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Abstract. Traditional appearance-based methods for face recognition
represent raw face images of size u X v as vectors in a u X v-dimensional
space. However in practice, this space can be too large to perform classi-
fication. For that reason, dimensionality reduction techniques are usually
employed. Most of those traditional approaches do not take advantage of
the spatial correlation of pixels in the image, considering them as inde-
pendent. In this paper, we proposed a new representation of face images
that takes into account the smoothness and continuity of the face image
and at the same time deals with the dimensionality of the problem. This
representation is based on Functional Data Analysis so, each face image
is represented by a function and a recognition algorithm for functional
spaces is formulated. The experiments on the AT&T and Yale B facial
databases show the effectiveness of the proposed method.
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1 Introduction

Face recognition has received significant attention due to its potential for a
wide variety of applications [I]. Within the last several years, numerous face
recognition algorithms have been developed [II2]. Traditional face recognition
methods are based on the fact that a class of patterns of interest, i.e. the face,
resides in a subspace of the input image space [I]. The high dimensionality of face
images is among the challenges that these algorithms have faced. In the context
of face recognition, a u X v gray-scale image is usually identified with the vector
x € R**? given by stacking its columns. Performing face recognition in such a
high dimensional space might result in several difficulties related to the curse of
dimensionality. This matter has been addressed by transforming images to low-
dimensional vectors in the face space. Different approaches have been introduced
to achieve dimension reduction. They range from traditional approaches such as
Principal Component Analysis (PCA) [4], Linear Discriminant Analysis (LDA)
[5], Independent Component Analysis (ICA) [6] to more unconventional features
such as downsampled images and random projections [7].

Many real-world data, as face images, have this high-dimensional nature. Some
of these high-dimensional data usually have a functional nature. What does
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this mean? Although in practice, this data is observed and record discretely,
the nature of the true process is not a finite vector of measurements, but an
underlying continuous function that it is only measured at discrete points. The
term functional refers to the intrinsic structure of the data rather than to their
explicit form. When this is the case, Functional Data analysis (FDA) is a common
way to overcome the effects of the curse of dimensionality [8]/9].

Functional Data Analysis is a relatively new and growing research field that
deals with the statistical description and modeling of such kind of (functional)
data [8/9]. The basic rationale behind functional data analysis is that we should
think of observed data functions as single entities described by a continuous real-
valued function rather than merely a sequence of individuals observations. In this
way, functional data are then supposed to have values in an infinite-dimensional
space, often particularized as a Hilbert space.

In addition to handle the problem of dimensionality, why FDA can be con-
sidered a natural approach for representing and analyzing face images? A face
image (and any image, in general) is a mathematical representation of a physical
observation as a function over a spatial domain. Therefore we would like to treat
a face image as defined over a continuous spatial domain, not as a mere collection
of pixel values. All the aforementioned approaches used a classical discretization
of the data as a sequence of numbers and loose some functional characteristics of
the data like smoothness and continuity. On the contrary, FDA aggregates con-
secutive discrete measurements and views them as sampled values of a random
variable, keeping track of order or smoothness.

The purpose of this paper is twofold. Firstly, to propose a new representation
of face images using the functional data analysis framework. The central idea of
this representation is just to describe a gray-scale face image as an observation
of a functional random variable. And second, to formulate an algorithm for face
identification using that functional representation.

The introduced face recognition algorithm can be categorized as a Nearest
Subspace approach. It consists in a generalization to functional spaces of the
ideas proposed by [I0]. In this way, the proposed formulation lies on the key
assumption that patterns from the same class lie on a linear subspace [BI11]. It
is shown how our intuition for orthogonality and projections in R™ works fine
in general Hilbert spaces which makes the formulation straightforward.

The remainder of the paper is organized as follows. Section [ introduces the
functional face recognition algorithm and describes how face images can be rep-
resented as functions. Section [B] analyzes the performance of the introduced ap-
proach on two standard public available face databases. Finally, some conclusions
and future works are drawn in section [l

2 Face Recognition in Functional Space

Let (X,Y) be a pair of random variables taking values in X x {1,2,..., N},
where (X, (-,-)) is the space of square integrable functions from [a,b] X [¢,d] to
R (i.e., La([a,b] X [c,d])) and {1,2, ..., N} represents the class labels for X, with
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N € N the number of distinguished classes. Suppose also that n independent
and identically distributed (i.i.d) realizations of (X,Y") are given (training data),
denoted by (x;,9;),i = 1, ...,n. The problem of interest is to build, from (x;, y;),
a predictor of the value of Y corresponding to a future observed value of X.

For convenience, the training data (z;, y;); will be organized according to the
class membership. Suppose then that, for each class j € {1, ..., N}, n; realizations
of X are given, denoted by (;U{)J = 1,...,,n;. This means that in the training
data, each person j constitutes a class and we will have n; images of this person.

For each class j, (¢7); spans a (closed) finite-dimensional linear subspace M;
of the Hilbert space X. Based on the concept that patterns from the same class
lie on a linear subspace [BIII], any future observation z belonging to class j
must lie on M;. Therefore, an estimate ¢jo of the class label yy corresponding to
a new observation g, can be obtained by looking for, on each subspace M}, the
element 27 € M; closest to xo (in the sense that it minimizes d; = |lzo — a7]|)
and then, choosing the j for which d; is minimized. Formally, this can be written
as:

jo= min |zo— ) 1
0= in o llzo — o]l (1)
where || - || is the norm in X induced by the inner product.

We will see that such best approximations z) € M; exist, are unique and can
be characterized in a way that they can be computed. It is known that if (z7);
are elements of the Hilbert space X, and M, = span{z’} is a subspace of X,
for an arbitrary zo € X, there exist a unique ) € M; such that ||zo — z}|| =
infyens, [[zo — 2||. This unique minimizing vector is the orthogonal projection
x} = Pu, (o) of xg onto M;. ‘ -

The projection _x% can be written as a3, = Y7, aiva,ai € R, and must
satisfy (zo — a,2],) = 0, for k = 1,...n;, hence the (o), can be estimated by
solving the following system of linear equations, called normal equations:

Gj(x{,xé,...,x%j)aj =5, (2)
where o o 4
(wlyd) (whoad) ... (],
Gl ah,wl )= | F0aR) (whan) o e, )
J e
(@9, ad,) (g, 2l ) o (2,2l

is called the Gram matrix of {xﬂxé, ...,x{bj}, and o/ and 3/ are the column

vectors of = (o, a3, ..., o, ) and B/ = ((wo,27), (20, 2), ..., (z0, )" Nope
that, although the normal equations do not possess a unique solution if the z’s
are linearly dependent, there is always at least one solution. Thus the degeneracy
that could arise as a result of det(G’) = 0 always results in a multiplicity of
solutions rather than an inconsistent set of equations.

Once estimated o for each class j, the projections z, can be obtained and

consequently the class g, by solving ().
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2.1 Functional Approximation of Face Images

The previous section presented the theoretical formulation of the introduced
face recognition algorithm for an arbitrary Hilbert space. It is based on the fact
that the face image is represented as a function z € Lo([a, b] X [c, d]). However,
as stated in the introduction, what we observed in practice is a discretization
Z € R*"*? of the continuum data x. So, we need to construct an approximation
of the functions x. This is usually done by a projection approach. Each image
is approximated (smoothed) by a weighted sum (a linear combination) of basis
functions, and the coefficients of the expansion are determined by fitting data by
least squares. Each image is therefore, completely determined by the coefficients
on this basis and each function is computable for any desired argument value
(h,w).

Since we are interested in approximating functions of two variables, we need
bivariate basis functions for the expansion. One way for obtaining such bivariate
basis functions is through tensor product of univariate basis. In this way we can
approximate the function x(h,w) by

z(h,w) = Z Z ¢ijgij(hs w) (3)

where g;;(h,w) = e;(h)fj(w) is a basis on La([a,b] x [c,d]), and (e;);, (f;); are
basis on Ls[a,b] and Ls[c, d], respectively.

We need not only that (B]) approximates well the original function but also that
the operations performed on the reconstructed functions approximate as exactly
as possible the corresponding operations on the original functions. Let see how
computing inner products and norms (integrals) between functions, which are
mainly the involved operations in the algorithm, can be easily calculated.

Let E and F be the matrices defined by E;; = (es,e;),4,7 = 1,...,p and
Fa = (fe, fi),k,l = 1,...,q, and E = R.R., I' = R Ry their corresponding
Cholesky decompositions. It can be proved (we will not show this due to space
limitations) that the inner product between two functions z(h, w) (as expressed
in @) and z(h,w) = Y7 Zg a;;gij(h,w), with coefficients matrices C' = (¢;5)
and A = (a;;) respectively, is equal to:

(z,2) = Z Z Cijaij, (4)

where C' = (¢;;) = R.CRy and A = (a;;) = R,AR;. With this, we have found an
effective way to perform the operations between the functional approximations
of face images involved in the algorithm.

3 Experimental Results

To validate the proposal, experiments were conducted on two standard public
available face databases: AT&T (also known as ORL) [12] and Extended Yale B
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[13]. The introduced Functional Near Subspace Classification (FNSC) algorithm
is compared with existing methods that have been tested on these databases.
The results reported in all of our experiments are given by the recognition rate,
which measures the percent of face images well classified.

For the experiments on both databases, we shall use a tensor product of
univariate B-spline basis of order 4 (which gives a suitable smooth approximation
of the faces) over the rectangular domain of interest. An advantage of B-splines is
their local character. B-splines capture the information locally, which is suitable
for the problem at hand.

3.1 Results on the AT&T Database

The AT&T database consists of 400 face images from 40 subjects. It has 10
images per person with different variations in expressions and deviations from
the frontal pose up to 20 degrees. Face images from some of the subjects have
additional changes such as the use of glasses. We adopt here two evaluation
protocols [10]. The first protocol (EP1) uses the first five images of each person
for training, leaving the remaining five for testing. The second protocol (EP2)
consists on the “leave-one-out” cross-validation strategy. In both experiments
we have used the images of size 92 x 112 pixels as provided, without any further
processing, i.e., no geometric or photometric normalization is applied.

As described in Section [2, we first have to represent face images through B-
spline basis expansion. For this, we need to select the number of basis functions
(p X g in Section ) to be used. The choice of the number of basis is very
important because it can be regarded as a smoothing parameter. Statistically,
keeping a few coefficients in the expansion is equivalent to conducting heavy
amount of smoothing for the original data. We have selected here the number
of basis functions by expert knowledge (comparing row data images with its
reconstructions) and by trial and error. A more reasoned approach like cross-
validation could have been used in this step.

The number of basis functions used in this database is 49, i.e., p = 7 and
g = 7. This imply that the image is characterized only by 49 coefficients in the
basis expansion, which considerably reduce the dimension of the problem. We
will not refer to this vector of coeflicients as feature vector, because they are not
going to be new features for us. There is some subtle but important difference
that should be accounted for. Our data, is still a function and we operate on it
like this: we have formulated an algorithm for that, we are performing norms
and inner product in a functional sense. But in practice, as the calculations are
reduced to operate on these coefficient matrices, we can argue that the dimension
of the problem has been reduced to that number of coefficients.

Table [Il shows the results obtained on both evaluation protocols. For EP1,
the introduced approach does not achieve the best results, but its recognition
accuracy of 95.5% is comparable with the other methods based on subspace
analysis. Only the 2D-PCA and the Eigenfeature Regularization and Extraction
(ERE) algorithms outperform the proposal by a 0.5 % and 1.5 %, respectively.
For the second protocol, FNSC reports the best results.
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Table 1. Recognition rates on AT&T database

EP1 EP2
Method Recognition Rate Recognition Rate
PCA [14] 93.50 % 97.50 %
LDA [14] 94.50 % 98.50 %
ICA[L4] 85.00 % 93.50 %
Kernel-PCA [14] 94.00 % 98.00 %
2D-PCA [14] 96.00 % 98.30 %
ERE [15] 97.00 % 99.25 %
LRC [10] 93.50 % 98.75 %
FNSC 95.50 % 99.50 %

3.2 Results on the Extended Yale B Database

The Extended Yale B database contains images of 38 subjects seen under 64
different illumination conditions, in which the angle between the light source
direction and the camera axis was changed each time, in a way that the larger
the angle, the more unfavorable the lighting conditions are. This database is
usually divided into 5 subsets according to the angle of the incident illumination.
Subset S1 is composed by 7 face images per subject with frontal or almost frontal
incident lighting and is used as gallery. Subset S2 is composed by 456 images
(12 per person) with incident lighting angle between 13° — 25°, S3 have also 456
images with angles between 26° — 50°, 532 images (14 per subject) with angles
between 51° — 70° are in S4 and S5 contains 722 images (19 per person) with
angles greater than 70°. Also in this case, the provided cropped version of the
original images of size 168 x 192 are used without any pre-processing.

Figure [ shows (for an image of this database) the original image and its
functional representation. Also for this database, the number of basis functions
was selected by expert knowledge to be p = 31 and g = 35, which gives a total
of 1085 coefficients.

Also in this case, the dimensionality of the problem is considerably reduced.
As was explained before, the number of coefficients chosen has the role of an
smoothing parameter. This can be observed in this figure, where the functional

100 100

(a) (b) (c)

Fig. 1. a) Original image and b-c) its functional approximation
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Table 2. Recognition rates on Extended Yale B database

Method  S2 S3 S4 S5

PCA [10] 98.46 % 80.04 % 15.79 % 24.38 %
ICA [1I0] 98.03 % 80.70 % 15.98 % 22.02 %
LRC [10] 100.0 % 100.0 % 83.27 % 33.61 %

FNSC 100.0% 100.0 % 87.97 % 38.50 %

approximation shown in Figure is smoother than the original image that
appears in Figure

The Extended Yale B database contains large illumination variations and it
is usually used to test face recognition methods in front of this kind of problems.
We are not addressing here the illumination problem and we have not applied
any photometric normalization, although this could improve the results.

Table [2 shows the obtained results and comparisons with the Linear Regres-
sion Classification (LRC) algorithm and the other methods reported in [I0]. The
FNSC method reached the best results, achieving 100% of recognition rate in
subset 2 and subset 3 and outperforming LRC in almost 5% on subsets 4 and 5.

4 Further Issues and Conclusions

This paper presents a new face recognition method based on Functional Data
Analysis. First, a new representation of face images is proposed in which im-
ages are considered observations of functional random variables taking values
in a Hilbert space. Second, a face recognition algorithm based on Near Sub-
space approach was generalized to functional spaces. Unlike the majority of the
appearance-based methods for face recognition, our proposal attempts to take
into account the smoothness and continuity of the face image.

Experiments were conducted on two popular face databases, AT&T and Yale
B. Comparisons were done with previous approaches, and it was shown that the
proposed face recognition method performs very well.

Although the obtained results are satisfactory, there are still many issues
to investigate on the functional method proposed in this paper. One of these,
is the selection of the basis. What is the more appropriate basis to represent
face images? Is there a criteria to choose such a basis? Also, a two-dimensional
basis can be obtained not only through tensor products of univariate basis. It
is possible to use finite element analysis or thin-plate spline method to define
bivariate basis over more complicated domains, such as non uniform grid. This
new domain can be for example a Delaunay triangulation that takes better into
account the structure of the face.

Another slightly more ambitious aspects would be to incorporate other kind
of information in the construction of the functional approximation of the face im-
age, not only the pixels intensity values. This would make the representation more
robust to different problems affecting the image, like illumination variations.
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Despite all that remains to be done or can be improved in this approach,

we think that going back to the functional nature of face images could be very
promising in the face recognition tasks, would you?
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