
On the Robustness of Kernel-Based Clustering

Fabio A. González1, David Bermeo1, Laura Ramos1, and Olfa Nasraoui2

1 BioIngenium Research Group, Universidad Nacional de Colombia, Bogotá
2 Knowledge Discovery & Web Mining Lab, The University of Louisville

���������	��
��
	��	��
���������������	�����


�����������������������	�	��

Abstract. This paper evaluates the robustness of two types of unsupervised learn-
ing methods, which work in feature spaces induced by a kernel function, kernel
k-means and kernel symmetric non-negative matrix factorization. The main hy-
pothesis is that the use of non-linear kernels makes these clustering algorithms
more robust to noise and outliers. The hypothesis is corroborated by applying
kernel and non-kernel versions of the algorithms to data with different degrees of
contamination with noisy data. The results show that the kernel versions of the
clustering algorithms are indeed more robust, i.e. producing estimates with lower
bias in the presence of noise.

1 Introduction

The presence of noise and outliers are a main source of data quality problems in statis-
tics, data mining and machine learning. Many factors can cause noise and outliers,
including errors in measurements, data entry and communication, as well as simple de-
viation of some data samples. These problems along with assumptions made about data
are known to lead to incorrect and biased results. There has been a good amount of work
devoted to dealing with noise and outliers. In some approaches, outliers are eliminated
from the data as part of the data preprocessing stage. In other approaches, learning and
inference algorithms are designed in such a way that they can resist noise and outliers;
these algorithms are described as robust. Robust statistics is a field of statistics that deals
with the development of techniques and theories for estimating the model parameters
while dealing with deviations from idealized assumptions [7,10].

Data clustering is one of the most important data analysis tools with many applica-
tions and a great variety of algorithms. As with other learning algorithms, outliers in
the data can result in bad parameter estimation, thus generating bad clusterings. The
objective of this paper is to evaluate the robustness of an important type of clustering
algorithms, namely those that are based on kernel methods. In particular, we evaluate
how clustering algorithms behave when the input data is contaminated with increasing
amounts of noisy data. The evaluated algorithms are the conventional versions and ker-
nelized versions of k-means and Symmetric Non-negative Matrix Factorization . Our
main hypothesis is that the use of a non-linear kernel may improve the robustness of
the algorithm. The preliminary experimental results in this paper confirm this hypothe-
sis, suggesting that kernel-based methods are a viable alternative for performing robust
clustering.
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The rest of the paper is organized as follows: Section 2 discusses the problem of clus-
tering and how it can be modeled as a matrix factorization problem; Section 3 introduces
robust statistics and robust clustering; Section 4 presents the experimental evaluations;
and finally, Sections 5 presents our conclusions and future work.

2 Clustering and Matrix Factorization

2.1 Clustering

Clustering is the most important problem in unsupervised learning. In general, the goal
of a clustering algorithm is to find groups (called clusters) in a set of data samples., such
that the clusters are homogeneous, i.e. contain similar data samples, while data samples
from different clusters are different. Depending on the type of clustering algorithm, this
goal could be accomplished in different ways. In this work we focus on a particular type
of clustering algorithms which are based on the optimization of an objective function.

One of the most popular clustering algorithms is k-means., which represents the
clusters by a set of centroids M = {m1, . . . .mk} that minimize the following objective
function:

SSE = min
M

k

∑
i=1

∑
x∈Ci

(x−mi)
2 (1)

where {C1, . . . ,Ck} is a disjunct partition of the input data set X , such that X =
⋃k

i=1 Ci.
The minimization is accomplished by an optimization process that iteratively reassigns
data points to clusters, thus refining the centroid estimations.

2.2 Non-negative Matrix Factorization

The general problem of matrix factorization is to decompose a matrix X into two factor
matrices A and B :

Xn×l = An×kBk×l (2)

This could be accomplished by different methods including: Singular Value Decom-
position (SVD), Non-negative Matrix Factorization (NMF), and Probabilistic Latent
Semantic Analysis, among others. The factorization problem can be formulated as an
optimization problem:

min A,Bd(X ,AB) (3)

where d(,) is a distance or divergence function and the problem could have different
types of restrictions. For instance, if d(,) is the Euclidean Distance and there are no
restrictions, the problem is solved by finding the SVD; if X , A and B are restricted to be
positive, then the problem is solved by NMF.

This type of factorization may be used to perform clustering. The input data points
are the columns of X (l n-dimensional data points). The columns of A correspond to the
coordinates of the centroids. The columns of B indicate to which cluster each sample
belongs, specifically if x j belongs to Ci, then Bi, j = 1, otherwise Bi, j = 0. With this
interpretation, the objective function in (1) is equivalent to the objective function in (3)



124 F.A. González et al.

using the Euclidean distance. An important advantage of this approach is that values
in the matrix B are not required to be binary, in fact, they can take continuous values.
These values can be interpreted as soft membership values of data samples to clusters,
i.e., NMF can produce a soft clustering of the input data [3].

NMF has been shown to be equivalent to other unsupervised learning methods such
as probabilistic latent semantic analysis and kernel k-means. Also, there are different
versions of NMF which impose new restrictions or weaken some of its restrictions. For
instance, Semi-NMF allows negative values in matrices X and A in (3), Convex-NMF
imposes that A must be a combination of the data input, A = XW [3]. In this work,
we use a particular version of NMF, Symmetric-NMF (SNMF) which produces the
following factorization:

(XT
lxnXnxl) = HlxkHT

kxl (4)

An important characteristic of this version of NMF is that it is amenable to be used as a
kernel method. This is discussed in the next subsection.

2.3 Kernel Methods

In contrast with traditional learning techniques, kernel methods do not need a vectorial
representation of the data. Instead, they use a kernel function that allows kernel methods
to be naturally applied to unstructured or complex structured data such as text, strings,
trees and images [12].

Informally, a kernel function measures the similarity of two objects. Formally, a
kernel function, k : X×X →R, maps pairs (x,y) of objects in a set X , the problem space,
to the space of real numbers. A kernel function implicitly generates a map, Φ : X → F ,
where F corresponds to a Hilbert space called the feature space. The dot product in F
is calculated by k, specifically k(x,y) =< Φ(x),Φ(y) >F . Given an appropriate kernel
function, complex patterns in the problem space may correspond to simpler patterns
in the feature space. For instance, non-linear boundaries in the problem space may be
transformed to linear boundaries in the feature space.

Both k-means and SNMF have kernelized versions, which receive as input a kernel
matrix instead of a set of data samples represented by feature vectors. The kernel version
of k-means is called, unsurprisingly, kernel k-means (KKM). In the case of SNMF, the
kernelized version works as follows [3].

SNMF starts with an initial estimation of the factor matrix H and iteratively updates
it using the updating equation:

Hi,k = Hi,k(1−β +β
((XT X)H)i,k

(HHT H)i,k
)

The kernel version of the algorithm is obtained by using a kernel matrix K instead
of the expression (XT X), where K is an l × l matrix with Ki, j = k(xi,x j). There are
different types of kernels, some of them general and some of them specifically defined
for different types of data. The most popular general kernels are the linear kernel

k(x,y) =< x,y >, (5)

the polynomial kernel
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Fig. 1. Example of a data set with two clusters with different degrees of contamination

k(x,y) = p(< x,y >),

where p() is a polynomial with positive coefficients, and the Gaussian (or RBF) kernel

k(x,y) = e
‖x−y‖2

2σ2 . (6)

The cluster centroids estimated by the kernel versions of both algorithms are in the
feature space, resulting from transforming the data via the mapping function Φ , and
correspond to the points Cj =

1
n ∑xi∈Cj

Φ(xi). However, we are interested in the pre-

image in the original space of the centroids, i.e., points Ĉj such that Φ(Ĉj) =Cj . How-
ever, it is possible that an exact pre-image may not even exist, so we look for the Ĉj

that minimizes the following objective function: minĈj

∥
∥Ĉj −Cj

∥
∥2

. According to Kwok
et al. [9], the optimum Cj can be found by iterating the following fixed-point formula:

Ĉt+1
j =

∑xi∈Cj
exp(

−||Ĉt
j−xi||)
s )xi

∑xi∈Cj
exp(

−||Ĉt
j−xi||
s )

(7)

3 Robust Clustering

Robust statistics is an area of statistics that deals with the problem of estimating the pa-
rameters of a parametric model while dealing with deviations from idealized assump-
tions [7,10]. These deviations could be caused by contamination of data by outliers,
rounding and grouping errors, and departure from an assumed sample distribution. Out-
liers can cause classical estimators to heavily depart from the actual values of the pa-
rameters making them useless. Robust statistics provides theory and techniques to study
and develop robust estimators.
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In the particular case of clustering, outliers and noise are an important issue that
could cause the incorrect detection of clusters, the detection of spurious clusters and
a biased estimation of cluster parameters [5]. Figure 1 shows an example of a data set
with two clusters and different degrees of contamination. It is important to notice that, in
general, the source of contamination is not known, so it is difficult to make assumptions
about the type of distribution or distribution parameters. A robust clustering algorithm
is one that is able to deal with contaminated data in such a way that its estimations are
not affected by the presence of contaminated data. There are different types clustering
strategies, but in this work, we concentrate on partitional, prototype based methods such
as k-means. In this case, clusters are characterized by centroids, which are in fact loca-
tion estimators. A robust estimation of cluster centroids requires that the value of the
estimation be affected as little as possible by the presence of contaminated data. Robust
statistics provides different methods to measure the robustness of an estimator [8], such
as the breakdown point, influence function and sensitivity curve. The goal is to measure
how an estimator behaves with different proportions and values of contamination. In
many cases, this analysis is performed assuming the worst conditions, such as using
asymptotic analysis when the value of the contamination tends to infinity. But these
extreme conditions are neither acceptable nor possible in most engineering applications
[2]. In this work, and following [2], we assume a bounded contamination and perform
a non-asymptotic analysis. The contamination model is given by

F = (1− ε)G+ εE, (8)

where G is the distribution of real, uncontaminated samples, E is the distribution of
contaminated data and F is the overall sample distribution. The effect of contamination
in the data is measured by the bias of the estimation:

bias(Θ̂ ,X) =
∥
∥Θ −Θ̂(X)

∥
∥ , (9)

where Θ are the real parameters of G, X is a sample generated using the model in
Eq. (8), Θ̂ is a estimator function and ‖·‖ is an appropriate norm. In this work, Θ =
(C1, . . . ,Ck) with Ci ∈R

n, the centroid of the i-th cluster, and ‖·‖ is the Euclidean norm.
Different robust estimators, for both location and scale, have been proposed. In

the case of clustering, the development of robust methods has been studied since the
nineties. Some of the representative works include: trimmed k-means [1], robust fuzzy
clustering methods [11,2] and minimum covariance determinant estimator [6]. Interest-
ingly, there has not been, to our knowledge, any work that explored the robustness of
kernel-based clustering methods. While some works proposed kernel-based clustering
methods that could be considered robust, their focus was not to study the robustness
gained by the use of particular kernels but rather the implementation of certain robust
strategies, e.g. minimum volume covering ellipsoid estimation[4], using kernel meth-
ods. The present work studies how the use of appropriate kernels provides a conven-
tional clustering method, such a k-means, with robust properties.

4 Experimental Evaluation

The goal of the experimental evaluation is to study the influence of a popular non-linear
kernel, the Gaussian kernel, in two kernel-based clustering algorithms. Both algorithms
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are applied to two data sets (one synthetic and one real) with different degrees of con-
tamination. Two kernels are used: an identity kernel and a Gaussian kernel. The main
hypothesis is that the Gaussian kernel makes the algorithms more resilient to contami-
nation. The performance of the algorithms is evaluated by measuring the bias (Eq. (9))
and evaluating how it behaves when the amount of contamination is increased.

4.1 Datasets

Two datasets were used: a synthetic dataset and the real iris flower dataset. The synthetic
dataset has 150 samples from a mixture of three multivariate Gaussians in R

4, each
Gaussian having a different mean and covariance matrix. The iris flower data set is
a multivariate dataset that has been widely used in statistics and data mining. Each
sample in the dataset corresponds to a flower characterized by four numerical features
and a categorical attribute that indicates the species of the flower.

4.2 Experimental Setup

Both data sets are contaminated by adding a set of samples generated from a multi-
variate uniform distribution with a support that includes the range of the corresponding
data set features. Different percentages of contamination are used: 0%, 5%, 10%, 15%,
20%, 25% and 30%. For instance, a data set with a ~30% of contamination is a dataset
with 214 samples, 150 corresponding to the original samples and 64 corresponding to
contamination. For each algorithm, two types of kernels are used: the identity kernel
(Eq. (5)) and the Gaussian kernel (Eq. (6)). For the Gaussian kernel, different values of
σ were tested following a logarithmic scale, σ = 2i for i ∈ [−5, . . . ,5]. Each algorithm
configuration was run 10 times and the average bias is reported. The bias is calculated
using Eq. (9), where Θ̂(X) correspond to the cluster centroids estimated by each algo-
rithm and, in the case of the configurations with the Gaussian kernel, are back-projected
to the original space using Eq. (7).

4.3 Results and Discussion

Figures 2 and 3 show the evolution of the bias when the percentage of contamination
increases, for both methods and for different kernels. Figures 2(a) and 3(a) show the
results for KKM with three different kernels: linear kernel (equivalent to conventional k-
means), Gaussian kernel with σ = 2−2, and Gaussian kernel with σ = 24. In the case of
the Gaussian kernel, a systematic evaluation of different values for the parameter σ was
performed and the best performing value (σ = 2−2) and an average performing value
(σ = 24) are reported. Figures 2(b) and 3(b) show the corresponding results for SNMF,
with the linear kernel corresponding to the conventional (non-kernelized) version.

For both algorithms, the worst performance is exhibited by the linear kernel, and the
best performance is accomplished by the Gaussian kernel with σ = 2−2. These results
confirm the hypothesis that the use of a Gaussian kernel makes both algorithms more
robust and resilient to noise and outliers. Also, it is clear that the robustness that is
induced by the Gaussian kernel depends on the parameter σ . This parameter is related
to the scale of the data and the results indicate that an appropriate identification of the
scale has an important effect on the method’s robustness.
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Fig. 2. Bias vs contamination in the Iris dataset using (left) K-Means (KM), Kernel K-Means
(KKM) and (right) kernel Symmetric Non-negative Matrix Factorization (SNMF)
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Fig. 3. Bias vs contamination in the synthetic dataset using (left) K-Means (KM), Kernel K-
Means (KKM) and (right) kernel Symmetric Non-negative Matrix Factorization (SNMF)

The results also show that SNMF has a better performance, in terms of robustness,
than KKM. A possible explanation is the fact that SNMF produces a soft clustering in
contrast with the hard clustering produced by KKM. In fact, Davé et al. [2] found a
connection between fuzzy membership functions and weight functions used in robust
statistics.

5 Conclusions and Future Work

The main hypothesis of this work is that the robustness of kernel-based clustering meth-
ods is increased by the use of Gaussian kernels. The results of the exploratory experi-
ments performed in this paper provide evidence to support this claim. Kernel methods
are popular and well regarded machine learning methods thanks to their ability to learn
complex non-linear models. This ability is due, in part, to the kernel trick, which allows
finding non-linear patterns in the original problem space by learning linear patterns
in a kernel-induced higher-dimensional space. The results of this study suggest an ad-
ditional correspondence with useful applications: non-robust estimation in a Gaussian
kernel-induced space corresponds to robust estimation in the original problem space.

The main question posed by our findings is why the use of the Gaussian kernel makes
the corresponding algorithms more robust to noise and outliers. Our conjecture is that
back-projection (Eq. 7) of a mean value from a Gaussian kernel-induced feature space
can be considered as a robust W-estimator [10]. A deeper study of this conjecture is part
of our future work.
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