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Abstract. Decision tree learning algorithms and their application represent 
one the major successes of AI.  Early research on these algorithms aimed to 
produce classification trees that were accurate. More recently, there has been 
recognition that in many applications, aiming to maximize accuracy alone is 
not adequate since the cost of misclassification may not be symmetric and 
that obtaining the data for classification may have an associated cost. This 
has led to significant research on the development of cost-sensitive decision 
tree induction algorithms. One of the seminal studies in this field has been 
the use of genetic algorithms to develop an algorithm known as ICET.  
Empirical trials have shown that ICET produces some of the best results for 
cost-sensitive decision tree induction. A key feature of ICET is that it uses a 
pool that consists of genes that represent biases and parameters. These  
biases and parameters are then passed to a decision tree learner known as 
EG2 to generate the trees. That is, it does not use a direct encoding of trees. 
This paper develops a new algorithm called ECCO (Evolutionary Classifier 
with Cost Optimization) that is based on the hypothesis that a direct  
representation of trees in a genetic pool leads to improvements over ICET. 
The paper includes an empirical evaluation of this hypothesis on four data 
sets and the results show that, in general, ECCO is more cost-sensitive  
and effective than ICET when test costs and misclassifications costs are  
considered. 
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1 Background 

Decision tree learning algorithms have been widely studied since Quinlan first devel-
oped the ID3 algorithm [1], with significant impetus given by developments such as 
C4.5 [2], and its availability in the Weka system [3]. These decision tree learning 
algorithms aim to take a table of examples as input and produce a decision tree of the 
kind shown in Figure 1, where there are decision nodes such as Test A, Test B and 
Test C, and outcomes of the tests decision nodes that are labeled on the links, such as 
Improve, Same and Deteriorate.  
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Fig. 1. A decision tree 

Early decision tree learning algorithms, such as CART [4], and ID3 [1] aimed to 
learn such trees  from a set of training data. They built decision trees in a greedy 
fashion, where a test is first chosen as a root.  The training examples are then  
divided into subsets associated with each possible value of the chosen test. The 
process is then applied recursively until the examples in the subsets all have the 
similar outcomes, resulting in leaf or decision nodes. A significant step in this 
greedy algorithm is the criteria for selecting the next test. Most of the early algo-
rithms adopted information theoretic measures that selected tests on the basis of 
the amount of information gained towards the final classification. The primary aim 
of these greedy algorithms was to produce accurate decision trees, where accuracy 
was estimated by the proportion of cases for which the data in a testing set were 
correctly classified. 

However, several authors recognized that maximizing accuracy is not adequate for 
many real world applications and that costs need to be taken into account (e.g., 
[4,5,6]). There are several types of costs but the main ones include the costs of  
misclassifying an example and the cost of acquiring information [7]. For example, in 
a medical application misclassifying a person as healthy when they are ill can be 
higher than misclassifying them as ill, and the cost of carrying out an MRI scan can 
be higher than a blood test. 

Research on development of cost-sensitive decision tree algorithms can be broadly 
classified into the following main categories: 

1. Algorithms that adopt the Greedy algorithm but that adapt the information theoret-
ic selection measures to include costs. The key difference amongst algorithms in 
this category  is how the information gain measure is adapted to include costs and 
whether they take account of just the costs of the tests, or also take cost of misclas-
sification. Algorithms that take account of just costs of attributes include CS-ID3 
[8], IDX [9], EG2 [10] , CSGain [11].  Algorithms that also adapt the information 
theoretic measure to include costs of misclassification include PM [12], and  
CS-4.5 [13].  
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2. Algorithms that utilise bagging and boosting methods that generate alternative 
trees and combine them in a way that reduces cost. For example, the MetaCost sys-
tem [14] resamples the data several times and applies a base learner (such as C4.5) 
to each sample to generate alternative decision trees. The decisions made on each 
example by the alternative trees are combined to predict the class of each example 
that minimizes the cost and the examples relabeled.  The relabeled examples are 
then processed by the base learner, resulting in a cost-sensitive decision tree. Other 
examples of systems that adopt bagging include B-PET & B-LOT [15], and  
examples of systems that use boosting methods include AdaCost [16] and  
Lp-CSB [17]. 

3. The use of Genetic Algorithms (GAs) to generate and evolve cost-sensitive trees. 
The idea with these methods is to begin with a genetic pool, select the fittest, apply 
evolution operators such as mutation and crossover to generate a new pool and re-
peat the evolution cycles, resulting in improved pools. The main algorithm in this 
category is Turney's ICET [5] (Inexpensive Classification with Expensive Tests). 
ICET begins by dividing the training set of examples into two random but equal 
parts: a sub-training set and a sub-testing set. An initial population is created con-
sisting of individuals with random values of CAi, ω, and CF, which are parameters 
required by C4.5 and EG2 . C4.5, with the EG2’s cost function, is then used to 
generate a decision tree for each individual. These decision trees are then passed to 
a fitness function to determine fitness. This is measured by calculating the average 
cost of classification on the sub-testing set. The next generation is then obtained by 
using the roulette wheel selection scheme, which selects individuals with a proba-
bility proportional to their fitness. Mutation and crossover are used on the new 
generation and passed through the whole procedure again. After a fixed number of 
generations the best decision tree is selected. 

A comprehensive survey of these algorithms that includes a framework and timeline 
covering over 50 algorithms can be found in Lomax and Vadera [18]. This paper  
focuses on this last category: algorithms that use genetic algorithms for generating 
cost-sensitive decision tree algorithms.  By far the most widely known and cited 
algorithm in this category is Turney's ICET [5]. In our previous empirical evaluations, 
ICET produced some of the best results in comparison to algorithms from other  
categories [19]. As mentioned above, a key feature of ICET is that the population  
of individuals consists of biases that are utilized when C4.5 is used to generate  
decision trees. That is the individuals in the population are not direct encodings of 
trees. 

This paper presents a new algorithm called ECCO that is based on the hypothesis 
that direct encoding of trees in a pool could improve upon the results of Turney's  
seminal  system ICET. 

The next section of the paper describes how ECCO is developed using a GA and is 
followed by a section that presents an empirical evaluation of the hypothesis that a 
direct representation of trees leads to improvements over the ICET system.  
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2 The ECCO Algorithm 

To develop a cost-sensitive decision tree algorithm that is based on the use of a  
genetic algorithm we need to address the following questions: 

• How can the trees be represented as genes? 
• What mutation and cross-over operators are appropriate? 
• What sort of fitness function is appropriate? 

The following subsections describe how these questions are addressed, leading  
to the ECCO algorithm. 

2.1 Encoding the Tests and Trees as Genes 

The genes in GAs are represented as bit strings. To represent a tree as a bit string, we 
need  to first code each test. Each test is given a unique identification number, from 1 
to n, where n is the total number of tests. Each identifier is then converted to its binary 
equivalent. To code a tree as a fixed length binary string, we need to assume a fixed 
size tree. The maximal size of a tree is determined by the number of possible values 
of the tests. For example, a test such as 'It has wings’ has only two outcomes, true or 
false. More complex tests give rise to more outcomes, e.g. A test such as 'How many 
eggs?' when classifying a recipe may well have '0, 1, 2, 3' eggs possible, and so four 
child nodes are needed. Given that we know the tests and the maximal number of 
possible outcomes of tests, we can compute the maximal size of a tree. This can then 
be used to compute the length of the bit string required to represent a tree. Figure 2 
illustrates a mapping for tree of depth 3 assuming a maximal of two outcomes per test 
(the idea extends to n-ary trees). 

It's worth noting that continuous variables are handled by using the process used in 
systems such as C4.5 where they discretized to axis parallel binary tests (See Quinlan 
C4.5 [2] for details). 

 

Fig. 2. An illustration of how trees are represented genes 

In general, a bit string may not correspond to a fully populated tree and, so such 
maximal trees need interpretation.  Even if we begin with fully constituted trees in 
the initial population, such trees may arise because of the evolution process described 
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in the next section.  The interpretation used is to assume that the highest parent node 
that does not correspond to a test is assumed to be a leaf node (i.e. a classification 
denoting an outcome). 

2.2 Evolving the Population 

Having developed a representation of trees, the next question is: how can the popula-
tions evolve?  This is done by using the standard crossover and mutation operations. 
The crossover process takes two of the fittest genes of a population, and combines the 
first part of one, and the second part of the other to create a new gene.  Figure 3 illus-
trates the crossover operator on two genes representing decision trees. The position of 
the split is at any random point in the string, but must be on a boundary between 
nodes. The genes that are chosen for the crossover operation include a random mix of 
the genes, with greater weighting given to the fittest genes.  

 
 

 

 

 

 

Fig. 3. The crossover operation on representations of trees 

The mutation operation changes up to 2% of the nodes. Thus if there are fifty 
nodes at most in a string, up to one of them will be changed into a different node. This 
helps prevent the tree from becoming stuck if the fittest genes become identical, and 
to evolve further to test other slightly different trees. 

2.3 Fitness Function 

The fitness function has to assess the overall cost of the tree.  First the tree needs to 
be trained to set the classification at each leaf node. That is, a proportion of the data 
provided is processed through the tree, marking at each node that it has been  
accessed, and at the classification node the class that row of data belongs to, is  
appropriately marked. The class chosen at a leaf node is then selected as the one  
that minimizes the cost of misclassification based on the user provided costs of  
misclassification. 

Once a tree is trained, it is possible to traverse the tree with each example and 
compute its cost as the sum of the tests used and the cost of any misclassification.  
The average cost over the examples in the training set is then the fitness function. 
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Fig. 5. Results with misclassification costs in the range 1.5 to 5 

Given these results, the obvious question to explore is the behaviour of the two  
approaches when the costs of misclassification are smaller. Figure 5, below, presents 
the results when the misclassifications cost ratios are varied from 1.5 to 5 and the test 
costs available in the benchmark data sets are used. The Dn indicates that a tree of 
depth n is used and results with pruning are indicated with a Pr while results without 
pruning are indicated with a NPr. These results also show: (a) that ECCO converges 
to minima more quickly than ICET, (b) that ICET is not very sensitive to increases in 
misclassification costs, (c) in this range, there isn't much variation in the results 
whether or not ECCO uses pruning (indeed the differences are not visible in Figure 5 
where the lines combine). 

4 Conclusion 

This paper has introduced a new cost-sensitive decision tree learner, ECCO,  
that is based on the use genetic algorithms to evolve trees.  The algorithm utilizes a 
more direct coding of trees as genes than the widely cited ICET algorithm that uses 
biases as genes and utilizes C4.5 and EG2 to generate the trees from the biases. Em-
pirical trials were conducted on four benchmark data sets and the results show that 
ECCO is more cost-sensitive than ICET to increases in the ratio of costs of misclassi-
fication and ECCO produces trees that enable more cost-effective decision making 
than ICET. 
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As future work, the performance of ECCO needs to be evaluated on a wider range 
of benchmark data and against a wider range of cost-sensitive algorithms such as 
those mentioned in [6,18,19]. 
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