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Abstract. Two approaches to solving the problem of clustering with
gaps for a specified number of clusters are considered. The first approach
is based on restoring the values of unknown attributes and solving the
problem of clustering of calculated complete data. The second approach
is based on solving a finite set of tasks of clustering of corresponding to
incomplete data complete sample descriptions and the construction of
collective decision. For both approaches, the clustering quality criteria
have been proposed as functions of incomplete descriptions. Results of
practical experiments are considered.
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1 Introduction

The problem of cluster analysis of incomplete data has high interest of re-
searchers, since the real practical problems are usually with missing data.

Clustering is usually performed in two stages. Incomplete data is first con-
verted to the full data, and then there is clustering of complete data. In recent
years, various algorithms have been developed to the construction of complete
data. Conventionally, they can be divided into two types: marginalization and
imputation. In the first case, the objects with missing data (gaps) are removed
simply from the sample. In the second case, the unknown values of features
are replaced by best match estimates [1,2]. The simplest imputation methods
are replacement gaps on statistical estimates of the average values of attributes
(means, random, the nearest neighbor method, etc.). Their generalizations in-
volve averaging of feature values in the neighborhood of the objects with gaps
[3]. Many algorithms use regression models. Unknown feature value is calculated
using the regression function was found from the known characteristics (linear
regression, SVR [4]). Estimation minimization (EM) algorithm is based on prob-
ability model of dataset. It is the well-known and popular in this field. Based on
the use of imputation \marginalization technique clustering has both advantages
and disadvantages. It should be noted that the rate of missing values of features
is usually assumed to be low. In constructing the regression model, it is assumed
there are a sufficient number of objects without gapes. In these approaches some
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information is lost. The advantage of these methods is their simplicity and the
possibility of further use of standard software clustering of complete data. Fre-
quently, the finding the estimates of unknown data is of independent interest.

Second approach to the clustering of incomplete data is to adapt the clus-
tering methods to cases of incomplete data. This case does not require recon-
struction of missing data. The paper [5] proposed the modification of fuzzy
k-means clustering in case of missing data. There are some assumptions in this
approach. The attribute with missing data linearly depends on the other fea-
tures. Some parameters in distances calculation are the independent and identi-
cally distributed. The proposed method performs better results for some medical
task in comparison with other imputation technique. Two methods for parti-
tioning incomplete data set including missing values into linear fuzzy clusters
by using local principal components have been proposed in [6]. One is the direct
extension of fuzzy c- varieties method to an incomplete data set. It uses the
least square criterion as the objective function. The other method is a hybrid
technique of fuzzy clustering and principal component analysis with missing
values. The direct clustering method has been proposed in [7]. For the con-
straining features the set of constraints based on known values is generated.
Although there are already different approaches to solving the problem of clus-
tering of incomplete data, the creation of new algorithms is till now an urgent
task.

Another important aspect of missing data clustering is to assess the clus-
tering quality as a function of the degree of incompleteness of data. Suppose
that for some sample X = {x̄1, x̄2, ..., x̄m} of incomplete data clustering K =
{K1,K2, ...,Kl} has been obtained. Let the sample X ′ = {x̄′

1, x̄
′
2, ..., x̄

′
m} of full

descriptions corresponds to an initial sample X , and K ′ = {K ′
1,K

′
2, ...,K

′
l} is

its clustering. What will be the ”scatter” of the set of all admissible clusterings
K ′ regarding clustering K? It is clear that the ” scatter ” must depend on many
factors such as the clustering algorithm, data, rate of unknown characteristics,
information content of missing data, etc.

In this paper we consider two problems associated with clustering of incom-
plete data: algorithms for clustering of incomplete data,and estimation of the
quality of clustering as a function of data incompleteness.

In the first approach, some imputation is used. Degree of clustering certainty is
calculated as an estimation of the stability of the obtained clustering result with
respect to some sets of admissible complete sample. The second approach does
not provide for reconstruction of features. At first, N complete samples which
correspond to a given sample of partial descriptions are constructed. Next we
solve independently N tasks of clustering and N clusterings are found. Finally,
a collective solution of clustering task is computed. The degree of certainty of
clustering is computed on the basis of estimation of the scatter difference of
partial solutions with respect collective solution. The results of the comparison
of degree of clustering certainty for different samples at different levels of data
incompleteness are considered.
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2 Clustering of Incomplete Data Based on the Features
Imputation

Let a standard sample X of incomplete descriptions x̄i = (xi1, xi2, ..., xin) of
the objects in terms of features is given. We suppose the set Mj ⊆ R, j =
1, 2, ..., n to be a finite set of values of j−th feature. It can be calculated by known
feature values from training data. The unknown feature values (slips, gaps) will
be denoted as Δ. We believe that xij = Δ, ∀j ∈ Ωi ⊆ {1, 2, ..., n}, i = 1, ...,m.
The set of unknown feature values is denoted as the set of pairs J = {〈i, j〉 , i =
1, 2, ...,m, j ∈ Ωi}. We use the local method of filling the gaps [8]. Obtained as
a result sample of full descriptions will be denoted as X∗ = {x̄∗

1, x̄
∗
2, ..., x̄

∗
m}.

Let we solve a task of clustering of the sample X∗ to l clusters using
an algorithm A: K = {K1,K2, ...,Kl}, Ki ⊆ X∗, i = 1, 2, ..., l,

⋃l
i=1 Ki =

X∗,Ki

⋂
Kj = ∅, i �= j. Denote Dt = {x̄′

t} the set of all possible x̄′
t corresponding

to vector x̄t (i.e. x
′
tj =

{
xtj , xtj �= Δ,

∈ Mj, xtj = Δ.
).

Consider an arbitrary x̄∗
t . Let x̄∗

t ∈ Ki. Consider the partition
K ′ = {K ′

1,K
′
2, ...,K

′
l} of sample X ′ = X∗\{x̄∗

t }
⋃{x̄′

t}, where K ′
j = Kj , j �= i,

and K ′
i = Ki\{x̄∗

t}
⋃{x̄′

t}, x̄′
t ∈ Dt. Let ft(K) is the proportion of objects x̄′

t

from Dt for which the partition K ′ is the result of clustering .

Definition 1. Degree of certainty f(K) of the clustering K is the quantity
f(K) = 1

m

∑m
t=1 ft(K).

Consider the problem of calculating of f(K) on the example of two well-known
algorithms.

2.1 Clustering of Incomplete Data as the Minimization of Variance
Criterion

It is known [9] that the condition for local optimality of clustering K = {K1,K2,
...,Kl} with minimum value of the variance criterion is execution of the inequality

ni

(ni − 1)
‖x̄∗ − m̄∗

i ‖2 −
nj

(nj + 1)

∥
∥x̄∗ − m̄∗

j

∥
∥2 ≤ 0 (1)

for any pair Ki,Kj, and any x̄∗ ∈ Ki (here ni = |Ki|, m̄∗
i = 1

ni

∑
x̄∗∈Ki

x̄∗). We

will use ‖x̄− ȳ‖ = ρ(x̄, ȳ) =
√∑n

j=1(xj − yj)2).

Let x̄′
t = (x′

t1, x
′
t2, ..., x

′
tn) ∈ Dt is an arbitrary admissible vector correspond-

ing to the vector x̄∗
t = (x∗

t1, x
∗
t2, ..., x

∗
tn) ∈ Ki. We obtain the conditions under

which the partition K ′ is the clustering. To do this, let’s write the conditions
(1) for all objects from X ′. Denote δx̄t = x̄∗

t − x̄′
t, then

m̄′
i = m̄∗

i −
δx̄t

ni
(2)

Partition K ′ is the clustering if the following conditions are satisfied:

x̄′
t ∈ K ′

i,
ni

(ni − 1)

∥
∥
∥
∥x̄

′
t − (m̄∗

i −
δx̄t

ni
)

∥
∥
∥
∥

2

− nj

(nj + 1)

∥
∥x̄′

t − m̄∗
j

∥
∥2 ≤ 0; (3)
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∀x̄′
α ∈ Ki, α �= t,

ni

(ni − 1)

∥
∥
∥
∥x̄

∗
α − (m̄∗

i −
δx̄t

ni
)

∥
∥
∥
∥

2

− nj

(nj + 1)

∥
∥x̄∗

α − m̄∗
j

∥
∥2 ≤ 0; (4)

∀x̄′
α ∈ Kj , j �= i,

nj

(nj − 1)

∥
∥x̄∗

α − m̄∗
j )
∥
∥2 − ni

(ni + 1)

∥
∥
∥
∥x̄

∗
α − m̄∗

i +
δx̄t

ni

∥
∥
∥
∥

2

≤ 0. (5)

Given (2),(3 - 5) can be rewritten as

ni

ni − 1
‖x̄∗

t − m̄∗
i ‖2 −

nj

(nj + 1)

∥
∥x̄∗

t − m̄∗
j

∥
∥2 +

+ 2(δx̄t, m̄
∗
i −

nj

(nj + 1)
m̄∗

j −
1

(nj + 1)
x̄∗
t ) + ‖δx̄t‖2 (ni − nj − 1)

ni(nj + 1)
≤ 0, (6)

ni

ni − 1
‖x̄∗

α − m̄∗
i ‖2 −

nj

(nj + 1)

∥
∥x̄∗

α − m̄∗
j

∥
∥2 +

+ 2(δx̄t,
1

(ni − 1)
(x̄∗

α − m̄∗
i )) + ‖δx̄t‖2 1

ni(ni − 1)
≤ 0, (7)

nj

nj − 1

∥
∥x̄∗

α − m̄∗
j

∥
∥2 − ni

(ni + 1)
‖x̄∗

α − m̄∗
i ‖2 −

− 2(δxt,
(x∗

α −m∗
i )

(ni + 1)
)− ‖δxt‖2 1

ni(ni + 1)
≤ 0, (8)

System (6 - 8) can be written as (9). Thus, the partition K ′ is the clustering, if
for fixed x̄′

t system of m inequalities (9) is performed,

aλ +
∑

i∈Ωt

yicλi + bλ
∑

i∈Ωt

y2i ≤ 0, λ = 1, 2, ...,m, (9)

where aλ, bλ, cλi, i = 1, 2, ..., k, λ = 1, 2, ...,m are constants for found K, and
yi = {x∗

ti − x′
ti : x′

ti ∈ Mi}. To calculate ft(K) we make enumeration for all
admissible yi (the systems (9) and calculate the number of executed systems (9).
With a large enumeration, we estimate ft(K) on a random sample of allowed
values of ft(K).

2.2 Clustering of Incomplete Data Using k-means Algorithm

Let K be the clustering X∗ using k-means algorithm [9]. This means, ∀x̄∗
t ∈ Ki

there is
‖x̄∗

t − m̄∗
i ‖ ≤ ∥

∥x̄∗
t − m̄∗

j

∥
∥ , ∀j �= i, (10)

Partition K ′ is the clustering if
∥
∥
∥
∥x̄

∗
t − δx̄t − m̄∗

i +
δx̄t

ni

∥
∥
∥
∥

2

≤ ∥
∥x̄∗

t − δx̄t − m̄∗
j

∥
∥2 , x̄′

t ∈ K ′
i, j �= i, (11)

∥
∥
∥
∥x̄

∗
α − m̄∗

i +
δx̄t

ni

∥
∥
∥
∥

2

≤ ∥
∥x̄∗

α − m̄∗
j

∥
∥2

, j �= i, ∀x̄′
α ∈ Ki, α �= t, (12)

∥
∥x̄∗

α − m̄∗
j

∥
∥2 ≤

∥
∥
∥
∥x̄

∗
α − m̄∗

i +
δx̄t

ni

∥
∥
∥
∥

2

, ∀x̄′
α ∈ Kj, j �= i. (13)



150 V.V. Ryazanov

After elementary transformations we obtain a system similar to (9). The calcu-
lation of ft(K) is also carried out similarly.

3 Clustering of Sample with Missing Data without
Imputation

By using X we make N samples of full descriptions X ′(i) =

{x̄′(i)
1 , x̄

′(i)
2 , ..., x̄

′(i)
m }, i = 1, 2, ..., N , where x

′(i)
tj =

{
xtj , xtj �= Δ,

∈ Mj , xtj = Δ
(prob-

ability of assigning a value from Mj to x
′(i)
tj is equal to its frequency of

occurrence in the training sample X). For each of the resulting complete
samples, we solve the problem of clustering on l clusters and find N solutions

K(i) = {K(i)
1 ,K

(i)
2 , ...,K

(i)
l }, i = 1, 2, ..., N . Further, the collective clustering

K = {K1,K2, ...,Kl} is build and considered as a solution of the clustering task
with missing data.

Denote < t1, t2, ..., tl > a permutation of < 1, 2, ..., l >.

Definition 2. Degree of certainty Φ(K) of clustering K = {K1,K2, ...,Kl} is
the quantity

Φ(K) =

N∑

i=1

max
<t1,t2,...,tl>

l∑

j=1

∣
∣
∣Kj

⋂
K

(i)
tj

∣
∣
∣ /mN.

Definition 3. Degree of certainty F (K) of clustering K = {K1,K2, ...,Kl} is

the quantity F (K) = min
i=1,...,N

max
<t1,t2,...,tl>

∑l
j=1

∣
∣
∣Kj

⋂
K

(i)
tj

∣
∣
∣ /m.

Quantity max
<t1,t2,...,tl>

∑l
j=1

∣
∣
∣Kj

⋂
K

(i)
tj

∣
∣
∣ characterizes the proximity of clustering

results K and K(i), i = 1, 2, ..., N . Criterion Φ(K) characterizes the normal-
ized average the proximity of collective clustering with respect to clustering of
admissible samples. Criterion F (K) meets the worst case.

The task of collective clustering construction and the committee algorithm
for its solution were proposed in [10,11]. Earlier, a collective clustering for some
sample was based on using some algorithm that combines the set of clusterings
obtained for the same sample by different clustering methods. In our case, the
collective solution will be built as application of some clustering algorithm to
the set of clusterings obtained by fixed method for different full samples X ′(i).
The results of the clustering of samples X ′(i) by some clustering method can be
written in the form of three-dimensional information matrix

∥
∥αν

ij

∥
∥
m×l×N

, αν
ij ∈ {0, 1},

l∑

j=1

αν
ij = 1, i = 1, ...,m, j = 1, ..., l, ν = 1, ..., N.

Its submatrix
∥
∥αν

ij

∥
∥
l×N

, i = 1, 2, ...,m, can be regarded as a new description

of x̄i. As a collective solution of main cluster analysis task was considered the
clustering of given m matrix descriptions by k - means method.
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4 The Results of Experiments on Simulated and Practical
Data

Proposed clustering algorithms of incomplete data were tested on simulated and
practical problems. As a model problem we used a sample mixture of normal
distributions with independent features (n = 10, l = 4,mi = 50, i = 1, 2, 3, 4).
Expectation and variance of the classes are chosen such that the result of their
clustering coincided with their a priori classification. Considered training sam-
ples were transformed into descriptions of the samples with gaps at various
levels of data incompleteness. Unknown values of features in each training ob-
ject on the uniform law of distribution is set, and w% feature values were un-
known. Separately, we solved the problem of clustering of incomplete samples
by means of collective clustering. Visualization of a model example for the four
classes (the “projection” of the multidimensional data on the plane of general-
ized features [9]) is shown in Fig. 1. Fig. 3,4 demonstrate the proposed crite-

ria f(K),Φ(K), F (K) and parameters ϕ(K) = max
<t1,t2,...,tl>

∑l
j=1 |Kj

⋂
K∗| /m,

ϕavr( K) = max
<t1,t2,...,tl>

∑l
j=1

∣
∣K ′′

j

⋂
K∗∣∣ /m as functions of incompleteness rate

w. Here K∗ = {K∗
1 ,K

∗
2 , ...,K

∗
l } is a priori classification of the initial sample,

K is a collective clustering of sample with gaps, and K ′′ = {K ′′
1 ,K

′′
2 , ...,K

′′
l }

is a sample clustering after replacing the gaps on the average feature values.
In Figures 1-2 and 3-4 , respectively, visualizations and graphics of a model
and the practical task of ”breast cancer” [12] are shown. Task ”breast cancer”
is a sample of 344 descriptions of patients with benign or malignant tumor
(n = 9, l = 2,m1 = 218,m2 = 126). The task has a cluster structure that agrees
well with a priori classification. The experimental results are the preliminary, but
the form of obtained dependences corresponds to a priori expectations. Criterion
F (K) corresponds to the worst-case of possible clusterings K(i), i = 1, 2, ..., N ,
and its value decreases rapidly with w increasing.

Fig. 1. Mixture of normal distributions Fig. 2. The problem of breast cancer
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Fig. 3. Dependencies of criteria and pa-
rameters for incomplete data in the model
task

Fig. 4. Dependencies of criteria and pa-
rameters for incomplete data in the task
of breast cancer

Table 1. Notations of graphics of criteria and indicators

index ϕ( K) criterion Φ(K)

indexϕavr( K) criterion f(K)

criterionF (K)

Nevertheless, it can be very useful in practice. The beginning of its fall corre-
sponds to the maximal level of missing data, in which the incompleteness of the
data does not affect to clustering. In the task ”breast cancer” clusters are well sep-
arated. They are calculated even with a gaps rate 45% when F (K) begins to de-
crease sharply. High values of ϕavr( K) are the outcome of the simplicity of the
structures of data. Criteria ϕ( K) and Φ(K) are well correlated, due, apparently,
to the use of collective clustering. The graphics show also the correlation of the
criteria f(K) and Φ(K). Value of the criterion Φ(K) seems more objective than of
f(K), as the f(K) calculation is based on variations of only the individual objects.

5 Conclusion

In report [13], it was proposed a leave-one-out approach to evaluation of clus-
tering quality that had been based on an estimation of the clustering stability.
Clustering quality evaluation belongs to the interval [0,1] and is not associated
with any a priori classifications or probability nature of data. It is interesting
to study the relationships between the criteria [13] and the criteria of degree of
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clustering certainty introduced in this paper. The proposed criteria are simple
and interpretable. Of course, the results of experiments are preliminary. Never-
theless, we hope that the methods of clustering of incomplete data and criteria
for evaluating the degree of clustering certainty proposed here will be useful in
solving practical tasks.
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