shape at
true pose; (b) fully automated search showing results for the best clustered candidate

3.3 Full Search: Accurate Automatic Femur Segmentation

For the fully automated system, we use the clustered candidates obtained via the
global search to initialise the local search. Every candidate predicts the positions
of points 16 and 43. This initialises the scale and pose of the RF regression-based
CLM. We test all candidates for every image, and run 20 search iterations from
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the initialised mean model. We choose the candidate that gives the best final
quality-of-fit value to give the fully automatic segmentation result.

Figure 2(b) gives the mean point-to-curve error of the fully automated system
as a percentage of the shaft width. This shows that the global search works suffi-
ciently well for the fully automated system to be very accurate with errors of less
than 2.1% for 95% of all 519 images, relating to 0.8mm. The overlapping plots
indicate that the fully automated system yields almost equally high accuracy as
a local search starting from the mean shape at the correct pose.

Figure 3 shows various segmentation results of the fully automated system,
ranked according to mean point-to-curve percentiles: (a) gives the median result
(50% of the images have a mean error of less than 0.5mm); (b) is based on the
second highest global search error yielding a mean segmentation error of 0.7mm;
(c)-(d) show the two highest mean segmentation errors where (c) achieved an
accuracy of 1.6mm and (d) is the only case out of 519 images where the global
search failed to initialise the local search sufficiently well.

(a) (b) (c) (d)

Fig. 3. Examples of segmentation results of the fully automated system (sorted by
the mean point-to-curve percentiles): (a) median; (b) 92.1%, based on second highest
global search error; (c) 99.8%, second highest overall error; (d) maximal overall error,
only example where global search failed to sufficiently initialise the local search. (Due
to space we only show the proximal femur; all searches were run on full pelvic images.)

A direct comparison to other reported results seems difficult as most findings
are either given qualitatively, or are not easy to interpret in more general terms.
The best reported results appear to be the ones by Pilgram et al. [11] with a
point-to-curve error of within 1.6mm for 80% of the 117 test cases (estimated
on the basis of likely shaft width relative to image width).

4 Discussion and Conclusions

We have presented a system to segment the proximal femur in AP pelvic radio-
graphs which is fully automatic, does not make any assumptions about the femur
pose, and is very accurate. We have shown that the system achieves excellent
performance when tested on a set of 519 images of mixed quality. The femur de-
tector, achieving an accuracy of a mean point-to-point error of less than 8.4mm
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for 99% of all images, works generally sufficiently well to initialise the local model
used for segmentation. In our experiments, the fully automatic segmentation sys-
tem achieved an overall mean point-to-curve error of less than 1mm for 98% of
all images. We believe that this is the most accurate fully automatic system for
segmenting the proximal femur in AP pelvic radiographs so far reported.

All experiments were run on a 3.3 GHz Intel Core Duo PC using 2GB RAM.
The global search took on average 15s per image, and the local search 10s per
image and cluster; we searched on average 10 clusters. Note that running times
vary depending on image size and search settings. The fully automated system
is sufficiently general to be applied to other medical segmentation problems.
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