A Differential Fault Attack on the Grain Family
of Stream Ciphers

Subhadeep Banik, Subhamoy Maitra, and Santanu Sarkar

Applied Statistics Unit, Indian Statistical Institute,
203 B T Road, Kolkata 700 108, India
{s .banik r, subho}@isical .ac.in, sarkar.santanu.bir@gmail.com

Abstract. In this paper we study a differential fault attack against the
Grain family of stream ciphers. The attack works due to certain proper-
ties of the Boolean functions and corresponding choices of the taps from
the LFSR. The existing works, by Berzati et al. (2009) and Karmakar et
al. (2011), are applicable only on Grain-128 exploiting certain properties
of the combining Boolean function h. That idea could not easily be ex-
tended to the corresponding Boolean function used in Grain v1. Here we
show that the differential fault attack can indeed be efficiently mounted
for the Boolean function used in Grain v1. In this case we exploit the
idea that there exists certain suitable a such that h(x) + h(x + «) is
linear. In our technique, we present methods to identify the fault loca-
tions and then construct set of linear equations to obtain the contents of
the LFSR and the NFSR. As a countermeasure to such fault attack, we
provide exact design criteria for Boolean functions to be used in Grain
like structure.

Keywords: Fault Attacks, Countermeasures, Grain v1, Grain-128, Grain-
128a, LFSR, NFSR, Stream Cipher.

1 Introduction

The Grain vl stream cipher is in the hardware profile of the eStream portfo-
lio [1] that has been designed by Hell, Johansson and Meier in 2005 [15]. It
is a synchronous bit oriented stream cipher, although it is possible to achieve
higher throughput at the expense of additional hardware. The physical structure
of Grain is simple as well as elegant and it has been designed so as to require
low hardware complexity. Following certain attacks on the initial design of the
cipher, the modified versions Grain v1 [15], Grain-128 |16] and Grain-128a [2]
were proposed after incorporating certain changes. Analysis of this cipher is an
area of recent interest in as evident from numerous cryptanalytic results related
to this family [3-5, [8113, 19, 20, 22, 23, [27, [2).

Fault attacks are known to be very efficient against stream ciphers in general,
and have received a lot of attention in recent cryptographic literature |6, (7,17, |18,
21)). For differential fault attack scenario in stream ciphers, the attacker is allowed
to inject faults in the internal state. Then by analyzing the difference in the faulty

E. Prouff and P. Schaumont (Eds.): CHES 2012, LNCS 7428, pp. 122-[[39] 2012.
© International Association for Cryptologic Research 2012

A Differential Fault Attack on the Grain Family of Stream Ciphers 123

and the fault-free keystreams, one should be able to deduce the complete or par-
tial information about the internal state/secret key. The most common method of
injecting faults is by using laser shots or clock glitches [24,125]. Though the fault at-
tacks usually rely on optimistic assumptions and study the cipher in a model that
is weaker than the original version, they are not unrealistic as evident from litera-
ture. In this paper too, the model we study is a follow up of existing state-of-the-art
literature [5,/19]. A detailed justification of the feasibility of such fault model is pre-
sented in [5, Section ITIB]. Before proceeding further, let us now present the fault
model.

1. Similar to [3], we consider that the attacker is able to reset the system with
the original Key-IV and start the cipher operations again. The work [19]
requires a different assumption, where the IVs need to be modified in each
initialization.

2. The attacker can inject a fault at any one random bit location of the LFSR or
NFSR. As a result of the fault injection, the binary value in the bit-location
(where the fault has been injected) is toggled. The attacker is not allowed to
choose the location where he wants to inject the fault. However, as assumed
in both |4, [19] the fault in any bit may be reproduced at any later stage of
operation, once injected.

3. Similar to 5], we inject faults in the LFSR only, whereas the NFSR has been
used for fault injection in [19].

4. The attacker has full control over the timing of fault injection, i.e., it is
possible to inject the fault precisely at any stage of the cipher operation.

OUR CONTRIBUTION. Grain-128 has been successfully cryptanalyzed by employ-
ing fault attacks |3, [19]. However, Grain-vl employs Boolean function of different
kind, and thus such fault attacks may not immediately work against this cipher.
In this paper we have tried to explore a generic fault attack on the structure
of the Grain family of stream ciphers and thus in particular the idea works for
Grain v1 too. The works presented in |, [19] exploited the fact that the Boolean
function g in Grain-128 is quadratic and the function h has only one cubic term
other than the quadratic terms. This is not the scenario in Grain v1, where the
Boolean functions are of more complicated structure in their Algebraic Normal
Form. We point out that there are still problems in the choice of such functions
as in Grain v1 |15] and suggest suitable choice instead of that one.

The novel idea of our fault attack is based on certain specific observations
related to the output Boolean function h. For Grain v1, h is a 5-variable function
with the differential property that h(sg, s1, s2, 3, 84) + h(1+ 50, 1 + s1, S2, 583, 1 +
$4) = s2. This helps us in determining one of the LFSR bits of the internal
state and repeating this several times we get the complete LFSR state. Then we
further note that h can be written as s4 - u(so, 51, $2, 83) + v(so, $1, S2, $3), where
u(So, 81, 82, 83) + w(so, 1 + 1, 82,1 + s3) = 1. This helps us in determining the
NFSR bits. To highlight our contribution in this paper, we like to refer to the
following comment from [19]:

124 S. Banik, S. Maitra, and S. Sarkar

“The attack may be extended to Grain-like ciphers with higher degree
feedback functions and output functions. However, determining fault lo-
cations can be a challenging task if linear terms are removed from output
bit expression. Higher degree feedback functions and output functions
will however certainly increase the attack complexity as mostly nonlin-
ear equations will be obtained.”

We show that the complexity of the attack is not exactly related to the degree
of the output functions. A g-variable Boolean function (say, h : {0,1}9 — {0,1})
with high degree can also be attacked in a similar manner if there exists certain
suitable o € {0,1}9 such that h(x) + h(x + «) is linear. That is, higher de-
gree functions may not increase the attack complexity as linear equations may
actually be available using clever techniques instead of nonlinear ones.

An integral part of any fault attack is to identify the register location where
the fault has been injected. We outline a novel technique of identifying the fault
location in the LFSR by using an optimal length Signature vector technique.

We also point out that there exists a pool of 5-variable Boolean functions
which are of matching parameters as proposed in [15] and possess additional
properties that help in resisting the kind of differential fault attack that we
describe here. That is, we present specific countermeasures to this kind of fault
attack that relies on proper choice of the nonlinear combining Boolean function.

ORGANIZATION OF THIS PAPER. In this section, we proceed with the details of
the Grain family (in particular Grain v1). Next, in Section[2] we present a broad
description of the actual attack. The implementation of the attack on Grain v1
along with the fault location identification routine is explained in Section Bl The
countermeasure corresponding to this attack with respect to proper choice of
Boolean functions is described in Section @l Section [B] concludes the paper.

We abuse the + notation for Boolean XOR, i.e., GF(2) addition as well as
standard arithmetic addition. However, that will be clear from the context.

1.1 Brief Description of Grain Family

The exact structure of the Grain family is explained in Figure[Il It consists of an
n-bit LFSR and an n-bit NFSR. Certain bits of both the shift registers are taken
as inputs to a combining Boolean function, whence the keystream is produced.
The update function of the LFSR is given by the equation y;+,, = f(Y;), where
Y: = [Yt, Y415 - - - Yt4n—1] is an n-bit vector that denotes the LFSR state at the
t* clock interval and f is a linear function on the LFSR state bits obtained
from a primitive polynomial in GF'(2) of degree n. The NFSR state is updated
as Tipn = Y + g(Xt). Here, X = [x4, X441, ..., Te4n—1] is an n-bit vector that
denotes the NFSR state at the t** clock interval and g is a non-linear function
of the NFSR state bits.

The output keystream is produced by combining the LFSR and NFSR bits
as 2z = h'(X1,Y;) = @,ca Tira + h(Xe,Y:), where A is some fixed subset of
{0,1,2,...,n—1}.

A Differential Fault Attack on the Grain Family of Stream Ciphers 125

Key Loading Algorithm (KLA). The Grain family uses an n-bit key K, and
an m-bit initialization vector IV, with m < n. The key is loaded in the NFSR
and the IV is loaded in the 0** to the (m — 1) bits of the LFSR. The remaining
mt to (n—1)" bits of the LFSR are loaded with some fixed pad P € {0,1}"~™.
Hence at this stage, the 2n bit initial state is of the form K||IV||P.

Key Scheduling Algorithm (KSA). After the KLA, for the first 2n clocks,
the keystream produced at the output point of the function i’ is XOR-ed to both
the LFSR and NFSR update functions, i.e., during the first 2n clock intervals, the
LFSR and the NFSR bits are updated as yyn = 2¢+f (Y1), Zt4n = ye+2e+9(Xy).

Pseudo-Random keystream Generation Algorithm (PRGA). After the
completion of the KSA, z; is no longer XOR~ed to the LFSR and the NFSR but
it is used as the Pseudo-Random keystream bit. Therefore during this phase, the
LFSR and NFSR are updated as yiin = f(Y2), Tean = ye + 9(Xy).

f(Ye)

l s l
] NFSR \«é{ LFSR

—{ h(X,Y2)

—9

Zt

Fig. 1. Structure of Stream Cipher in Grain Family

One may note that given any arbitrary state and the information about its
evolution (the number of clocks in KSA or PRGA), one can calculate the corre-
sponding state SE at the beginning of the KSA. This is because the state update
functions in both the KSA and PRGA in the Grain family are one-to-one and
invertible. Hence one can construct the KSA~! routine that given an input 2n
bit vector denoting the internal state of the cipher at the end of the KSA, re-
turns the 2n bit vector giving internal state of the cipher at the beginning of the
KSA. One can similarly describe a PRGA~! routine that inverts one round of
the PRGA.

As we will consider Grain vl for our attack description, let us describe it
now. In Grain v1, the size of Key is n = 80 bits and the IV is of size m = 64
bits. The pad used in the KLA is P = O0xFFFF. The LFSR update rule is given
by yi180 = Y62 +Yi+51+Ye 138 +Yer23+Ysr13+y. The NFSR state is updated as

126 S. Banik, S. Maitra, and S. Sarkar

Ti480 = Yt + g(xt+637xt+62axt+607-'L't+527xt+45axt+377xt+337xt+28,xt+217 Tt+15,
Tt+14, Tt49, xt)7 where g(2¢463, L1462, L1460, Ti4+52, L1445, L1437, Lt4+33,
Tt428, Lt+4215 Lt4+155 Tt+14, Tt49, -'L't)
= Tt462 T L1460 T Ti452 + Teras + Te437 + Te433 + Ti428 + Tiq21 + Tey14 + Tigg
FXt+21463T1+60 T Tt+370t433 T Lt4+15T¢+9 T Lt460Lt+52L 445 T Lt433T¢+28L¢421
FTt463Tt4+45T1428%t+9 T Tt460Lt+52L4+37Tt+33 T Ti463Tt+60Lt+21Tt+15
FT1463Tt+60Tt+52Tt+45T14+37 + Ti+433T1t4+28Tt4+21Tt+15T1+9
FT1452Tt4+45Tt+437Tt+33T14+28T¢+21-
The output keystream is produced by combining the LFSR and NFSR bits as
2y = @aeA Tira + W(Yt43, Yer25, Yi+46, Yi+64, Tet63), Where
A ={1,2,4,10,31,43,56} and h(sg, s1, S2, $3,S4) = S1 + S4 + SoS3 + S283 +
S$354 + SpS152 + S0S253 + SpS2S84 + S15254 + S$25354.

2 Broad Idea of the Generic Differential Fault Attack

In this section we will describe the generic fault attack idea on any cipher with
the physical structure of the Grain family, i.e. a cipher in which there is an n-
bit LFSR driving an n-bit NFSR. The LFSR and NFSR are being updated by
feedback functions f, g respectively and the output keystream bit at each round
is generated by an output function of the internal state, i.e., a function of certain
locations from both the LFSR and the NFSR. The main nonlinear part of the
output function is the 5-variable function h and we study this function carefully.

For this, let us first describe a few issues related to Boolean functions. The
readers may have a look at |26] and the references therein for detailed background
on Boolean functions. A ¢-variable Boolean function is a mapping from the set
{0,1}7 to the set {0,1}. Apart from the truth table, another important way
to represent a Boolean function is by its Algebraic Normal Form (ANF). A ¢-
variable Boolean function h(z1,...,z4) can be considered to be a multivariate
polynomial over GF'(2). This polynomial can be expressed as a sum of products
representation of all distinct k-th order products (0 < k < ¢) of the variables.
More precisely, h(z1,...,x4) can be written as

ap + @ a;T; + @ Qi T;T5 + -+ a12..¢T1T2 ... Ty,
1<i<q 1<i<j<q

where the coefficients ag, a;j, . .., a12..q € {0,1}. This is the ANF representation
of h. The number of variables in the highest order product term with nonzero
coefficient is called the algebraic degree, or simply the degree of h and denoted
by deg(h). Functions of degree at most one are called affine functions. Given the
above background, let us present the following definition.

Definition 1. Consider a q-variable Boolean function F'. A non-zero vector a €
{0,1}9 is said to be an affine differential of F' if F(x) + F(x + «) is an affine
function. A Boolean function is said to be affine differential resistant if it does
not have any affine differential.

A Differential Fault Attack on the Grain Family of Stream Ciphers 127

We propose to recover the secret key used in the cipher by observing and an-
alyzing the difference between the fault-free and faulty keystreams. Our attack
algorithm attempts to recover the internal state of the cipher after the comple-
tion of KSA (or equivalently when PRGA is about to begin). Since both the
PRGA and the KSA of Grain family is completely invertible, one can then run
the KSA~! routine to determine the secret key K. As we have pointed out earlier,
one can obtain a set of linear equations if there exist affine differentials corre-
sponding to the function h and one such corresponding affine function should be
on the variables that come from the locations of the LFSR only.
Given this background, the attack will comprise of the following steps:

1. The attacker is allowed to reset the cipher with the original Key-IV and
restart cipher operations.

2. The attacker can inject a fault at any one random bit location of the LFSR.
As a result of the fault injection, the binary value in the bit-location (where
the fault has been injected) is toggled. The attacker is not allowed to choose
the location of the LFSR where he wants to inject the fault. However, the
fault in any LFSR bit may be reproduced at any later stage of operation,
once injected.

3. Initially the attacker injects a fault (may be more than one in a few cases)
in a randomly chosen position of the LFSR and identifies the fault location
by comparing the original (fault-free) and faulty keystream.

4. The attacker has full control over the timing of fault injection, i.e., it is pos-
sible to inject the fault precisely at any stage of the cipher operation. Thus,
knowing the fault location, (i) it is possible to restart the cipher operations
with the original Key-IV, (ii) inject further faults in the same location (in
our case either two or four faults) at specific PRGA rounds.

5. In this case, by comparing the original (fault-free) and faulty keystream in
certain PRGA rounds, we obtain linear equations with respect to the LFSR
state bits at the beginning of the PRGA. We run the fault attack suitable
number of times so that we have several such linear equations and solving
them we get the LFSR state. It is possible to obtain the linear equations
(and thus to solve them efficiently) due to certain property of the Boolean
function h.

6. Similarly as above, comparing the original (fault-free) and faulty keystream
in certain other PRGA rounds, we obtain linear equations with respect to
the NFSR bits at certain PRGA round and thus get back the NFSR state
at the beginning of the PRGA. One can then run the KSA~™! routine to
determine the secret key K.

In the next section we detail this algorithm with respect to Grain v1.

3 Differential Fault Analysis: Case Study with Grain v1

Our attack is generic and it works for any version of the Grain family. For
Grain-128 our attack works in a similar broad framework as in [5], though the

128 S. Banik, S. Maitra, and S. Sarkar

exact details of the signatures, construction of linear equations and the way of
exploiting the Boolean functions need to follow the method we describe below.
Since the existing works |4, [19] will not work on Grain v1 due to comparatively
complicated output function h, we concentrate on this version as a case study to
explain our novel approach. Further, we would like to point out that to the best of
our knowledge there is no existing fault attack on Grain v1 available in literature.
Moreover, our attack strategy works on any generic Grain like structure and
points out the importance of properly choosing the Boolean functions and the
LFSR, NFSR locations that will be fed into the functions.

3.1 Obtaining the Location of the Fault

Our attack model assumes that the attacker is allowed to toggle the value at
exactly one random location of the LFSR. The attacker, however can not explic-
itly choose the location where the fault is to be injected. In order for the attack
to succeed, it is very important that it will be possible to identify the location
of the LFSR where the fault has been induced.

Some Definitions and Notations. Let Sy € {0,1}!60 be the initial state of
the Grain vl PRGA, and Sp a, be the initial state resulting after injecting fault
in LFSR location ¢ € [0,79]. Let Z = [z0,21,...,2] and Z¢ = [zg,zf,...,zf]
be the first [keystream bits produced by Sy and Sop a, respectively. The task
for the fault location identification routine is to determine the fault location ¢
by analyzing the difference between Z and Z¢. Initially we have taken the value
of | = 80. After describing the fault location identification strategy in detail, we
will study the value of [more critically.

We define an 80 bit vector Ey over GF(2) whose i element Ey(i) is the
logical XNOR, (complement of XOR) of the i'* elements of Z and Z?, i.e.,
Ey(i) =142z + z:b (here + should be interpreted as @). Since Sy can have 2144
values (each arising from a different combination of the 80 bit key and 64 bit IV,
rest 16 padding bits are fixed), each of these choices of Sy may lead to different
patterns of Eg. The bitwise logical AND of all such vectors Ey is denoted as the
Signature vector Sgng for the fault location ¢.

The Sgng Pattern. Note that whenever Sgn,(i) is 1 this implies that the "
keystream bit produced by Sp and Sp 4, is equal for all choices of Sp. Calculating
the Signature vectors by this method is a computationally infeasible task. We
will describe a method to calculate them efficiently as below.

For Grain v1, two initial states of the PRGA Sp, So,a,, € {0,1}'% which
differ only in the 79" position of the LFSR, produce identical output bits in
68 specific positions among the initial 80 keystream bits produced during the
PRGA. If an input differential is introduced in the 79"* LFSR. position, then at
all rounds numbered k € [0,79] \ {15, 33,44, 51, 54,57,62,69,72,73,75,76}, the

A Differential Fault Attack on the Grain Family of Stream Ciphers 129

difference exists in positions that do not provide input to the Boolean function
h and hence at these clocks the keystream bit produced by the two states are
essentially the same. At all other clock rounds the difference appears at positions
which provide input to h. Hence the keystream produced at these clocks may be
different. Following the explanation given above, we can write Sgnrg in hexadec-
imal notation, Sgny9 = FFFE FFFF BFF7 EDBD FB27, which has 80 — 12 = 68
many 1’s and rest 0’s.

Generalizing the above idea, for two PRGA initial states So, So,a, € {0, 1}'%°
which differ only in the ¢ LFSR location, an analysis of the differential trails
shows that out of the first 80 keystream bits produced by them, the bits at a
certain fixed rounds are guaranteed to be equal. Thus by performing the above
analysis for all fault locations ¢ (0 < ¢ < 79), it is possible to calculate all
the Signature vectors. A table containing the vectors for each fault location ¢ is
available in Table [I1

Table 1. Fault Signature Vectors Sgne for 0 < ¢ < 79 in hexadecimal notation for
Grain v1

Sgn(P @ Sgn(P @ Sgnd) @ Sgnd)

FFFF 3F7F CB93 A080 0000 20 FFFF BEFF F3B7 F4A9 3808 40 FFFE DFFF B3EE ED31 3B40 60 FFFD FFBF EDEF F93A 7E52
FFFF 9FBF E5C9 D040 0000 21 FFFF DF7F FODB FA54 9C04 41 FFFF 6FFF D9F7 7698 9DAO 61 FFFE FFDF F6F7 FCOD 3F29
FFFF CFDF F2E4 E820 0000 22 FFFF EFBF FCED FD2A 4E02 42 FFFF B7FF ECFB BBAC 4EDO 62 FFFF 7FEF DB7B F64E 9D90
TFFF ETEF F972 7410 0000 23 FFFF 77DF DE72 F694 2501 43 FFFF DBFF F67D DDA6 2768 63 FFFF BFF7 EDBD FB27 4EC8
BFFF F3F7 FCB9 3A08 0000 24 FFFF BBEF EF39 7B4A 1280 44 FFFF EDFF FB3E EED3 13B4 64 7FFF DFFB F6DE FD93 A764
FOFB FE5C 9D04 0000 25 7FFF DDF7 F79C BDAS5 0940 45 FFFF F6FF FDOF 7769 89DA 65 BFFF EFFD FB6F 7EC9 D3B2
EFFF FCFD FF2E 4E82 0000 26 BFFF EEFB FBCE 5ED2 84A0 46 T7FFF FB7F FECF BBB4 C4ED 66 DFFF F7FE FDB7 BF64 E9D9
F7FF FETE FF97 2741 0000 27 DFFF F77D FDE7 2F69 4250 47 BFFF FDBF FF67 DDDA 6276 67 EFFF FBFF 7EDB DFB2 74EC
FBFF FF3F 7FCB 93A0 8000 28 EFFF FBBE FEF3 97B4 A128 48 DFFF FEDF FFB3 EEED 313B 68 F7FF FDFF BF6D EFD9 3A76
FDFF FFOF BFES C9D0O 4000 29 F7FF FDDF 7F79 CBDA 5094 49 EFFF FF6F FFD9 F776 989D 69 FBFF FEFF DFB6 F7EC 9D3B
FEFF FFCF DFF2 E4E8 2000 30 FBFF FEEF BFBC ESED 284A 50 F7FF FFB7 FFEC FBBB 4C4E 70 FDFF FF7F EFDB 7BF6 4E9D
FFE7 EFF9 7274 1000 31 FDFF FF77 DFDE 72F6 9425 51 FBFF 7FDB DFF2 74FC A40B 71 FEFF FFBF F7ED BDFB 274E
FFF3 F7FC B93A 0800 32 FEFF FFBB EFEF 397B 4A12 52 FDFF BFED EFF9 3A7E 5205 72 FF7F FFDF FBF6 DEFD 93A7
13 FFDF 7FF9 DBFA 549C 0400 33 FF7F FFDD F7F7 9CBD A509 53 FEFF DFF6 F7FC 9D3F 2902 73 FFBF FFEF FDFB 6F7E C9D3
14 FFEF BFFC EDFD 2A4E 0200 34 FFBF FFEE FBFB CESE D284 54 FF7F EFFB 7BFE 4E9F 9481 74 FFDF FFF7 FEFD B7BF 64E9
15 FFF7 DFFE 76FE 9527 0100 35 FFDF FFF7 7DFD E72F 6942 55 FFBF F7FD BDFF 274F CA40 75 FFEF FFFB FF7E DBDF B274
16 FFFB EFFF 3B7F 4A93 8080 36 FFEF FFFB BEFE F397 B4A1 56 FFDF FBFE DEFF 93A7 E520 76 FFF7 FFFD FFBF 6DEF D93A
17 FFFD F7FF 9DBF A549 C040 37 FFF7 FFFD DF7F 79CB DA50 57 FFEF FDFF 6F7F C9D3 F290 77 FFFB FFFE FFDF B6F7 EC9D
18 FFFE FBFF CEDF D2A4 E020 38 FFFB 7FFE CFBB B4C4 EDOO 58 FFF7 FEFF B7BF E4E9 F948 78 FFFD FFFF TFEF DB7B F64E
19 FFFF 7DFF E76F E952 7010 39 FFFD BFFF 67DD DA62 7680 59 FFFB FF7F DBDF F274 FCA4 79 FFFE FFFF BFF7 EDBD FB27

e R N N
=}
=l
&l
El

=
=
o
R
@ N
o

Steps for Location Identification. As mentioned above, the task for the
fault identification routine is to determine the value of ¢ given the vector Ey.
For any element V € {0, 1}! define the set By = {i: 0 <i <[, V(i) = 1}. Now
define a relation < in {0, 1}! such that for 2 elements Vi, Vo € {0, 1}, we will
have Vi X Vs if By, C By,.

Now we check the elements in Bg,. By definition, these are the PRGA rounds

¢ during which z; = zf . By the definition of Signature vector proposed above,
we know that for the correct value of ¢, Bsgn, € Bg, and hence Sgng < Ey.
So our strategy would be to search all the Signature vectors and formulate the
candidate set ¥y = {¢p : 0 < <79, Sgny < Es}. If |¥| is 1, then the single
element in ¥y will give us the fault location ¢. However, this may not necessarily
be the case always. If ¥ has more than one element, we will be unable to decide
conclusively at this stage.

130 S. Banik, S. Maitra, and S. Sarkar

In such a scenario we reset the cipher with the original Key-IV and this time
apply the fault at the same location ¢ at the beginning of the 80** PRGA round
and record the next 80 keystream bits Z%(80) = [z5(80), 22, (80), .. ., 2%, (80)],
where zf’ (t) denotes the *" keystream bit produced due to a fault on LFSR
location ¢ at the beginning of PRGA round ¢. Let the corresponding fault-free
bits be denoted by Z(80) = [zs0, 281, - - - , 2159]. Now reformulate and recalculate
the vector Ey so that its i*" element is the logical XNOR of the i!" elements of
Z(80) and Z¢(80). We now search over the Signature vectors in the candidate set
Wy and narrow down the set of possible candidates to ¥ = {¢ : ¢ € Wy, Sgny <
E,}. Clearly, || < |%]|, and so if |#;]| = 1 then the fault location ¢ is the single
element in ¥;. If not, we repeat the above process for another round, i.e. reset
and apply the fault at the PRGA round 160 etc. If after k rounds of this process,
|@—1] = 1, then the single element in ¥,_; gives us the desired location ¢.

Length of Signature Vector. In the idea given above, we have considered
the length of the signature vector I = 80. It may be noted that that fault
identification routine is also possible if we increase or decrease the length of
the signature vector. So what guidelines must be followed to choose an optimal
signature length. Intuitively the following considerations seem to be useful.

1. The signature vector must be long enough so as to uniquely identify the fault
location applying one or more faults.

2. The length of the signature vector must be such that the average number of
faults required to identify the fault location can be minimized.

We shall see how each of the above considerations affect the choice of the length [
of the Signature vector. For example, by simply looking at the Signature vectors
(one may refer to Table[Il), one can deduce for sure that [can not be less than or
equal to 16, otherwise ¢ = 0,1, 2,19, 20, 21,22,23,24,41,42,43,44,45,61,62,63
will have the same Signature vectors. We will give a better bound on [in the
following Lemma.

Lemma 1. The LFSR fault location can not be uniquely identified if the length
of the signature vector Sgng is less than or equal to 44.

Proof. Take [= 44. Studying the Signature vectors, one can check that Sgngg =
FFFE DFFF B3E and Sgny9 = FFFE FFFF BFF. Note that, for all locations i €
[0, 43] such that Sgnao(i) = 1, the value of Sgnzg(i) is also 1. This implies that
Sgngo = Sgnrg. Now consider the case with the fault location ¢ = 79. Then by
the definition of the signature vector we have Sgnrg = Ey. Since =< is a partial
order on {0,1}!, this implies that Sgni =< E, and so whenever ¢ = 79 the
fault location identification routine will never be able to narrow down the set of
possible candidates ¥y to only {79} for any value of k. It is easy to check that
the same argument holds for any [< 44. O

Whenever [> 45 a simple exhaustive search through the Signature vectors for
all fault locations, will show that Sgng, A Sgnge, for any two fault locations

A Differential Fault Attack on the Grain Family of Stream Ciphers 131

Average no. of Faults y
—
[\
T
|

|
50 60 70 80 90 100
Signature length [

Fig. 2. Average number of faults vs Length of Signature

0 < ¢1 # P2 < 79. Further, we have to choose some [> 45 so that the average
number of faults, for determining the fault location uniquely, can be minimized.
Finding, this optimal value of [mathematically is a difficult task, and hence we
choose to determine the optimal value by performing computer simulations. By
taking the average over 22° uniformly randomly chosen Key-IV pairs for Grain
vl, for every signature length [> 45 we get the curve of Average number of
faults p; vs Length of Signature [given in Figure

We can see that after I = 80, p; = 1.08 becomes almost constant for increasing
values of [. So the length of the Signature vector has been chosen to be 80 bits.

A similar analysis for Grain-128 shows that the minimum Signature length
must be greater than or equal to 62. For [= 128, the value of y; is around 1.001.

3.2 Determining the LFSR Internal State

Once the fault location ¢ has been identified we can proceed towards determining
the LFSR internal state at the beginning of the PRGA. Depending on the value
of ¢ we do one of the following.

— If 0 < ¢ < 37, we disregard the faulty keystream bits, and reset the cipher
and look to hit another LFSR location.

— If 38 < ¢ < 41, we reset the cipher and apply faults at the location ¢ at
the beginning of PRGA rounds 0,20 and record the faulty keystream bits
at certain specific PRGA rounds. We then reset the cipher and look to hit
another LFSR location.

—If 42 < ¢ < 79, we reset the cipher and apply faults at the location ¢ at
the beginning of PRGA rounds 0, 20 and record the faulty keystream bits at
certain specific PRGA rounds. We reset the cipher again and apply faults
at the location ¢ at the beginning of PRGA rounds 204, 224 and record the

132 S. Banik, S. Maitra, and S. Sarkar

faulty keystream bits at certain other specific PRGA rounds. We then reset
the cipher and look to hit another LFSR location
— We continue this process till all LFSR locations 38 to 79 have been hit.

We would like to point out that each double fault (injected at PRGA rounds
0,20 or 204,224) yields one linear equation in the initial LFSR state bits of
the PRGA. By injecting 2 faults in the 4 LFSR locations 38 to 41 and 4 faults
in the 38 LFSR locations 42 to 79, we obtain a set of 80 independent linear
equations in the initial LFSR state bits, which can be solved to get the entire
LFSR state at the start of the PRGA. The faulty keystream bits recorded in this
phase will be again used to recover the NFSR internal state as will be explained
in Section Before describing the attack in detail let us state the following
symbolic notations that we shall be using henceforth.

Some Notations

1S, = [zf, 2}, ... 2y b, yl, ..., yko] is used to denote the internal state of
the cipher at the beginning of round ¢ of the PRGA. Thus ! (y!) denotes
the i" NFSR (LFSR) bit at the start of round ¢ of the PRGA. When t = 0,
we use Sy = [0, 1,...,%79 Yo,Y1,---,Yr9] to denote the internal state for
convenience.

2. Sf’(tl, t9) is used to denote the internal state of the cipher at the beginning
of round t of the PRGA, when a fault has been injected in LFSR location ¢
at the beginning of the t{* and the t{* PRGA round.

3. zf)(tl, t2) denotes the keystream bit produced in the it" PRGA round, after
faults have been injected in LFSR location ¢ at the beginning of the #{* and
the tt" PRGA round. z; is the fault-free i'" keystream bit.

Beginning the Attack. We start by making the following observation about
the output Boolean function h in Grain v1: h(so, s1, S2, $3,84) + h(1 + s0,1 +
S1,82,83,1 + 84) = so. Hence h is not affine differential resistant. Note that
S0, S1, S2, S3 correspond to LFSR locations 3, 25,46, 64 respectively and s4 corre-
sponds to the NFSR location 63. This implies that if two internal states S and
S A be such that they differ in LFSR locations 3,25 and NFSR location 63 and
in no other location that contributes inputs to the output keystream bit, then
the difference of the keystream bit produced by them will be equal to the value
in LFSR location 46. Getting differentials at exactly these 3 locations may be
difficult by injecting a single fault, but may be achieved if we faulted the same
LFSR location twice, as will be explained by the following lemma.

Lemma 2. If a fault is injected in LFSR location 38 + 1 (0 < r < 41), at the
beginning of the PRGA rounds A and A+20 (A =0,1,...), then in round number
55 + XA + 7 of the PRGA, the faulty internal state Sggjr';Jrr()\, A+ 20) and the
fault-free internal state Sssqxir will differ in LESR locations 3,25 and NFSR
location 63 and in none of the other 9 tap locations that contributes to the output

keystream bit.

A Differential Fault Attack on the Grain Family of Stream Ciphers 133

Proof. The proof requires the analysis of the differential trail of the successive
PRGA rounds. A differential A introduced in LFSR location 38+ (0 < r < 41),
at the beginning of rounds A and A+ 20 of the PRGA, will certainly reside on the
LFSR locations 3,25 and NFSR location 63 at the beginning of round 55+ A+
of the PRGA. The differential also does not affect any other location involved
in the computation of the output keystream bit in round 55+ A\ + 7. O

The above lemma implies that if A = 0, i.e., if faults are injected at the beginning
of the PRGA and round 20 at location 38 +r, 0 < r < 41 of the LFSR, then in
the PRGA round 55 + r we will have
Z554r + 2510(0,20) = Y5t Vr € [0,41].

Now since the NFSR does not influence the LFSR during the PRGA, yig“ is
a linear function of the initial LFSR bits yo, y1, ..., y79 for all 0 < r < 41. For
example, by analyzing the LFSR we have y38 = y3 + y16 + Y21 + Y26 + Y34 + ya1 +
Yaa + Ysa + Ys9 + Ye5 + Y72-

So in this process, we obtain 42 linear equations in the original LFSR bits
Y0, Y1,-- -, Y79. We need another 38 equations such that the resulting 80 equations
are linearly independent. We have attempted to find the remaining 38 equations
by resetting the cipher and then introducing faults later in the PRGA. If we let
A = 204, i.e., if double faults were introduced in LFSR locations 42 + r with
0 < r < 37 at the beginning of the PRGA rounds 204 and 224, then by the
previous analysis it may be deduced that

Zo6s+r + Zagase(204,224) = 33T v € [0,37).

This provides us with another 38 equations. We have observed that these equa-
tions are linearly independent. Writing these equations in matrix notation, we
have LY = W. The rows of the matrix L is defined by the linear functions
yae,y3s, L yl8,v3s, . yad0. Further, Y = [yo y1 ... yro]T and W is the col-
umn vector defined as follows

W(r) = zs54r + zg’?ﬂ(o, 20) 0<r <41,
W (42 +7) = 22634+ + z;%;fr@oéx, 224) 0<r<3T.

Since the matrix L and its inverse can be pre-computed beforehand, the vec-
tor Y = L7'W can be calculated immediately after applying the faults and
calculating W.

Note that for the second round of fault injections the choice of fault locations
42 < ¢ < 79 and PRGA rounds 204,224 is by no means unique. By searching
over various values of A\, one may be able to obtain a set of linearly independent
equations for other choices of fault locations and PRGA rounds.

Remark 1. If the function A in Grain vl had been affine differential resistant,
then such linear equations could not have been formed. Instead one had to con-
sider a set of nonlinear equations to get Y. As referred in [19], solving such
nonlinear equations is more challenging task and in that case the fault attack we

134 S. Banik, S. Maitra, and S. Sarkar

describe here would have been less efficient. The method works in a similar man-
ner for Grain-128 and Grain-128a. For example, the output function in Grain-128
is of the form h(sg, 1, S2, 83, S4, S5, S6, S7, S8) = S0S1 + S283 + S485 + S657 + S0S4 s,
where sg and s4 corresponds to NFSR variables. One can check that for any
a € {001000000,000100000, 000000100, 000000010}, h(x) + h(x + «) is a linear
function of LFSR variables only.

3.3 Determining the NFSR Internal State

Once the LFSR internal state of the initial PRGA round is known, one can
then proceed to determine the NFSR internal state. In [4] it was shown, that
this could have been done efficiently for the initial version of the cipher i.e.
Grain v0. After the attack in [4] was reported, the designers made the necessary
changes to Grain v1, Grain-128 and Grain-128a so that for these new ciphers,
determining the NFSR state form the knowledge of the LFSR state was no
longer straightforward. In order to determine the NFSR bits, we look into the
decomposition of the Boolean function h in more detail. The attack we will
describe in this section can be mounted due to the following observations on the
Grain output function h.

A. h(:) can be written in the form s; - u(-) + v(-) where s; corresponds to a
variable which takes input from an NFSR tap location;

B. There exists a differential 8 such that u(s) + u(s +) = 1;

C. v(s)+v(s+f) = a function of variables that takes input from LFSR locations
only.

For Grain v1, h(sg, s1, S2, 83, 84) = S4 - u(So, 1, S2, $3) + v(s0, s1, S2, S3), where
u(so, 81, 82, 83) = 1 + 83 + Sps2 + s182 + s283, and v(so, 51, S2, S3) = $1 + S0S3 +
8283 + 808182 + Sps283. Thus we note that (i) u,v are functions on the LFSR bits
only, (ii) u(so, 51, $2,83) + u(So, 1 + s1, $2,1 4+ s3) = 1 and (iii) v(so, s1, S2, $3) +
v(s09, 1+ s1,82,1 4 s3) = 1+ sp + s2. Hence h satisfies all the properties listed
above.

The fault-free keystream bit at the ¢ round can now be rewritten as z; =
Dacarh + 263 - w(ys, Yss: Yiss Y6a) + v(Y5, Yss, Yie, Y6a). Consider two internal
states S; and Sy A which differ in the LESR locations 25 and 64 and in no other
location, that provides input to h. If z; and z; o are the keystream bits produced
by S: and S¢ a in that round, then using the previous observation we can see
that

2t + 26,0 = Ty + (Y5, Ysss Ve Vea) + v (U5, L+ Ubss Ve 1+ Yba)-

Let ¢; = [v(yh, ybs, vie, ybs) +0(ys, 1+ ybs, yhe, 1 +yks)] . Since the LFSR internal
state is already available, ¢; can be computed immediately, and hence the differ-
ence of the two keystream bits plus the value of ¢; gives us the value at the NFSR
location 63 at round ¢ of the PRGA. In the next Lemma, we shall investigate
when this differential pattern in the internal state is obtained by employing the
same fault injection strategy in the previous subsection.

A Differential Fault Attack on the Grain Family of Stream Ciphers 135

Lemma 3. Let Sy, S1,59,... be the successive internal states of the PRGA for
Grain vl. Then the faulty state Sf’(O7 20) will differ from S at LFSR locations
25,64 and none of the other 10 tap locations that feed the output function for the
following values of ¢,t: (1) ¢ =51+r,t =91+7r for 0 <r <28, (ii) p =62+,
t=>55+r for0<r <17, (i) p=62+7r, t=75+7 for 0 <r <15.

Proof. The proof follows from an analysis of the differential trails of Grain v1
PRGA, and is similar to the proof for Lemma Pl a

The Lemma essentially implies that if faults are injected at the beginning of the
PRGA and round 20 at location 51 + r of the LFSR (0 < r < 28), then in the
PRGA round 91 + r we will have

20147 + 21 40(0,20) + co14r = 25T Vr € [0,28].
Also, the following equations hold:

Z554r + 2010(0,20) + cs54r = 2051 V1 € [0, 17],

Z754r + 202107(0,20) + crspr = 3T Vr € [0, 15].

Since the LHS of all the above equations are known, we can therefore calculate
the value of the NFSR location 63 for all PRGA rounds 55, 56, ..., 72, 75,
76, ..., 119. Because of the shifting property of the NFSR, the equations z} =

%

Jj+1 ; ; 55 .56 72 .75 .76 119 ;
7] Vi€ [1,79] hold. Therefore knowing g3, 33, . - ., 63, T3, €63, - - -» Tgz~ 1S
equivalent to knowing #3193, 2103 ... 2193 2103 103 2103 e we now know

63 out of the 80 NFSR state bits of Sig3.

Finding the Remaining Bits. Any bits of the NFSR internal state not found
out in the previous subsection could be obtained by performing an exhaustive
search over them. However, if h is such that both u, v are functions on the LFSR
bits only then the attack can be further simplified. Since the function A in Grain
v1 satisfies this property, we proceed to determine the remaining 17 NFSR bits of
S103. These may be found by a combination of solving equations and guesswork.
Since the 80 LFSR bits of Sy have already been found in the previous section,
one can efficiently calculate the 80 LFSR bits of Sig3 by running the Grain
vl PRGA routine. This is because the LFSR evolves independently during the
PRGA. Then, by observing the fault-free output keystream bits we can write
the following equations:

_ 103 , 103 , 103 | 103 , 103 103 103 103
21024~ = Toyy T2 FT30 T2 +T307 T Ta1 T T557, TUL0244T625 4 TV1024,

for v = 0,1,...,14, where u; = u(y4, yss, yis, vés) and v; = v(yi, Yo, Yis, vés)-
Since the LFSR initial state is known, u;, v; are available. Consider the set of
15 equations given above. In the last equation it can be seen that z1$® is the
only unknown and hence its value may be easily calculated. Once 2}9* is known,

219% becomes the only unknown in the 14" equation and its value too may be

136 S. Banik, S. Maitra, and S. Sarkar

immediately calculated. Backtracking in this manner one can calculate upto %

from the 6" equation. At this point we have calculated the value of 73 NFSR
bits of S1g3. The 5** equation is

103 103

103 103 103 103 103
Z106 = Ty~ + X

103
+.’£7 +.’£13 +.’£34 +1’46 +1’59 +u106x66 + V106-

This equation has two unknowns z1% and x13% and so the value of either un-
known can not be calculated conclusively. Similarly the 4*" equation has two
unknowns z3% and 2132, If we try out all the possibilities of x193 2193 then
the value of the remaining 5 unknowns may be calculated uniquely. So we do
an exhaustive search over the 2 bits (4 possible candidates) for S1p3. The cor-
rect Sig3 may be found out by observing the keystream bits zi03, 2104, . .., as
required. We eliminate any candidate S1g3 vector that does not produce the re-
quired keystream bit sequence. This routine thus gives us the entire Syg3 vector.
Note that in order to recover the NFSR state one does not have to inject any

additional faults other than those already injected to determine the LFSR state.

Remark 2. If the function A in Grain vl were such that it could not be decom-
posed into u and v as above, then the attack would not have been as straight-
forward. The attack here is efficient as v and v are of certain nice structures
and their inputs are from LFSR bits only. The LFSR bits are already known
after the recovery of the LFSR bits and that helps in recovering the NFSR state
easily. It can be checked that the output function of Grain-128 and Grain-128a
also follows properties (A), (B), (C) given at the beginning of this section and
thus renders them vulnerable to this attack.

3.4 Finding the Secret Key and Complexity of the Attack

It is known that the KSA and PRGA routines in the Grain family are invertible.
Once we have all the bits of Sig3, by running the inverse PRGA routine 103
times, we obtain the initial PRGA state Sy. Thereafter, by running the inverse
KSA routine one can recover the secret key.

The attack complexity directly depends on the number of fault experiments
to be performed such that all of locations in [38,79] of the LFSR are covered.
To have this, the expected number of fault experiments is 80 - Zgl 1 ~ 344.
In each fault experiment, the fault identification routine requires y; faults and
simulation results show that the expected value of y; is 1.08. Further depending
on the LFSR location hit, during the attack phase, one needs to inject 2 or 4
extra faults for determining the internal state. Therefore, the expected number
of faults that our attack needs is 344 x (1.08) + 4 x 38 + 2 x 4 ~ 29-05,

To determine the internal state, we have to perform one matrix multiplica-
tion, and solve a set of 78 linear equations and then exhaustively search over
2 variables. After that, 103 invocations of the PRGA~! routine and a single
invocation of the KSA~! routine are needed to determine the Secret Key.

Thus the dominant time/memory consuming process in our attack is the
multiplication of L~='W which requires around 80 x 80 bits to store L~! and

A Differential Fault Attack on the Grain Family of Stream Ciphers 137

802 &~ O(2'%:%) bit operations to calculate the product. Further storing the Sgn,
patterns also requires 80 x 80 bits as described in Table [

As stated before, this is the first reported fault attack on Grain vl. Two
fault attacks [5,[19] have been reported against Grain-128 and that is the reason
direct comparison is not possible. However, one may note that our resource
requirements are either favorable or comparable to that of |3, [19].

4 Countermeasure: Choice of Proper Boolean Function

In [5], it was suggested that one of the methods to prevent such fault attacks was
to keep two identical implementations of both the shift registers in the cipher
hardware. Naturally this needs additional hardware.

One important question here is what are the reasons such that the fault at-
tack can be efficiently implemented. We have already seen that the source of
the weakness lies with the output Boolean function h. Our attack is possible as
there exists the vector a = [1,1,0,0,1] such that h(s) + h(s + «) is an affine
Boolean function. This function h, used in Grain v1, is clearly not affine differ-
ential resistant. In [15], the designers clearly specify the reasons for choosing this
particular output function.

“This filter function is chosen to be balanced, correlation immune of the
first order and has algebraic degree 3. The nonlinearity is the highest
possible for these functions, namely 12.”

In view of the fault attack presented here, we need affine differential resistant
functions with the same parameters. One may refer to [26] to have many such
functions in the class of rotation symmetric Boolean functions and we describe
the ANF of one of those as below:

F(s0,51,52,53,51) = 8081 + 5152 + 5253 + 5354 + 5450 + S052 + 5153 + 5254 +
$380 + S481 + S0S183 + S15284 + S28350 + S35451 + S450S2. This function can be
realized with a few extra logic gates as below. The gate count is presented as
per the calculation of |15].

Gate Requirement
NAND2 NAND3 NAND4 NAND5 NAND6 Gate Count

R [15] 8 1 9 1 0 30
F (our) 8 0 10 2 1 38

Proper cryptographic choice of h with possibly higher number of variables with
efficient implementation in terms of low gate counts is an important open ques-
tion. Further, we should also note that the decomposition of & in u, v that possess
properties (A), (B), (C) given in Section 3.3 helps in mounting an efficient fault
attack. We further note that the function F' described above does not satisfy
property (B) if s4 is the only variable that takes input from an NFSR location.
This implies that even if the initial LFSR state of the PRGA is made known to
the attacker, the attacker will be unable to apply the attack given in Section 3.3
to the function F'.

138 S. Banik, S. Maitra, and S. Sarkar
5 Conclusion

In this paper we have described a differential fault attack that works on all
the versions of Grain. Such attacks were studied earlier on Grain-128 in |3, [19].
However, the attacks could not be mounted on Grain vl due to the different
structure of the output function h(-). Here we show that the function of Grain
v1 too has some weakness in terms of having affine differentials. By this we mean
that there exists certain suitable « such that h(x)+h(x+«) is linear. Our attack
works due to this observation and corresponding choices of the taps from the
LFSR. That is, from a general perspective, the differential fault attack can be
mounted on Grain like structures even with Boolean functions of higher degree.
We also provide examples of functions that are affine differential resistant and
suggest use of such functions in Grain family as a countermeasure. Our work
provides clear direction in choosing the output Boolean function and its inputs
from the locations of the LFSR and the NFSR.

Acknowledgments The authors like to thank the Centre of Excellence in Cryp-
tology, Indian Statistical Institute for relevant support towards this research.

Reference

1. The ECRYPT Stream Cipher Project. eSTREAM Portfolio of Stream Ciphers
(revised on September 8, 2008)

2. Agren, M., Hell, M., Johansson, T., Meier, W.: A New Version of Grain-128 with
Authentication. In: Symmetric Key Encryption Workshop 2011. DTU, Denmark
(2011)

3. Aumasson, J.P., Dinur, 1., Henzen, L., Meier, W., Shamir, A.: Efficient FPGA Im-
plementations of High-Dimensional Cube Testers on the Stream Cipher Grain-128.
In: SHARCS - Special-purpose Hardware for Attacking Cryptographic Systems
(2009)

4. Berbain, C.; Gilbert, H., Maximov, A.: Cryptanalysis of Grain. In: Robshaw, M.
(ed.) FSE 2006. LNCS, vol. 4047, pp. 15-29. Springer, Heidelberg (2006)

5. Berzati, A., Canovas, C., Castagnos, G., Debraize, B., Goubin, L., Gouget, A., Pail-
lier, P., Salgado, S.: Fault Analysis of Grain-128. In: IEEE International Workshop
on Hardware-Oriented Security and Trust, pp. 7-14 (2009)

6. Berzati, A., Canovas-Dumas, C., Goubin, L.: Fault Analysis of Rabbit: Toward a
Secret Key Leakage. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS,
vol. 5922, pp. 72-87. Springer, Heidelberg (2009)

7. Blémer, J., Seifert, J.P.: Fault Based Cryptanalysis of the Advanced Encryption
Standard (AES). In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 162-181.
Springer, Heidelberg (2003)

8. Bjgrstad, T.E.: Cryptanalysis of Grain using Time/Memory/Data tradeoffs, v1.0
(February 25, 2008), http://www.ecrypt.eu.org/streaml

9. De Canniere, C., Kiiciik, O., Preneel, B.: Analysis of Grain’s Initialization Algo-
rithm. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 276-289.
Springer, Heidelberg (2008)

http://www.ecrypt.eu.org/stream

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

A Differential Fault Attack on the Grain Family of Stream Ciphers 139

Dinur, I., Glineysu, T., Paar, C., Shamir, A., Zimmermann, R.: An Experimentally
Verified Attack on Full Grain-128 Using Dedicated Reconfigurable Hardware. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 327-343.
Springer, Heidelberg (2011)

Dinur, I., Shamir, A.: Breaking Grain-128 with Dynamic Cube Attacks. In: Joux,
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 167-187. Springer, Heidelberg (2011)
Englund, H., Johansson, T., Turan, M.S.: A Framework for Chosen IV Statistical
Analysis of Stream Ciphers. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 268-281. Springer, Heidelberg (2007)
Fischer, S., Khazaei, S., Meier, W.: Chosen IV Statistical Analysis for Key Recovery
Attacks on Stream Ciphers. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS,
vol. 5023, pp. 236-245. Springer, Heidelberg (2008)

Fredricksen, H.: A survey of full length nonlinear shift register cycle algorithms.
SIAM Rev. 24, 195-221 (1982)

Hell, M., Johansson, T., Meier, W.: Grain - A Stream Cipher for Con-
strained Environments. ECRYPT Stream Cipher Project Report 2005/001 (2005),
http://www.ecrypt.eu.org/stream

Hell, M., Johansson, T., Maximov, A., Meier, W.: A Stream Cipher Proposal: Grain-
128. In: IEEE International Symposium on Information Theory, ISIT 2006 (2006)
Hoch, J.J., Shamir, A.: Fault Analysis of Stream Ciphers. In: Joye, M., Quisquater,
J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 240-253. Springer, Heidelberg (2004)
Hojsik, M., Rudolf, B.: Differential Fault Analysis of Trivium. In: Nyberg, K. (ed.)
FSE 2008. LNCS, vol. 5086, pp. 158-172. Springer, Heidelberg (2008)

Karmakar, S., Roy Chowdhury, D.: Fault Analysis of Grain-128 by Target-
ing NFSR. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS,
vol. 6737, pp. 298-315. Springer, Heidelberg (2011)

Khazaei, S., Hassanzadeh, M., Kiaei, M.: Distinguishing Attack on Grain.
ECRYPT Stream Cipher Project Report 2005/071 (2005),
http://www.ecrypt.eu.org/stream

Kircanski, A., Youssef, A.M.: Differential Fault Analysis of Rabbit. In: Jacobson
Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp.
197-214. Springer, Heidelberg (2009)

Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional Differential Cryptanal-
ysis of NLFSR-based Cryptosystems. In: Abe, M. (ed.) ASTACRYPT 2010. LNCS,
vol. 6477, pp. 130-145. Springer, Heidelberg (2010)

Lee, Y., Jeong, K., Sung, J., Hong, S.: Related-Key Chosen IV Attacks on Grain-
vl and Grain-128. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS,
vol. 5107, pp. 321-335. Springer, Heidelberg (2008)

Skorobogatov, S.P.: Optically Enhanced Position-Locked Power Analysis. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 61-75. Springer,
Heidelberg (2006)

Skorobogatov, S.P., Anderson, R.J.: Optical Fault Induction Attacks. In: Kaliski
Jr., B.S., Kog, C.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2-12.
Springer, Heidelberg (2003)

Stanica, P., Maitra, S.: Rotation symmetric Boolean functions - Count and crypto-
graphic properties. Discrete Applied Mathematics (DAM) 156(10), 1567-1580 (2008)
Stankovski, P.: Greedy Distinguishers and Nonrandomness Detectors. In: Gong, G.,
Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 210-226. Springer,
Heidelberg (2010)

Zhang, H., Wang, X.: Cryptanalysis of Stream Cipher Grain Family. IACR Cryp-
tology ePrint Archive 2009: 109 (2009), http://eprint.iacr.org/2009/109

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://eprint.iacr.org/2009/109

	A Differential Fault Attack on the Grain Family of Stream Ciphers

	Introduction
	Brief Description of Grain Family

	Broad Idea of the Generic Differential Fault Attack
	Differential Fault Analysis: Case Study with Grain v1
	Obtaining the Location of the Fault
	Determining the LFSR Internal State
	Determining the NFSR Internal State
	Finding the Secret Key and Complexity of the Attack

	Countermeasure: Choice of Proper Boolean Function
	Conclusion
	Reference

