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Abstract. This paper presents a novel skeleton based method for the
registration of head&neck datasets. Unlike existing approaches it is fully
automated, spatial relation of the bones is considered during their regis-
tration and only one of the images must be a CT scan. An articulated atlas
is used to jointly obtain a segmentation of the skull, the mandible and the
vertebrae C1-Th2 from the CT image. These bones are then successively
rigidly registered with the moving image, beginning at the skull, result-
ing in a rigid transformation for each of the bones. Linear combinations
of those transformations describe the deformation in the soft tissue. The
weights for the transformations are given by the solution of the Laplace
equation. Optionally, the skin surface can be incorporated. The approach
is evaluated on 20 CT/MRI pairs of head&neck datasets acquired in clin-
ical routine. Visual inspection shows that the segmentation of the bones
was successful in all cases and their successive alignment was successful in
19 cases. Based on manual segmentations of lymph nodes in both modal-
ities, the registration accuracy in the soft tissue was assessed. The mean
target registration error of the lymph node centroids was 5.33 ± 2.44 mm
when the registration was solely based on the deformation of the skeleton
and 5.00 ± 2.38 mm when the skin surface was additionally considered.
The method’s capture range is sufficient to cope with strongly deformed
images and it can be modified to support other parts of the body. The
overall registration process typically takes less than 2 minutes.

Keywords: Image Registration, Head&Neck, Multi-Modal, Multi-
Rigid.

1 Introduction

The registration of intra subject head&neck 3D datasets is required in many
clinical applications. In image guided radiation therapy it enables adapting a
previously generated plan to the patient’s pose during intervention. Furthermore,
it can be used for image fusion of different imaging modalities like Computed
Tomography (CT) and Magnetic Resonance Imaging (MRI). Thus, the clinical
target volume and organs at risk can be delineated in the more suitable modality
and propagated to the other modality, thereby improving the treatment plan.
If spatial correspondence by the means of image registration is available, such a
plan can also be propagated to a follow up CT scan which facilitates the plan

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 66–73, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Skeleton Based Deformable Registration 67

adaption. Beyond that, computer aided diagnosis systems can benefit from such
an image fusion as they can incorporate different modalities for image feature
extraction from clinically relevant targets such as tumors or lymph nodes.

Whereas rigid registrationworks well for the head, it is not able to cope with the
neck due to possibly different positions of the spine. Intensity based deformable
registration techniques typically have a smaller capture range and may produce
poor results in regions with low contrast/signal or heavy imaging artifacts.

A popular approach to overcome these limitations is to exploit that the skele-
ton is the supporting structure of the soft tissue. The bones are treated as indi-
vidual rigid bodies and deformations are allowed in the soft tissue only. Originally
proposed by Little et al. [9], many other works are based on this principle. It
is mostly applied to the registration of the spine [7][6][15][14], but also to the
head&neck [5][1], the brain[3], the hand [10] and even to the whole body [8]. On
Micro-CTs it is used for the registration of the lower limbs [11] and the whole
body [4][13] of mice.

One of the key challenges of this principle is the identification of the individ-
ual rigid parts, i.e. the bones. Whereas most methods [1][3][5][9][11][15] depend
on manual or interactive segmentation, [6][7] pursue semi-automatic approaches
while [10][14] present very specific automatic heuristics. In [4], an articulated at-
las is used. Methods not requiring explicit segmentation [8][13] of the individual
bones can only be used if both images are CT scans from which the bone surface
can easily be extracted.

During the registration of the individual bones the articulation is only con-
sidered in a few cases [4][5][10][11]. The deformation of the surrounding soft
tissue can be computed solely based on the rigid transformations using thin
plate splines (TPS) [7], linear combinations of transformations [9][14][10], a Log-
Euclidean framework [3] or finite element methods (FEM) [5][1]. Alternatively,
the rigid parts can be incorporated as constraints [15] or serve as an initializa-
tion [13][8] for an overall deformable intensity based registration. Rarely, the
evaluation of the registration accuracy is carried out quantitatively. In [1], the
center of volume error and dice similarities are reported for manually delineated
targets whereas the distance of 20 landmarks is reported in [5]. Both evaluations
are based on only 4 pairs of images.

In this paper, we present a fully automated registration method based on
multi-rigid registration of the skeleton for 3D images of the head&neck. One of
the images must be a CT image – the fixed image – but the other one – the mov-
ing image – can be from a different modality for which rigid registration methods
exist or an image of the same subject acquired at a different point in time. After
an overall mutual information based rigid registration of the head, the articulated
atlas presented in [12] is used to obtain a segmentation of the individual bones
from the CT image. These bones are then successively rigidly registered with the
moving image resulting in a rigid transformation for each of them. Linear combi-
nations of those transformations describe the soft tissue deformation. Optionally,
the skin surface can be incorporated. The approach is quantitatively evaluated on
20 CT/MRI pairs of clinically acquired head&neck datasets.
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Fig. 1. Training of the articulated atlas for segmentation of bones from the fixed image

2 Methods

Articulated Atlas for CT Bone Segmentation. Due to its high contrast,
bone can easily be segmented in CT images. However, since different bones have a
similar appearance and are close to each other (e.g. the vertebrae), simple image
segmentation techniques like thresholding are not able to distinguish neighboring
bones from each other. Therefore, we use the articulated atlas presented in [12]. It
is capable of jointly segmenting the skull, mandible, the cervical vertebrae and
the two upper thoracic vertebrae. The atlas was created from head&neck CT
datasets of 15 patients for which all bones had been labeled manually. Assuming
bilateral symmetry of the bones, their right/left flipped versions were also used,
resulting in a total of 30 training instances.

Unlike Baiker et al.’s articulated atlas [4], the articulation of the rigid parts
is not explicitly modeled but learned from the training images. Therefore, par-
ticular attention was paid to cover a wide range of possible poses of the spine
when selecting the training images.

For each type of bone, the probability map indicating the membership to the
item along with the average intensities was computed in a coordinate system
normalized by translation, rotation and scaling. Each bone item has those 7
degrees of freedom. Based on Alexa’s Linear Combination of Transformations [2]
a 7-dimensional vector is used to uniquely describe the pose of an item with
respect to the model’s global translation and rotation as a linear combination
of 7 basis transformations. For a total of m bone items, the overall pose of each
training instance j is described by a 7m-dimensional vector xj .

The space of all possible articulations is then described by applying Principal
Component Analysis (PCA) on the training articulation X = (x1, ..,xn). An
arbitrary articulation x can be described with a k � 7m dimensional vector b
as x = x̄+A · b+ r, where x̄ is the average articulation of all training instances
xj and A is a matrix consisting of the eigenvectors of the covariance matrix. The
more likely an articulation x is, the smaller the magnitude of b and r will be.
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The atlas is adapted to a CT image by minimizing an energy functional de-
pending on the 6 dimensional vector t describing a global rigid transformation
and the 7m dimensional articulation parameter vector x:

E(x, t) = Eexternal(x, t) + λEinternal(x) . (1)

The external energy Eexternal ensures gray value similarity between the test
image and the trained intensities of the atlas items and that the atlas items are
close to high CT intensities (i.e. bones). The internal energy Einternal ensures
that the atlas is within or at least close to the trained articulation space. The
empirically determined parameter λ balances the external and internal energy. A
gradient descent optimizer first finds the global transformation parameters t and
then the articulation and external parameters x, t jointly. Once the articulated
model converged, the segmentations Sj for each bone item are extracted based
on the probability maps and the CT intensities. Please refer to [12] for details.

Successive Rigid Alignment of the Bones. Based on the segmentations Sj

of the bones in the CT image, they are rigidly aligned to the moving image by
maximizing mutual information with a gradient descent optimizer. In order to
incorporate not only the rather homogeneous part inside the bone, but also the
texture at its boundary, the fixed image samples are taken from a slightly (5 mm)
dilated version of Sj during the metric computation process as suggested in [14].
The success of local optimization techniques finding the desired local maximum
depends on an initialization close to that very maximum. For highly deformed
head&neck images, the same vertebra can be far away in both images and thus
an independent registration is not feasible. Therefore, we exploit the connectivity
of the bones expressed in the order in which the items are aligned. We start with
the skull and use its resulting rigid transformation to initialize the registration of
the mandible and the topmost vertebra (C1). The result of the latter is then used
to initialize the next vertebra (C2) and so on, resulting in a top-down strategy.
At the end, m rigid transformations Tj are obtained, one for each bone item
j. Effectively denoting an overall transformation as a concatenation of several
transformations enlarges the capture range.

Soft Tissue Motion Coupling. Two main constraints are applied when com-
puting the transformation field T (x) for each point in the fixed image: i) The
known transformations in the rigid parts shall be incorporated (i.e. T (x) = Tj ⇔
x ∈ Sj) and ii) the transformation field shall be continuous (i.e. T (x+ε) ≈ T (x)
for small |ε|). Note that not only the translational part but also the rotational
part shall be continuous, which is advantageous as argued in [9].

We denote the transformation at an arbitrary location x as a linear com-
bination of the known transformations Tj , again using the approach presented
in [2]: T (x) =

∑m
j=1 Φj(x)Tj . To achieve continuity, each component of the

m-dimensional coefficient field shall satisfy Laplace’s partial differential equa-
tion (PDE): ΔΦj = 0, where Δ is the Laplace operator. Dirichlet boundary
conditions Φj(x) = {1 ⇔ x ∈ ∂Sj ; 0 ⇔ x ∈ ∂Si�=j} are used at the bound-
aries of the bone items ∂Sj enforcing our first constraint. In a first step, the
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Fig. 2. Domain of the PDE in gray, registration order (left), deformed pattern (right)

domain Ω of the PDE is restricted to the body (gray region in Fig. 2) which
is obtained by global thresholding. This ensures that transformations are only
propagated within the body and undesired influences – such as from the chin
directly into the thorax – are prevented. Here, Neumann boundary conditions

are deployed (
∂Φj(x)
∂xi

⎪⎪⎪x∈∂Ω = 0). The solution of the PDE is found by solving
the linear equation system resulting from finite differences approximation. In a
second step, the domain is extended to the rest of the image (black region in
Fig. 2) and previously obtained transformations are used as boundary condition.

Further Refinement. Since the computation of the soft tissue deformation
solely depends on the rigid transformations of the bones, the continuity assump-
tion may not result in the desired accuracy, especially if large deformations are
present. One can imagine many different solutions to overcome this issue, such as
a potentially more realistic deformation model (e.g. finite element methods [5][1])
or the incorporation of soft tissue image intensities into the registration process
with rigidity constraints for the bones [15]. However, the approach we pursue
is including further landmarks – the body surface – as additional constraints.
Extracting the body surface in both images is done by simple thresholding. Since
only small differences between both surfaces are expected, correspondences are
found along the normal vectors of the fixed image’s surface which are then used
to correct the translational part of the deformation field in the entire soft tissue.

3 Experiments and Results

The presented fully automated registration method was evaluated on 20 intra-
subject pairs of CT/MRI head&neck images of oral cancer patients acquired in
clinical routine. The spacing between CT slices was 1− 2 mm. The MRI images
consist of T1 weighted, fat saturated sagittal slices with a slice gap of 3− 5 mm.
Some of the images showed heavy imaging artifacts.
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Fig. 3. Evaluation targets

Table 1. The minimum, maximum and average
target registration error of lymph node centroids
in mm

TRE Rigid Bone Bone+Skin

Avg. 7.69 ± 4.05 5.33 ± 2.44 5.00 ± 2.38
Min. 1.33 0.37 0.92
Max. 61.21 26.20 25.32

At first, the segmentation of the bones in the CT images was assessed. Since
the segmentation accuracy is not critical for the subsequent steps, visual inspec-
tion is sufficient to assess if all articulated atlas items ended up at the correct
target structures. This was the case for all 20 CT-Images, indicating the ro-
bustness of the deployed articulated atlas. The successive rigid alignment was
assessed in the same way. Except for one single MRI image, all rigid structures
were aligned correctly. The reason for the failure in that one case was a very
low MRI signal located directly in the spine. Thus, one vertebra converged to
the wrong local minimum, resulting in a design based misalignment of all sub-
sequently aligned vertebrae.

Then, in a second experiment, the soft tissue accuracy was assessed for the
19 successful aligned image pairs. Since the evaluation was based on clinical
images, neither a ground truth deformation field nor artificial corresponding
landmarks were available. Therefore, we chose to measure the target registra-
tion error (TRE). As target landmarks we used the centroid of lymph nodes,
which were manually delineated in both imaging modalities. On the average we
found 5.2 clearly corresponding targets per dataset. The reason we chose lymph
nodes is that they are clinically relevant, reasonably well distributed in the soft
tissue of the head&neck region (see Fig. 3), locally bound and visible in both
imaging modalities. Due to the images’ different resolutions and the resulting
segmentation differences the centroid appeared to be more robust than e.g. the
average surface distance. The average and maximum TRE was separately com-
puted for the bone-aligned and the surface-refined images as well as for the
rigidly head-aligned image for comparison. The results are presented in Table 1
and an example for a registration result for a strongly deformed pair of images
can be seen in Fig. 4. Whereas targets close to the bones resulted in high accu-
racies by design, the worst accuracy were achieved very far away from the head.
There, different positions of the shoulder – not part of the skeleton model – had
an impact, explaining the high maximum TREs. Further inaccuracies can be at-
tributed to inaccurate segmentations due to the low inter slice resolution of the
MRI images. Since only primitive image processing techniques were deployed to
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(a) rigid head alignment (b) bone only (c) bone and surface

Fig. 4. CT/MRI Registration of a strongly deformed neck (fixed CT colored)

detect the skin surface, this step was locally not successful for some MRI images,
resulting in geometric distortion. Model based approaches may be required.

To give a rough indication about the runtime performance of our method, we
measured the duration of our prototypical implementation for each individual
step on a Intel Core i7-2600K CPU, 3.4Ghz machine with 16GB memory. On the
average it took 107s to finish the overall registration, where the rigid registration
accounted for 14%, the bone segmentation for 32%, the successive alignment for
16%, the soft tissue motion coupling for 22% and the refinement step for 16%.
We are convinced that a considerable speedup is achievable with an optimized
implementation exploiting parallelization.

4 Conclusion

In this paper we presented a skeleton based deformable registration approach
and applied it to head&neck CT/MRI datasets. Unlike existing approaches, it is
fully automated, supports all modalities for which rigid registration techniques
exist, is able to cope with strong deformations and was evaluated quantitatively
on images acquired in clinical routine. The mean target registration error of the
lymph node centroids was 5.33 ±2.44 mm when the registration was solely based
on the deformation of the skeleton and 5.00 ± 2.38 mm when the skin surface was
additionally considered. Whereas the articulated atlas enables the automation,
the support of strongly deformed image pairs is ensured by the concatenation of
several transformations to a single transformation of greater magnitude during
the successive alignment of the individual bone structures. With a runtime of
less than 2 minutes it is suitable for the use in clinical routine.

Rebuilding the articulated atlas, the approach can be extended to other parts
of the body (e.g. the thorax or the pelvis). Without the refinement step, the
presented approach has another interesting property when applied to follow up
CT scans. Under the assumption that the bones remain constant over time, the
method does to some extent compensate for deformations induced by a change in
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position only, but not for changes in anatomy (e.g. tumor growth or surgery) be-
cause the soft tissue image intensities are not considered. Whereas rigid registra-
tion has this property as well, almost no deformable intensity based registration
approaches are able to distinguish between those two sources of deformation
at all. This may be disadvantageous in some applications (e.g. propagating a
radiation therapy plan), but it enables detecting differences in follow up images.

Future work includes increasing the robustness for images with imaging arti-
facts, deploying more realistic soft tissue motion coupling, applying the presented
scheme to other body parts and the automated detection of differences.
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