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Abstract. Diffusion-weighted MRI of the body has the potential to
provide important new insights into physiological and microstructural
properties. The Intra-Voxel Incoherent Motion (IVIM) model relates the
observed DW-MRI signal decay to parameters that reflect perfusivity
(D∗) and its volume fraction (f), and diffusivity (D). However, the com-
monly used voxel-wise fitting of the IVIM model leads to parameter
estimates with poor precision, which has hampered their practical us-
age. In this work, we increase the estimates’ precision by introducing
a model of spatial homogeneity, through which we obtain estimates of
model parameters for all of the voxels at once, instead of solving for
each voxel independently. Furthermore, we introduce an efficient itera-
tive solver which utilizes a model-based bootstrap estimate of the dis-
tribution of residuals and a binary graph cut to generate optimal model
parameter updates. Simulation experiments show that our approach re-
duces the relative root mean square error of the estimated parameters
by 80% for the D∗ parameter and by 50% for the f and D parame-
ters. We demonstrated the clinical impact of our model in distinguishing
between enhancing and nonenhancing ileum segments in 24 Crohn’s dis-
ease patients. Our model detected the enhanced segments with 91%/92%
sensitivity/specificity which is better than the 81%/85% obtained by the
voxel-independent approach.

1 Introduction

Diffusion-weighted MRI (DW-MRI) of the body is a non-invasive imaging tech-
nique sensitive to the incoherent motion of water molecules inside the body.
This motion is be a combination of the thermally-driven random motion of wa-
ter molecules and blood flow in the randomly oriented tissue micro capillaries.
These phenomena are characterized through the so-called, intra-voxel incoherent

� This investigation was supported in part by NIH grants R01 EB008015, R01
LM010033, R01 EB013248, and P30 HD018655 and by a research grant from the
Boston Children’s Hospital Translational Research Program.

N. Ayache et al. (Eds.): MICCAI 2012, Part I, LNCS 7510, pp. 1–9, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 M. Freiman et al.

motion (IVIM) model with the diffusion (D), and the pseudo-diffusion (D∗) as
the decay rate parameters, and the fractional contribution (f) of each motion to
the DW-MRI signal decay [1,7].

IVIM model parameters have recently shown promise as quantitative imaging
biomarkers for various clinical applications in the body, including differential
analysis of tumors [4] and the assessment of liver cirrhosis [9]. However, IVIM
parameter estimates are often unreliable, and thus are not widely utilized in the
clinic [7]. Reliable estimates of IVIM model parameters are difficult to achieve
because of 1) the non-linearity of the IVIM model, 2) the limited number of
DW-MRI images as compared to the number of the IVIM model parameters;
and 3) the low signal-to- noise ratio (SNR) observed in body DW-MRI.

While commonly used methods for IVIM parameter estimation fit the model
to the signal at each voxel independently, they typically ignore the spatial con-
text of the signal and thus produce highly unreliable estimates, especially for
the pseudo-diffusion (D∗) and the fractional contribution (f) parameters [7]. In
current practice, the DW-MRI signal is averaged over a region of interest (ROI)
to increase the SNR, effectively yielding more reliable IVIM parameter estimates
[12]. Unfortunately, by averaging the signal over a ROI, the estimated parame-
ters do not reflect critical heterogeneous environments such as the necrotic and
viable parts of tumors. An alternative approach is to average several DW-MRI
acquisitions to increase the SNR [7]. While this retains the spatial sensitivity of
the estimated parameters, it also increases the overall image acquisition time,
which is not feasible in clinical practice. However, the overall image acquisition
time increases, preventing this approach to be feasible in clinical practice.

Other groups have suggested incorporating spatial knowledge as a prior term
to increase the reliability of parameters estimates in quantitative dynamic con-
trast enhanced MRI [6,10]. However, these models are difficult to optimize as
compared to the simple voxel-wise approaches, and have not been successfully
applied to incoherent motion quantification from body DW-MRI.

In this work, we increase the precision of the incoherent motion parameters es-
timates by introducing a model of spatial homogeneity, through which we obtain
estimates of model parameters for all of the voxels at once, instead of solving for
each voxel independently. Furthermore, we introduce an efficient iterative solver
in order to obtain precise parameter estimates with this new model. Our solver
utilizes a model-based bootstrap estimate of the distribution of residuals and a
binary graph cut to generate optimal model parameter updates.

In our simulation experiments, we have shown a reduction in the relative root
mean square (RRMS) error of parameter estimates in clinical SNR conditions by
80% for the D∗ parameter and by 50% for the D and f parameters. In addition,
we have assessed clinical impact, namely, the ability of incoherent motion pa-
rameters to distinguish enhancing from non-enhancing ileal segments in a study
cohort of 24 Crohn’s disease (CD) patients. Our results demonstrated that the
incoherent motion parameters estimated with our method yielded a sensitivity
of 91% and specificity of 92%, while the traditional voxel-independent approach
only produced a sensitivity of 81% and specificity of 85%.
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2 Method

2.1 DW-MRI Signal Decay Model

The IVIM model of DW-MRI signal decay assumes a function of the form [1]:

mi = s0 (f exp(−bi(D∗ +D)) + (1− f) exp(−bi(D))) (1)

where mi is the expected signal at b-factor=bi, s0 is the baseline signal (with-
out any diffusion effect); f is the pseudo-diffusion fraction; D∗ is the so-called,
pseudo-diffusion coefficient characterizing the perfusion component; and D is the
apparent diffusion coefficient associated with extravascular water.

Given the DW-MRI data acquired with multiple b-factors, the observed signal
(Sv) at each voxel v is a vector of the observed signal at the different b-factors:
Sv = {si}, i = 1 . . .N . We model the IVIM model parameters at each voxel v as
a continuous-valued four-dimensional random variable (i.e. Θv = {s0, f,D∗, D}).
Taking a Bayesian perspective, our goal is to find the IVIM parametric maps
Θ̂ that maximizes the posterior probability associated with the maps given the
observed DW-MRI images (S) and the spatial prior knowledge (p(Θ)):

Θ̂ = argmax
Θ

p(Θ|S) ∝ p(S|Θ)p(Θ) (2)

By using a spatial prior in the form of a continuous-valued Markov random field,
the posterior probability p(S|Θ)p(Θ) decomposes into the product of maximal
node and clique potentials:

p(S|Θ)p(Θ) ∝
∏

v

p(Sv|Θv)
∏

vp,vq∈Ω

p(Θvp , Θvq ) (3)

where Θv is the IVIM model parameters at voxel v, p(Sv|Θv) is the data term
representing the probability of voxel v to have the DW-MRI signal Sv given the
model parameters Θv, Ω is the collection of the neighboring voxels according to
the employed neighborhood system, and p(Θvp , Θvq ) is the spatial smoothness
prior in the model.

The maximum a posteriori (MAP) estimate Θ̂ is then found by minimizing:

E(Θ) =
∑

v

φ(Sv;Θv) +
∑

vp,vq∈Ω

ψ(Θvp , Θvq ) (4)

where φ(Sv;Θv) and ψ(Θvp , Θvq ) are the compatibility functions:

φ(Sv;Θv) = − log p(Sv|Θv), ψ(Θvp , Θvq ) = − log p(Θvp , Θvq ) (5)

Assuming a noncentralized χ-distribution noise model for parallel MRI acquisi-
tion [3] as used in DW-MRI, the data term takes the following form:

φ(Sv;Θv) = −
N∑

i=1

mi

σ2
+ log

(
mi

si

)n−1

−
(
m2

i + s2i
2σ2

)
+ log In−1

(simi

σ2

)
(6)



4 M. Freiman et al.

where si is the observed signal at b-factor bi, mi is the expected signal at bi
given the model parameters Θv calculated with Eq. 1, σ being the noise standard
deviation of the Gaussian noises present on each of the acquisition channels, n
being the number of channels used in the acquisition and In−1 being the (n−1)th
order modified Bessel function of the first kind.

The robust L1-norm is used as the spatial smoothness term:

ψ(Θvp , Θvq ) = αW |Θvp −Θvq | (7)

where α ≥ 0 is the spatial coupling factor, andW is a diagonal weighting matrix
which accounts for the different scales of the parameters in Θv.

2.2 Optimization Scheme

Direct minimization of the energy in Eq. 4 is a challenging optimization problem
due to the very high dimensionality of the parameters vector Θ. For example a
clinical 3D DW-MRI data of 192× 156× 40 voxels would result in a parameter
vector Θ of ∼ 5 · 106 dimensions.

To overcome this challenging optimization problem, we developed a new solver
to robustly minimize the energy in Eq. 4.

Our “fusion bootstrap moves (FBM)” algorithm, inspired by the fusion-moves
algorithm [8], iteratively applies the following two steps until the improvement
in the optimized energy is smaller than some epsilon. First, we draw a new
possible proposal of the incoherent motion model parameters values from the
parameters distribution using model-based statistical bootstrapping [2]. Next,
given the current assignment and the drawn sample, we use the binary graph-
cut technique to fuse the two possible assignments of the IVIM values at each
voxel in an optimal manner [8] to an assignment that reduces the model energy.

Since the fusion of the two possible proposals at each iteration is optimal, the
reduction in the overall model energy (Eq. 4) is guaranteed. By applying the pro-
posal drawing and optimal fusion steps iteratively, the algorithmwill robustly con-
verge, at least to a local minimum. We will describe these steps in detail next.

Proposal Drawing: We utilize the model-based bootstrap technique [2] to
draw a new proposal from the empirical distribution of the incoherent motion
parameters values as follows: For each voxel v, the raw residuals between the
observed signal (Sv) and the expected signal (Mv = {mi}, i = 1, . . .N) at each
b-factor bi, given the current model estimate (Θ0

v), are defined as: εi = mi − si.
The model-based bootstrap resampling is defined as:

S∗
v (Θ

0
v) =Mv + tiε̂ (8)

where S∗
v (Θ

0
v) is the resampled measures at the b-factors bi, i = 1 . . .N , ε̂ are

the rescaled version of ε that accounts for heterogeneous error leverages [5], and
ti is a two-point Rademacher distributed random variable with p(t = 1) = 0.5
and p(t = −1) = 0.5 defined for each b-factor independently. The IVIM model
parameters Θ1

v are then estimated for each voxel independently [7].
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Binary Optimization: We use the binary graph-cut technique [8] to find the
optimal combination of the current assignment Θ0 and the new proposal Θ1 for
the IVIM model parameters values at each voxel as follows:

Let G = (V,E) be an undirected graph, where each voxel v is represented as
a graph node, the two proposalsΘ0 andΘ1 are represented by the terminal nodes
vs and vt, and graph edges consist of three groups:E = {(vp, vq), (vp, vs), (vp, vt)}.

Edge weights w(vp, vs) and w(vp, vt) represent the likelihood of the model
parameters Θ0 and Θ1 given the observed signal Svp , respectively:

w(vp, vs) = φ(Sv;Θ
0
v), w(vp, vt) = φ(Sv;Θ

1
v) (9)

Edge weights w(vp, vq) penalize for adjacent voxels that have different model
parameters: w(vp, vq) = ψ(Θvp , Θvq ). The optimal fusion between Θ0 and Θ1

is then found by solving the corresponding graph min-cut problem. Finally, the
result Θ̂ is assigned as Θ0 for the next iteration.

3 Experimental Results

3.1 Simulation Experiment

We conducted a Monte-Carlo simulation study to analyze the estimation errors.
We constructed a simulated heterogeneous tumor example [6] as follows. We
defined three-dimensional reference parametric maps with 100× 100× 5 voxels
with the following parameters: Border: Θ = {200, 0.35, 0.03, 0.003}, middle part:
Θ = {200, 0.25, 0.02, 0.002}, innermost part: Θ = {200, 0.15, 0.01, 0.001}. We
computed simulated DW-MRI images from the parametric maps using Eq. 1
with 7 b-values in the range [0, 800] s/mm2. We then corrupted the simulated
data by noncentralized χ-distributed noise with single coil noise σ values of 2-16.

We estimated the model parameters Θ̂ from the noisy DW-MRI data for each
voxel, using the voxel-independent approach (IVIM) [7] and using our model
(IM). The optimization algorithm parameters were determined experimentally
and were set as follows: α was set to 0.01, the rescaling matrix W diagonal
was set to: {1.0, 0.001, 0.0001, 0.01}. The noise parameter σ was estimated using
a pre-defined background region. Stopping criteria was defined as an energy
improvement of less than 0.1% from the initial energy or 500 iterations. We
calculated the RRMS error between the reference and estimated parameters [6].

Fig. 1 depicts the middle slice of the reference parametric maps and the model
parameters estimates using the two methods along with the RRMS error of each
estimator as a function of the SNRb0 defined as the baseline signal s0 divided
by the noise level σ. Visually, the parametric maps computed using the IVIM
model (2nd column) exhibit very noisy estimates, in which the heterogeneous en-
vironment is hardly detectable, mainly for the D∗ and f parameters (1st and 2nd

rows). However, the maps computed using our IM method are much smoother,
and the heterogeneous environment is more detectable. Quantitatively, our IM
model decreases the overall RRMS of the D∗ parameter by 80% and of the f and
D parameters by 50% as compared to the IVIM model for SNRB0 = 25 which
represents the actual noise level observed in clinical imaging studies.
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Fig. 1. Simulated heterogeneous tumor example. The first column presents the
“ground-truth” values used to simulate the DW-MRI data. The second and third
columns present the estimated parameters using the IVIM, and our IM approaches,
respectively. The fourth column presents the RRMS errors for each parameter for the
different noise levels.

3.2 Clinical Impact

To demonstrate the actual clinical impact of using our IM model instead of the
voxel-independent IVIM model, we assessed the discriminatory performance of
the incoherent motion model parameters, in discerning enhancing from nonen-
hancing ileal segments of CD patients. CD is a chronic inflammatory disorder
of the bowel, in which involvement of the ileum is common. Characterization of
perfusivity and diffusivity in the ileum has a promising role in patient-specific
management of the disease.
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(a) IVIM-f (b) IVIM-D∗ (c) IVIM-D

(d) IM-f (e) IM-D∗ (f) IM-D

Fig. 2. Representative upper abdomen slice of the parametric maps reconstructed by
the IVIMmethod (1st row), and by our method (2nd row). Our method yields smoother,
more realistic maps, with sensitivity to details.

Table 1. Quantitative analysis of incoherent motion parameters for the nonenhancing
and enhancing ileal segments. All values are in mean(std). Significant differences (two-
tailed Student’s t-test,n1=11, n2=13, p<0.05) are in bold.

IVIM IM

Nonenhancing Enhancing p-value Nonenhancing Enhancing p-value

f 0.55 (0.24) 0.28 (0.16) 0.004 0.66(0.43) 0.32(0.15) 0.02

D∗ 24.2(16.3) 36.1(20.6) 0.13 28.7(22.9) 42.5(32.7) 0.24

D 1.6 (0.6) 1.3 (0.4) 0.17 1.7(0.4) 1.2(0.3) 0.002

We acquired DW-MRI from 24 consecutive patients with confirmed CD using
a 1.5-T unit (Magnetom Avanto, Siemens Medical Solutions, Erlangen, Ger-
many). We performed free-breathing single-shot echo-planar imaging using the
following parameters: repetition/echo time (TR/TE) = 6800/59 ms; matrix size
= 192×156; field of view = 300×260 mm; slice thickness/gap = 5 mm/0.5 mm;
40 axial slices; 8 b-values = 5,50,100,200,270,400,600,800 s/mm2. We defined
reference standard classification of the ileal segments as the consensus of two in-
dependent radiologists’ qualitative review of the clinical MR enterography data
as enhancing (n=11) or nonenhancing (n=13). We fitted the signal-decay model
to the DW-MRI using both the IVIM and IM approaches and we averaged the
parameters values over the manually annotated ileum region.

Fig. 2 depicts a representative parametric maps of the upper abdomen. The
IM model yields smoother, more realistic maps, especially for the f parameter.
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Table 1 summarizes the measured values. The IM model was sensitive to the
actual differences in both the tissue cellularity (D) and blood-flow (f) [11], while
the IVIM model was not sensitive to the differences in tissue cellularity.

We constructed generalized linear models (GLM) from the parameters values
to distinguish between enhancing and nonenhancing ileal segments. We assessed
the sensitivity and specificity of the models by utilizing the optimal cutoff values
calculated by ROC analysis of the GLM models. Our IM approach yield a sen-
sitivity/specificity of 91%/92% while the IVIM approach yield only 81%/85%.

4 Conclusions

We have presented a new model and method for the reliable quantification of
perfusivity and diffusivity from body DW-MRI that features the incorporation
of spatial prior knowledge, with a new robust and accurate optimization tech-
nique. Our experiments demonstrated that our method reduces the estimates’
RRMS substantially and improve the actual diagnostic accuracy of the incoher-
ent motion parameters as compared to the voxel-independent approach.
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