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Abstract. When asymmetric dissimilarity measures arise, asymmetry
correction methods such as averaging are used in order to make the ma-
trix symmetric. This is usually needed for the application of pattern
recognition procedures, but in this way the asymmetry information is
lost. In this paper we present a new approach to make use of the asym-
metry information in dissimilarity spaces. We show that taking into ac-
count the asymmetry information improves classification accuracy when
a small number of prototypes is used to create an extended asymmetric
dissimilarity space. If the degree of asymmetry is higher, improvements
in classification accuracy are also higher. The symmetrization by aver-
aging also works well in general, but decreases performance for highly
asymmetric data.

Keywords: asymmetric dissimilarity, dissimilarity spaces, prototype se-
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1 Introduction

Dissimilarity representations [I] arose as an alternative to feature-based rep-
resentations when the definition and extraction of good features is difficult or
intractable while a robust dissimilarity measure can be defined more easily for
the problem at hand. Research in this field has focused on several topics: pro-
totype selection [2J3] or generation [4], classification in dissimilarity spaces [5l6],
among others. One open issue corresponds to the information usage in dissimi-
larity matrices: they can be asymmetric but most of the traditional classification
and clustering methods are thought for symmetric dissimilarity matrices. In case
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of asymmetry, the typical approach is to symmetrize the matrix with any known
symmetrization method, and then apply the methods on the symmetric variant.
This might carry a loss of useful information.

Asymmetric dissimilarity or similarity measures can arise in several situations;
see [7] for a general analysis of the causes of non-Euclidean data. Measures re-
sulting from a matching process may appear to be asymmetric due to a subopti-
mal procedure. Also, measures designed using expert knowledge for the problem
might not be symmetric. One example is fingerprint matching [3], where mea-
sures are often asymmetric. When various dissimilarity matrices are combined,
the final matrix can also be asymmetric. One of the most widely used methods
for symmetrization is the average method. In [I], before embedding asymmetric
dissimilarity matrices into Pseudo-Euclidean spaces, the average method is used
to make the matrix symmetric. In [2], the dissimilarity matrix is symmetrized
using the average method in order to allow the use of some prototype selec-
tion algorithms in the dissimilarity space (DS). Other authors, in the context
of kernel-based classification, proposed the use of a positive semidefinite matrix
K'K, where K denotes a nonsymmetric kernel [S].

Different variants of the Multidimensional Scaling algorithm have incorpo-
rated asymmetry in an intuitive way, by defining a skew symmetric term [9]. In
[10], the authors proposed modifications to Self Organizing Map and Sammon
Mapping in order to deal with asymmetric proximities showing that the proposed
algorithms outperformed their symmetric variants. In [I1], the authors compared
several symmetrization methods of asymmetric kernel matrices for their use in
the context of Support Vector Machines. They also proposed a simple supervised
symmetrization method that outperformed the other methods compared.

One question that arises is whether the asymmetry information can be use-
ful for classification in dissimilarity spaces, instead of ignoring it or using a
symmetrization method. Another question is how we can use the asymmetry
information in the context of classification in dissimilarity spaces. In this paper
we propose a new approach for using asymmetry information in what we called
the extended asymmetric dissimilarity space (EADS). As the dimension of the
EADS space is twice the dimension of the original DS, the use of prototype selec-
tion is needed in order to reduce the dimensions before the EADS is constructed.
Results are provided comparing classification errors in both the DS and EADS
for four standard asymmetric dissimilarity data sets.

2 Dissimilarity Space and Extended Dissimilarity Space

Dissimilarity representations arose from the idea that the classes are constituted
by similar objects, so the nearness information is more fundamental than features
to discriminate between the classes [I]. In this context, the DS was proposed in
[1] as follows. Let R = {r1,72,...,7x} be the representation set: a collection of
prototypes that may be a subset of the training set T. Let d be a dissimilarity
measure for the problem at hand. The DS is created by a mapping of the ob-
jects to the space defined by the dissimilarities to the prototypes, where each
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dimension corresponds to the dissimilarities to a given prototype. The represen-
tation d, of an object x is:

dy = [d(z,r1) d(x,re) ... d(z,rg)]. (1)

The DS was postulated as a Euclidean vector space, making suitable the use
of traditional classifiers for feature spaces like Bayesian ones. The cardinality
of the representation set defines the dimension of the DS. For the reduction of
the representation set, prototype selection methods are used. They allow one to
determine the desired tradeoff between classification accuracy and representation
cardinality.

In this section we present the EADS. The motivation for this proposal is
that when projecting asymmetric data in the DS, asymmetry information is
lost because we only use dissimilarities from the objects to the prototypes, and
not from prototypes to objects. If the matrix is previously symmetrized, we
are also neglecting the asymmetry present in the data. In order to take ad-
vantage of the asymmetry information in both directions, we explore the use
of an extended representation of the initial asymmetric dissimilarity matrix in
an EADS. We propose to create the EADS using the prototypes selected from
the original dissimilarity matrix as it is given. Then, having those prototypes
R = {r1,ra,...,r;}, the representation of an object in the EADS is defined by:

dy = [d(z,r1) d(x,re) ... d(z,rg) d(r1,2) d(re,x) ... d(rg,x)]. (2)

In order to represent the training set and the objects submitted for classification
in the EADS, we need to measure the dissimilarities from the objects to the
prototypes and from the prototypes to the objects. As a result, the dimension
of the EADS space is twice the dimension of the DS. Classifiers can be trained
in the EADS in the same way they are trained in the DS.

3 Experiments

In this section the discriminative power of the EADS is compared to the dis-
criminative power of the non-symmetrized version and the one symmetrized by
averaging. Classification errors are presented using different numbers of proto-
types in DS and EADS. Prototypes are the same for both spaces, but in the DS
only dissimilarities in one direction are used. In the EADS, dissimilarities from
the two directions are used. This leads to a space of dimension twice the size of
the DS dimension.

3.1 Data Sets and Experimental Setup

For the experiments we used four data sets: Chickenpieces-20-60, Chickenpieces-
35-45, CoilYork, and Zongker. Some important characteristics of the data sets
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can be found in Table [l The Asymmetry column shows an asymmetry coeffi-
cient ac for each data set, this was computed using the following equation:

D
n(n — 1) min(d;;, dj;)’

where n is the number of objects in the data set. We assume that dissimilarities
between different objects will not be zero. In case it is known beforehand that
in the data it may exist any dissimilarity with value zero between two different
objects, a term with a very small value such as 0.0001 must be added in the
denominator to avoid the indefinite result of the division by zero.

ac = .n—1j=i+1.n, (3)

Table 1. Characteristics of the data sets, the |X| column is the number of training
objects, and |T'| is the number of test objects

Data sets # Classes # Obj. per class Asymmetry |X| |T|
ChickenPieces-20-60 5 117,76,96,61,96  0.05 222 224
ChickenPieces-35-45 5 117,76,96,61,96 0.08 222 224

CoilYork 4 4x72 0.009 144 144

Zongker 10 10x200 0.18 400 1600

As classifier it was used the Linear Bayes Normal (BayesL) in both the DS and
EADS, it is a simple and fast classifier that is optimal for normally distributed
classes with equal covariances. Experiments were repeated twenty times using
equal-sized random partitions for training and testing for ChickenPieces and
CoilYork data sets, and twenty and eighty percent for training and testing re-
spectively in the Zongker data set. Results were averaged over the twenty exper-
iments. As prototype selectors, two different methods are used: the systematic
forward selection optimizing the leave-one-out nearest neighbour error on the
training set as in [2] (FS+NN error), and the random selection. The methods se-
lected 5, 10, 15, 20 and 25 prototypes. The BayesL and prototype selectors were
trained using the training data, and the classification results were computed in
the test set for the DS and EADS generated using the prototypes selected with
the different methods. Regularization parameter of BayesL is 0.01.

3.2 Results and Discussion

Figure [1 shows the curves of error rates for increasing number of prototypes
in the original asymmetric representation in the DS and the representation in
the EADS. Figure [2 shows the curves of error rates for an increasing number
of prototypes comparing the symmetrized representation in the DS using the
average and the representation in the EADS. Solid lines represent the approaches
in EADS; dashed lines represent the approaches in DS. The same symbol is
assigned for the results in DS and EADS using the same prototype selector.
Standard deviations are between 0.007 and 0.08.
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Fig. 1. Classification results for the original asymmetric representation in the DS and
the EADS in the data sets, the dimension of the associated DS is equal to the num-
ber of prototypes, and the dimension of the associated EADS is twice the number of
prototypes

From the results in Fig. [Il we can see that in three of the four data sets
—the ChickenPieces-20-60, ChickenPieces-35-45, and Zongker— classification
in EADS outperforms classification in DS using both the systematic and the
random prototype selectors. These are the data sets with the higher degree of
asymmetry as measured by the asymmetry coefficient. In the CoilYork data set,
which has the smallest asymmetry degree, the results in the EADS were a little
worse than those in the DS. Except for the CoilYork data set, when the number
of prototypes increases, the difference between the error rates in EADS and DS
decreases. This implies that the asymmetry information is more useful if small
sets of prototypes are used, and having more dimensions compensates for not
using asymmetry information.
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Fig. 2. Classification results for the representation in the DS symmetrized by averaging
and the EADS in the data sets, the dimension of the associated DS is equal to the
number of prototypes, and the dimension of the associated EADS is twice the number
of prototypes

From Fig. 2l we can see that once the dissimilarities are symmetrized by aver-
aging, incorporating the asymmetry information does not improve classification
in the same extent as by using the non-symmetrized version. This shows that the
symmetrization by averaging is a good alternative for dealing with asymmetric
data. In the CoilYork data set, the EADS performed worse than the DS using
the symmetrized dissimilarities. In this case, where the asymmetry coefficient
has a very small value, the use of asymmetry information leads to a slight de-
crease in classification performance. The symmetrization by averaging becomes
less useful when the asymmetry degree of the data increases as it can be deduced
from the similar classification errors in the original DS (see Fig.[I] (d)) and the
DS symmetrized by averaging (see Fig.[2 (d)) in the Zongker data.
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From the results, we made a characterization of the relationship between the
amount of asymmetry present in each data set measured by the asymmetry
coefficient and the improvements obtained in classification in the EADS com-
pared to the non-symmetrized DS. First, we sorted the asymmetry coefficients of
each data set in increasing order, and plotted the classification improvements in
EADS compared to DS measured by the differences between the curves for the
same prototype selection method in both spaces. The sum of these differences
was plotted for each data set with its related asymmetry coefficient, see Fig. Bl
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Fig. 3. Classification improvements in EADS compared to DS as a function of the
asymmetry coefficient

In the function we can see a positive linear correlation between the two vari-
ables, as the value of the asymmetry coefficient increases, the value of the im-
provements in classification also increases. The value of the correlation coefficient
was 0.99. This means that it is important to take the asymmetry information
into account in order to improve classification rates when the asymmetry de-
gree is perceivable, and while the data is more asymmetric the classification
improvement increases. In the CoilYork dataset we obtained a negative value of
improvement equal to -0.01, since the EADS performed slightly worse than the
DS.

4 Conclusions

We proposed the EADS that proved to be suitable for exploiting the asymmetry
information from the dissimilarities. This is especially useful for small prototype
sets. For a data set with a very small degree of asymmetry, it might not be
necessary and can even be slightly detrimental to use asymmetry information.
Another conclusion is that the symmetrization by averaging is a good alternative
for dealing with asymmetric data, although it becomes less useful when the asym-
metry degree of the data increases. In our results, the improvements achieved in
classification in EADS are positively correlated to the degree of asymmetry in
each data set. The use of EADS can be beneficial when one has a very small set
of informative prototypes with a highly asymmetric data set. The symmetriza-
tion operation may depend on the cause of asymmetry, e.g. averaging can be
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good for asymmetry caused by noise, the minimum can be useful for asymmetry
caused by a shortest path optimization to compute the dissimilarities. Further
work will be devoted to study these operations and the EADS for asymmetry
caused by expert knowledge incorporated in the dissimilarity measure, noise or
suboptimal procedures.
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