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Abstract. This work presents an improvement of the automatic and supervised
spider identification approach based on biometric spider web analysis. We have
used as feature extractor, a Joint Approximate Diagonalization of Eigen-
matrixes Independent Component Analysis applying to a binary image with a
reduced size (20x20 pixels) from the colour original image. Finally, we have
applied a least square support vector machine as classifier, reaching over
98.15% in our hold-50%-out validation. This system is making easier Biolo-
gists’ tasks in this field, because they can have a second opinion or have a tool
for this work.

Keywords: Spider webs, spider classification, independent component analysis,
support vector machine.

1 Introduction

The pollution and socioeconomic growth is generating serious problems in our actual
world and one of big handicap is the loss diversity in natural environments. Therefore,
biodiversity conservation has become a priority for researchers [1]. Knowledge about
species is critical to understand and protect the biodiversity of life on Earth. Sadly,
spiders have been one of most unattended groups in conservation biology [2]. These
arachnids are plentiful and ecologically crucial in almost every terrestrial and semi-
terrestrial habitat [3-5]. Moreover, they present a series of extraordinary qualities,
such as the ability to react to environmental changes and anthropogenic impacts [5-6].

Several works have studied the spider behaviour. Some of them analyse the use of
the way spiders build their webs as a source of information for species identification
[7-8]. Artificial intelligent systems have been proven to be of use for the study of the
spider nature. In [9], Authors proposed a system for spider behaviour modelling,
which provides simulations of how specific spider specie builds its web. In [10], it is
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recorded how spiders build their webs in a controlled scenario for further spatial-
temporal analysis.

Due to spider webs carry an incredibly lot of information, this work proposed the
used of them as a source of information for spider specie identification. From our
point of view, this work has improved the first version [11], increasing the success on
4%. Independent Component Analysis has been used as biometric features for this
purpose. This feature extraction, added to image processing tools for preparing im-
ages, and Least Square Support Vector Machines for classification, has reached an
improvement vs. our previous work [11].

The remainder of this paper is organized as follow. First, our pre-processing sys-
tem is presented in order to detect the spider webs from the background. Section 3
explains how feature extraction images were applied. Least Square Support Vector
Machine is introduced in section 4. Next, experimental settings are shown by the da-
taset, the experimental methodology, results and the discussion. Finally in section 6,
conclusions derived from the results are presented.

2 Pre-processing System

Spider web images were taken in both controlled and uncontrolled environments.
Thus, the pre-processing step was vital in order to isolate the spider webs and remove
possible effects of background in the system's results.

Fig. 1. Examples of full spider web images after preprocessing corresponding to Allocyclosa,
Anapisona Simoni, and Micrathena Duodecimspinosa, Zosis Geniculata, respectively

Fig. 2. Examples of centre spider web images after preprocessing corresponding to Allocyclosa,
Anapisona Simoni, and Micrathena Duodecimspinosa, Zosis Geniculata, respectively

To enhance the contour of cobweb's threats an increase of colour contrast was first
applied. Then, images were multiplied by two to further intensify the spider webs in
relation to the background. Once images have been enhanced, they were binarized by
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Otsu’s Method [12] and cleaned up by morphological transformations [13]. Finally,
the spider webs were cropped following two criterions. As results, two full set of
spider web images were obtained. One of both contains the full web and another one
shows only the central area. Examples of these sets can be seen in Fig. 1 and 2 respec-
tively. Finally, all images were normalized to dimensions 20 x 20 pixels.

3 Feature Extraction: Joint Approximate Diagonalization
of Eigen-Matrixes Independent Component Analysis

Independent Component Analysis (ICA) is a particularization of Principal Component
Analysis (PCA) to extract components that are, at the same time, non-gaussian and
statistically independent [14]. When used on images, ICA obtains independent base
images which are not necessarily orthogonal. Application of these base images
extracts between pixels information related to high order statistics.

In this study, an approach based on Joint Approximate Diagonalization of Eigen-
matrixes Independent Component Analysis (JADE-ICA) has been used to implement
this tool. JADE-ICA is based on joint diagonalization of cumulant matrixes. For sim-
plicity, the case of symmetric distributions is considered, where the odd-order cumu-
lants vanish. Let X,, ..., X, be random variables, and defined X, = X; +E(X;). The
second order cumulants can be written as:

C(X,.X,)=E(X/,X,) (1)
And the fourth-order cumulants as:

C(Xl’X27X37X4):E(X1*7X;7X;’X:)_E(X:7X;)E(X;’X:)_

E(X1 7X3)E(X27X4)_E(X1 7X4)E(X2’X3)
In addition, the definitions of variance and kurtosis of a random variable X are:
c’=C(X,X)=E(X")
3)

kurt(X)=C(X,X,X,X)=EX*)-3E*(X™)

Now, under a linear transformation Y=AX, the cumulants of fourth-order transforma-
tion became:

C‘(}Ii’Yj’Yk’Yl): Z aipajqakralsC(Xp’Xq’Xr’Xs) (4)
DagsrsS

with a;; the i-th row and j-th column entry of matrix A. Since the ICA model (X=AS)
is linear, using the assumption of independence by C(S,,S,,S,,S;)=kurt(S,)0p,s Where:

5 _{1 if p=q=r=s

P10 otherwise

)

and S has independent entries:
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C(Y[ ’ Yj ’ I/k ’ 1/[) = Z kurt(Sm )aimajmakmalm (6)

m=1

the cumulants of the ICA model are obtained.
Given any n x n matrix M and a random n x [ vector X, we consider a cumulant
matrix Q,(M) defined by:

QX(M)=Zn:C(X,.,Xj,Xk,X,.)MM )

m=1

If X is centered, the definition of (4) shows that:
0, (M)=E{(X"MX")XX"} - R*tr(MR*) -

X X X T pX (8)
R*MR* —R*M'R

where 1r(B) denotes the trace of matrix B and [Ry ]ij =C(X;, X J') .

The structure of a cumulant @-(M) in ICA model is easily deduced from (9) as:
Oy (M) = AAM) A ©9)
with:
A(M ) = diag (kurt(S,)a Ma,,...,kurt(S,)a. Ma, (10)

where q; is the i-th column of A.

Now, let W be a whitening matrix and Z=WX. Let us assume that the independent
sources matrix S has unit variance, so that S is white. Thus Z=WX=WAS is also white,
and the matrix U=WA is orthonormal. Similarly, the previous techniques can be
applied into (13) for any n x n matrix M.

First, the whitening matrix W and the cumulant matrix Z are estimated. Then, the
estimation of an orthonormal matrix denoted by U, is calculated. Therefore, an
estimated matrix A denoted by A is obtained from w! U, and the sources matrix S is
calculated by A”X.

To measure non-diagonality of a matrix B, off{B) is defined as the sum of the
squares of the non-diagonal elements:

off (B)=Y (b, (11)

i#j

where b;; are elements of the matrix B. In particular of (U QAM,)U)=UAU") = offid,)
= 0 since Q(M;)=UA;U" and U is orthogonal. For any matrix set M and orthonormal
matrix V, the joint diagonality criterion is defined as:

D, (V)= off V'Q,(M)V) (12)

which measures diagonality far from the matrix V and bring the cumulants matrixes
from the set M.
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4 Classification System

At this section, the system has got the useful information from the input images by
JADE-ICA. Now, the classification component uses this information to take a
decision on behalf the spider specie from the spider web biometric as input. To do so,
this work uses the well known Support Vector Machine (SVM) [15].

The SVM is a structural risk minimization learning method of separating functions
for pattern classification, which was derived from the statistical learning theory
elaborated by [16]. In other words, SVM is a tool able to differ between classes
characterized by parameters, after a training process.

What makes this tool powerful is the way it handles non-linearly separable
problems. In these cases, the SVM transforms the problem into a linearly separable
one by projecting samples into a higher dimensional space. This is done using an
operator called kernel, which in this study is set to be a Radial Basis Function (RBF).
Then, efficient and fast linear techniques can be applied in the transformed space.
This technique is usually known as the kernel trick, and was first introduced by [17].

For simplicity, we configure the SVM to work as a verification system. In this
particular case, the positive class (1) corresponds to spider specie to verify and the
negative class (-1) to the rest of spider species. As a result, the classifier answers the
“is the actual spider specie to verify?” question. The output of the SVM is a numeric
value between -1 and 1 named score. A threshold has to be set to define a border
between actual spider specie (1) and other different spider species (-1) responses.

However, if all samples are used for training, there are no new samples for setting
the threshold, and using the training samples for this purpose will lead to bad
adjustments. Therefore, a 30 iterations hold-50%-out validation procedure is used
over the training samples to obtain scores. These scores are then used to set error rate.
The system’s margin, defined as the distance of the closest point to the threshold line,
is also measured. All these measures are referred to as validation measures.

When the threshold is finally set, the SVM is available to work in test mode.
Because no big differences exist in the number of training samples used for this final
training and the validation, we can expect the system to have a very similar threshold
than that computed before.

In particular, the Least Squares Support Vector Machines (LS-SVM) implementa-
tion is used [18]. Given a training set of N data points {y; ,x;/x- /. where x; is the k-th
input sample and y; its corresponding produced output, we can assume that:

{WT¢(xi)+b21 if oy, =+l

13
WT¢(xi)+bS1 lf yi:_l (4

where ¢ is the kernel function that maps samples into the higher dimensional space.
The LS-SVM solves the classification problem:

i R
inL,(w,b,e) = 2 w w4+ 5 Zec’,. (14)
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where u and & are hyper-parameters related to the amount of regularization versus the
sum square error. Moreover, the solution of this problem is subject to the constraints:

v W) +b]=1-e, i=L..N (15)

5 Experimental Settings

5.1 Database

The database contains spider web images of four different species named Allocyclosa,
Anapisona Simoni, Micrathena Duodecimspinosa and Zosis Geniculata. Each class
has 28, 41, 39 and 42 images, respectively, in total, 150 images (see Fig. 3).

Fig. 3. Examples of spider web images from the data base corresponding to Allocyclosa, Anapi-
sona Simoni, Micrathena Duodecimspinosa and Zosis Geniculata, respectively

5.2 Experimental Methodology

Our proposal used the first M components obtained from the JADE-ICA of the spider
webs images as inputs for a RBF-kernel LS-SVM with specific regularization and
kernel parameters. These two parameters (the number of components and the kernel
parameters) were automatically optimized by iteration using validation results. To
obtain more reliable results the available samples were divided into training and test
sets, so that the system is trained and tested with totally independent samples,
according to supervised classification. We have done two experiments, in order to find
our best approach.

Our first experiment will be to determine where the most discriminate information
is, comparing the whole the spider web or only the central part. We have used 20
components from the pre-processing image to 20 x 20 pixels. This experiment will be
done under hold-50%-out validation techniques.

Our second experiment will be to adjust these two parameters (the number of
components and the kernel parameters) for the most discriminate information,
obtained from previous experiment; under the well known K-Folds cross-validation
techniques, which have been used to obtain the final results. In particular, experiments
with K equal 3, 5, 7, and 10 were run. Too, multiple hold-out validation has been used
in this experiment. In Table 2, accuracy rates can be observed.

All the experiments have been repeated 30 times, showing our accuracy rates in
averages and standard deviation.
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5.3 Results and Discussions

From our first experiment (see Table 1), we can see the most of the information are
located on the central part of the spider web, with over 5% of accuracy rate. This goal
agrees with the Biological point of view, because the Biologists use this central part in
order to try to do a manual identification. Besides, this goal will design the following
experiment, because the tests with whole spider web will be removed.

Table 1. Accuracy Rates in processing images of 20 x 20 pixels for 20 independent
components using LS-SVM under 50% hold out cross-validation techniques

Type of image Whole spider web Central part of spider web
Accuracy Rate 91.85% +4.92 97.16% + 2.47

The second experiment has been done for the central part of spider web. The Fig. 4
shows the evolution of the number of independent components for 50% hold-out
validation techniques. This evolution is done from 1 to 50 independent components,
with a step of 5. It can be seen in Fig. 4 that the best accuracy rate versus the number
of independent components is 10. Therefore, the rest of experiment will be done with
that condition, and the kernel parameter of LS-SVM will be automatically searched
(see Section 4) when the mayor accuracy rate is found (see Table 2).

Accuracy Rates (%)

70 L L L L L L L L L
A 1n 1A o R an 3R 4n 4R AN

Number of independent components

Fig. 4. Evolution of the number of independent components vs. Accurate Rates

Table 2. Accuracy Rates for different validation methodologies

K-Fold Accuracy Rate Hold-out Accuracy Rate
10 96.16% + 0.89 50 98.15% + 3.96
7 95.17% + 1.03 40 98.06% + 4.09
5 94.60% + 1.52 30 96.59% +5.22

3 94.18% + 2.06 20 94.40% + 6.74
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From Table 2, we can observe our approach is working over 98%, in order to
identify the spider specie using the central part of the spider web as biometric
information. Therefore, the error between species is low, when that central part of the
spider web is used.

About the computational time, our approach uses 435 milliseconds in order to do
the pre-processing and the extraction of 10 independent components using JADE-
ICA. Besides, it uses 0.25 milliseconds in order to test one sample. Therefore, our
algorithm runs need 435.25 milliseconds in order to evaluate on test sample. This was
implemented using AMD Phenom™ II X6 1090T 3.2GHz Processor with 6GB RAM
memory, programmed on MATLAB.

6 Conclusions

An automatic identification approach is implemented in this work for the spider clas-
sification from its spider web, reaching an accuracy rate of 98.15%. Our computa-
tional time is minor to 500 milliseconds, given good efficiency between accuracy rate
and this time.

The future lines will be to increase the dataset and to search a new
parameterization system in order to improve our present system. These advances give
very important biological information, because it validates the Biologists’ work,
showing the objective way, as it is possible to have an automatic system for
identifying spider species, as it is done by biologists.
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