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Abstract. Thread mapping is an appealing approach to efficiently exploit the
potential of modern chip-multiprocessors. However, efficient thread mapping re-
lies upon matching the behavior of an application with system characteristics. In
particular, Software Transactional Memory (STM) introduces another dimension
due to its runtime system support. In this work, we propose a dynamic thread
mapping approach to automatically infer a suitable thread mapping strategy for
transactional memory applications composed of multiple execution phases with
potentially different transactional behavior in each phase. At runtime, it profiles
the application at specific periods and consults a decision tree generated by a Ma-
chine Learning algorithm to decide if the current thread mapping strategy should
be switched to a more adequate one. We implemented this approach in a state-
of-the-art STM system, making it transparent to the user. Our results show that
the proposed dynamic approach presents performance improvements up to 31%
compared to the best static solution.
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1 Introduction

Thread mapping is an appealing approach to efficiently exploit the potential of modern
chip-multiprocessors by making better use of cores and memory hierarchy. It allows
multithreaded applications to amortize memory latency and/or reduce memory con-
tention. However, efficient thread mapping relies upon matching the behavior of an
application with system characteristics.

Software Transactional Memory (STM) appears as a promising concurrency control
mechanism for those modern chip-multiprocessors. It allows programmers to write par-
allel code as transactions, which are guaranteed to execute atomically and in isolation
regardless of eventual data races [3l9]. At runtime, transactions are executed specula-
tively and the STM runtime system continuously keeps track of concurrent accesses
and detects conflicts. Conflicts are then solved by re-executing conflicting transactions.
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However, due to its runtime support, applications can behave differently depending on
the characteristics of the underlying STM system. Thus, the prediction of a suitable
thread mapping strategy for a specific application/STM system becomes a daunting
task.

Our previous work focused on a machine learning-based approach to statically in-
fer a suitable thread mapping strategy for transactional memory applications [2]]. This
means that the predicted thread mapping strategy is applied once at the beginning and
does not change during the execution of the application. We demonstrated that this ap-
proach improved the performance of all STAMP applications [[10], since most of the
transactions within each application usually have very similar behavior.

We have constantly seen efforts for a wider adoption of Transactional Memory (TM).
For instance, the latest version of the GNU Compiler Collection (GCC 4.7) now sup-
ports TM primitives and new BlueGene/Q processors have hardware support for TM.
Moreover, Intel recently released details of the Transactional Synchronization Exten-
sions (TSX) for the future multicore processor code-named “Haswell”. Thus, it is ex-
pected that more complex applications will make use of TM in a near future. In those
cases, static thread mapping will no longer improve the performance of those applica-
tions, emerging the necessity of dynamic or adaptive approaches.

In this paper, we propose a dynamic approach to do efficient thread mapping on STM
applications composed of more diverse workloads. These workloads may go through
different execution phases, each phase with potentially different transactional charac-
teristics. At runtime, we gather useful information from the application, STM system
and platform at specific periods. At the end of each profiling period, we rely on a de-
cision tree previously generated by a Machine Learning (ML) algorithm to decide if
the current thread mapping strategy should be switched to a more adequate one. This
dynamic approach was implemented within TinySTM [55]] as a module, so the core of
TinySTM remains unchanged and it is transparent to the user. Our results show that
the dynamic approach is up to 31% better than the best static thread mapping for those
applications.

The rest of this paper is organized as follows. Section 2] further describes STM and
our previous work. In Section[3] we propose our dynamic thread mapping mechanism.
Section H] evaluates our dynamic thread mapping on several applications. Finally, Sec-
tion[3] presents related work and Section[d concludes.

2 Background

2.1 Software Transactional Memory

Transactional Memory is an alternative synchronization solution to the classic mecha-
nisms such as locks and mutexes [9]]. It removes from the programmer the burden of
correct synchronization of threads on data races and provides an efficient model for
extracting parallelism from the applications.

Transactions are portions of code that are executed atomically and with isolation.
Concurrent transactions commit successfully if their accesses to shared data did not
conflict with each other; otherwise some of the conflicting transactions will abort and
none of their actions will become visible to other threads. Conflicts can be detected
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during the execution of transactions when the TM system uses an eager conflict detec-
tion policy whereas they are only detected at commit-time when the system uses a lazy
conflict detection policy.

When a transaction aborts, the runtime system rollbacks some of the conflicting
transactions. The choice among the conflicting transactions is done according to the
conflict resolution policies implemented in the runtime system. Two common alterna-
tives are to squash one of the conflicting transactions immediately (suicide strategy) or
to wait for a time interval before restarting the conflicting transaction (backoff strategy).

Transactional Memory can be software-only, hardware-only or hybrid. In this work
we are interested in STM since hardware and hybrid solutions are not yet available in
commercial processors. This allows us to carry out experiments in current platforms
without relying on simulations.

2.2 Static Thread Mapping Based on Machine Learning

Our previous work proposed a machine learning-based approach to predict a suitable
thread mapping for TM applications [2]]. It was composed of the following steps (Figure
[I). Firstly, we profiled several TM applications from the STAMP benchmark suite [10]
considering characteristics from the application, STM system and platform to build
a set of input instances. Then, a Decision Tree Learning method (ID3) [11] was fed
with these input instances and trained. The ID3 algorithm outputted a decision tree
(predictor) capable of infering a thread mapping strategy for new unobserved instances.

New instance

Training phase
Input instances

Application _ | Learning
Profiling ~| Process

Fig. 1. Overview of our machine learning-based approach

Predictor

Thread mapping

We evaluated the performance of all TM applications from STAMP when apply-
ing the predicted thread mapping strategies statically. This means that the strategy is
applied at the beginning and remains unchanged during the whole execution of the
application. Our results showed that our approach usually makes correct predictions
[2]. However, a deeper analysis of STAMP applications revealed that most of them do
not have multiple phases with different transactional characteristics. For the upcoming
complex workloads, there may not exist a single best thread mapping strategy that de-
livers the best performance for all phases. In the next section we present our solution
to tackle this problem, which employs a dynamic approach adapted for more complex
applications.

3 Dynamic Thread Mapping for Transactional Memory

As we previously stated, we will naturally face more complex TM applications due to
the wider adoption of TM. These applications will probably have multiple execution
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phases with a different transactional behavior in each phase. Thus, we need a more
dynamic thread mapping approach able to identify these different phases and switch to a
more adequate thread mapping strategy during the execution. In the following sections,
we explain the basic concepts of our dynamic approach as well as its implementation
within a state-of-the-art STM system.

3.1 Proposed Approach

Our dynamic thread mapping approach is based on the fact that the performance of a
TM application is not only governed by its characteristics but also by the characteristics
of the TM system and platform. Those characteristics must be taken into account to
choose a thread mapping strategy adapted to behavior of the workload. Thus, we con-
sider the following criteria that have an important impact on the performance of TM
applications:

— Transactional time ratio: fraction of the time spent inside transactions to the total
execution time;

— Abort ratio: fraction of the number of aborts to the number of transactions issued
(aborted + committed);

— Conflict detection policy: eager or lazy;

— Conflict resolution policy: suicide or backoff;

— Last-level cache miss ratio: fraction of the number of cache misses to the number
of accesses on the last-level cache.

We considered these criteria while profiling the STAMP applications to build a thread
mapping predictor as briefly described in Section[2.2] We trained the ID3 learning al-
gorithm with two sets of input instances. The difference between them comes from
the complexity of the memory hierarchy of the underlying platform. The predictor is
represented in Figure 2]

The subtree on the left considers a single level of shared L2 caches whereas the
subtree on the right considers a more complex memory hierarchy with two levels of
shared caches (L2 and L3). Internal nodes represent our criteria (rectangles). Leaves
represent the thread mapping strategy to be applied (rounded rectangles).

The predictor chooses a thread mapping strategy among four possible configurations:
scatter, compact, round-robin and linux. Scatter distributes threads across different pro-
cessors avoiding cache sharing between cores in order to reduce memory contention.
In contrast, compact places threads on sibling cores that share all levels of the cache
hierarchy. The round-robin strategy is an intermediate solution in which threads share
higher levels of cache (i.e., L3) but not the lower ones (i.e., L2). Finally, linux is the
default scheduling strategy implemented by the operating system.

Since most of the considered characteristics can vary during the execution of appli-
cations composed of several phases, they need to be profiled at runtime. We thus use
profiling to gather the information needed by the predictor at specific periods. We spec-
ify two periods: the profiling period and the interval between profilings. These values
are specified by the number of committed transactions instead of time. This guarantees
that our measures occur when transactions are being executed. We use a hill-climbing
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Fig. 2. Thread mapping predictor based on machine learning

strategy to adapt those values during the execution. We start with short periods and we
double them each time the predicted thread mapping strategy was not changed. This
is done until a maximum interval size is reached. When the thread mapping strategy
is changed due to a phase transition, we reset them to their initial values and the hill-
climbing strategy is restarted.

3.2 Implementation

For our solution to be transparent to users, we decided to implement it within a STM
system. We chose TinySTM [3] among other STM systems because it is lightweight,
efficient and its implementation has a modular structure that can be easily extended with
new features. Figure 3] shows the organization schema of TinySTM and as well as our
dynamic thread mapping module and its main components.

mod_mem
Ti nySTM Dynamic Memory Management
STM core M Modules el Sy
Statistics of Transactions

d Hardware Topology Analyzer
mod_dtm
Dynamic Thread Mapping

Transaction Profiler
Thread Mapping Predictor

Fig. 3. Implementation of our dynamic thread mapping in TinySTM

Basically, TinySTM is composed of a STM core in which most of the STM code
is implemented, and some additional modules. These modules implement basic fea-
tures such as the dynamic memory management (mod_mem) and transaction statistics
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(mod_stats). We added a new module called mod_dtm that extends TinySTM to per-
form dynamic thread mapping transparently. Our module combines the following three
main components:

Hardware topology analyzer uses the Hardware Locality (hwloc) library [1] to
gather useful information from the underlying platform topology (i.e., the hierarchy of
caches and how they are shared among the cores). Such information is used to correctly
apply the thread mapping strategies.

Thread mapping predictor relies on the decision tree shown in Figure 2l to predict
the thread mapping strategy. At the end of each profiling period, the tree is traversed
using the profiled information from the transaction profiler and the resulting thread
mapping strategy is then applied.

Transaction profiler performs runtime profiling during specific periods to gather
information from hardware counters and transactional basic statistics. Its pseudo-code
is depicted in Figure @ The cache miss ratio is obtained through the Performance Ap-
plication Programming Interface (PAPI) [[12] to access hardware counters. We maintain
two counters to calculate the abort ratio (named Aborts and Commits). The transac-
tional time ratio is an approximation obtained by measuring the time spent inside and
outside transactions.

// on transaction start // on transaction commit
if is profiling period then if is profiling period then
if first tx in this period then TxTime «+ GetClock() — TxTime;
StartPapi (LLCAccess, LLCMiss) ; TotalTxTime « TotalTxTime + TxTime;
ProfileTime < GetClock(); Commits < Commits + 1;
end if last tx in this period then
TxTime « GetClock(); StopPapi (LLCAccess, LLCMiss) ;
end ProfileTime < GetClock () — ProfileTime;

TotalNonTxTime <« ProfileTime — TotalTxTime;
ThreadMapping < TMPredictor ();
ResetAllCounters();

end

// on transaction abort
if is profiling period then
Aborts < Aborts + 1;

end end

Fig. 4. Transaction profiler pseudo-codes

TinySTM allows the inclusion of user-defined extensions. In our case, we instru-
mented three basic TM operations that are called when transactions start (start),
when they are rollbacked in case of conflicts (abort) and when they finish successfully
(commit). Thus, every call to these operations is intercepted by our module, which exe-
cutes the transaction profiler during the profilling periods and calls the thread mapping
predictor to switch the thread mapping strategy when necessary.

When a TM application is executed, only one thread among all concurrent running
threads is chosen to be the transaction profiler. The reason for that is threefold: (i)
it considerably reduces the intrusiveness on the overall system, so the behavior of the
application is not changed; (ii) we do not need to use extra synchronization mechanisms
to guarantee reliable measures among concurrent threads; and (iii) most workloads of
current TM applications are uniformly distributed among the threads. However, our
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implementation can be adapted to gather information from all threads. This may be
necessary for non-SPMD applications, where different threads execute different flows
of control.

4 Experimental Evaluation

In this section, we demonstrate that our dynamic thread mapping can benefit from ap-
plications composed of multiple execution phases with potentially different transac-
tional behavior on each one. First, we describe our experimental setup as well as the
set of characteristics we considered to create TM applications composed of multiple
phases. Afterwards, we compare our performance gains with static solutions. Finally,
we present a deeper analysis of our mechanism.

4.1 Experimental Setup

Since most of the transactions within each STAMP application usually have very sim-
ilar behavior, they are not suitable for the evaluation of our dynamic thread mapping
approach. For this reason, we used EigenBench [§]] to create new TM applications with
different phases. This micro-benchmark allows a thorough exploitation of the orthogo-
nal space of TM applications characteristics.

Varying all possible orthogonal TM characteristics involves a high-dimensional search
space [8]]. Thus, we decided to vary 4 out of 8 orthogonal characteristics that govern the
behavior of TM applications. We used the first three (transaction length, contention
and density) to create a set of workloads (Table [I)). Since we assume two possible
discrete values for each one, we can create a total of 22 distinct workloads (named
Wi, Wy, ..., Ws) by combining those values. It is important to mention that these val-
ues were obtained after an empirical study based on several experiments with different
configurations of TinySTM (conflict detection and resolution policies) and EigenBench
parameters. The fourth orthogonal characteristic is concurrency and it is further dis-
cussed in Section 4.3

Table 1. TM orthogonal characteristics used to compose our set of workloads

Characteristic Definition Values
. . short (< 64)
Tx Length number of shared accesses per transaction Jong (> 128)

. .- . low-conflicting (< 30%)
Contention probability of conflict contentious (> 30%)
Densit fraction of the time spent inside transactions sparse (< 80%)

y to the total execution time dense (> 80%)
Concurrency number of concurrent threads/cores 2-16

We conducted our experiments on a multi-core platform based on four six-core
2.66GHz Intel Xeon X7460 processors and 64 GB of RAM running Linux 2.6.32. Each
processor has 16MB of shared L3 cache and each group of two cores shares a L2 cache
(3MB). TinySTM and all applications were compiled with GCC 4.4.5 using -03. All
results in the following sections are based on arithmetic means of 30 runs.
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4.2 Dynamic Thread Mapping vs. Static Thread Mapping

Our first set of experiments explores the effectiveness of our dynamic thread mapping
in comparison to the thread mapping strategies individually. We derived a set of appli-
cations from the 8 distinct workloads discussed in Section[41l We fixed the number of
phases to 3, thus each application will be composed of three workloads. Therefore, all
possible applications composed of three distinct workloads is determined by the number
of k-combinations from a given set of n elements, i.e., C]' = C38 , which results in 56
applications (named A;, As, . .., Asg). Thus, the set of applications can be represented
as follows: Al = {Wl, Wz, W3}, Az = {Wl, Wz, W4}, ey A56 = {Ws, WG, W7}
Phases (workloads) are parallelized using Pthreads and there is no synchronization bar-
rier between phases, i.e., threads may not be computing the same workload at the same
time.
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Fig. 5. Relative gains of our dynamic thread mapping compared to the best and worst single
thread mappings. We considered applications composed of 3 phases (A1 to Asg).

We ran all the applications with each one of the static thread mappings (compact,
round-robin and scatter), the Linux default scheduling strategy and our dynamic ap-
proach. Figure Bl presents the relative gains of our dynamic thread mapping when com-
pared to the best and worst single thread mappings. The relative gain is given by
1 — x4 + x5, where x4 and x; are mean execution times of 30 executions using the
dynamic and the best/worst single thread mapping, respectively. Thus, positive values
mean performance gains whereas negative values mean performance losses. All appli-
cations were executed with 4 threads and TinySTM was configured with lazy conflict
detection and backoff conflict resolution.

We can draw at least two important conclusions from these results. Firstly, the thread
mapping strategy had an important impact on the performance. This can be easily ob-
served when comparing the relative gains between the best and worst single thread
mappings. Secondly, our dynamic thread mapping usually improved the performance
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of the applications by switching to an adequate thread mapping strategy in each phase.
We achieved performance gains up to 31% and 62%, when comparing to the best and
worst single thread mappings respectively. However, our dynamic thread mapping did
not deliver performance improvements on 3 applications and presented some perfor-
mance losses in 8 applications when comparing with the best single thread mapping
strategy. In the case of A1, A1; and Agg, a single thread mapping strategy (compact)
was best for all phases, thus we cannot expect performance improvements by using
our dynamic approach. The performance losses were due to wrong decisions of the
predictor, which did not select the best thread mapping strategy on all phases. The max-
imum performance loss was about 8% (A43). One reason for that may come from the
characteristics that we take into account in training phase and profiling. We leave the
discussion of other possible characteristics to enrich the predictions to future work.

4.3 Varying Concurrency

Our second set of experiments focuses on the performance impacts of the thread map-
ping strategies when varying the number of threads. We selected 4 interesting cases.
Cases 1 and 2 are applications that presented a single best thread mapping strategy for
all thread counts. Cases 3 and 4 are applications whose the best single thread mapping
varied according to the number of threads.
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Fig. 6. Execution times when varying the number of threads

Figure 6] compares the execution times of the four single thread mapping strate-
gies with our dynamic thread mapping mechanism. Results represent mean execution
times of 30 executions with 95% confidence intervals. We do not consider more than 16
threads for two reasons: (i) placing threads on different cores when all available cores
are used does not impact the overall performance because the applications tend to com-
municate uniformly, and (ii) most of our workloads did not scale beyond 16 threads.

In Case 1, the best single thread mapping for all thread counts was compact whereas
in Case 2 it was scatter. In both cases our dynamic thread mapping presented lower exe-
cution times for most of the thread counts. Case 3 represents a scenario in which the best
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single thread mapping strategy relied on the number of threads (scatter, round-robin,
compact and linux with 2, 4, 8 and 16 threads respectively). In case 4, we observed that
compact was best for low thread counts whereas linux was best for high thread counts.
In both cases 3 and 4, our dynamic thread mapping usually resulted in better results
than single thread mappings.

4.4 Dynamic Thread Mapping in Action

In order to observe how our dynamic thread mapping reacts when it encounters several
different phases, we created a single application composed of all the 8 distinct work-
loads. We then executed this application with our dynamic thread mapping while tracing
the information obtained by the transaction profiler at the end of each profiling period.
Figure[7l shows the variance of the profiled metrics during the execution with 4 threads.
Vertical bars represent the intervals in which each thread mapping strategy was applied.
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Fig. 7. Profiled metrics during the execution of an application with 8 phases

At the beginning, our dynamic thread mapping mechanism applies linux as its default
strategy and profiles some transactions. After the first profiling period, the predictor de-
cided to apply compact and did not switch to another strategy until it reached a different
phase near 1 x 105. At this point, the predictor switched to scatter. Overall, the predic-
tor detected more than 8 phases due to the variance of some profiled metrics but it
still detected correctly the 8 main phase changes, reacting by applying a suitable thread
mapping strategy for each phase. We can also observe that the variance of the profiled
metrics confirms the fact that the 8 workloads have distinct characteristics.

5 Related Work

Thread Mapping. In [15], the authors presented a process mapping strategy for MPI
applications. The strategy used a graph partitioning algorithm to generate an appro-
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priate process mapping for an application. The proposed strategy was then compared
with compact and scatter. In [4], two thread mapping algorithms were proposed. These
algorithms relied on memory traces extracted from benchmarks to find data sharing
patterns between threads. These patterns were extracted by running the workloads on a
simulator. The proposed approach was compared to compact, scatter and other strate-
gies. In [7]], the authors proposed a dynamic thread mapping strategy for regular data
parallel applications implemented with OpenMP. The strategy considered the machine
description and the application characteristics to map threads to processors and it was
evaluated using simulations. Contrary to these works, our mechanism relies on ma-
chine learning to predict the thread mapping strategy without simulations. Instead, we
use hardware counters and software libraries to gather information about the platform
and applications.

Machine Learning. In [6], authors proposed a ML-based compiler model that accu-
rately predicts the best partitioning of data-parallel OpenCL tasks. Static analysis was
used to extract code features from OpenCL programs. These features were used to feed
a ML algorithm which was responsible for predicting the best task partitioning among
GPUs and CPUs. In [[13], the authors proposed a two-staged parallelization approach
combining profiling-driven parallelism detection and ML-based mapping to generate
OpenMP annotated parallel programs. In this method, first they used profiling to iden-
tify portions of code that can be parallelized. Afterwards, they applied a previously
trained ML-based prediction mechanism to each parallel loop candidate in order to
select a scheduling policy from the four options implemented by OpenMP (cyclic, dy-
namic, guided or static). In [14], the authors proposed a ML-based approach to do
thread mapping on parallel applications developed with OpenMP. The proposed solu-
tion was capable of predicting the ideal number of threads and the scheduling policy for
an application. This approach was compared with the default OpenMP runtime through
experiments on a Cell platform. In contrast to those works, we target a different do-
main of applications, i.e., STM applications. These applications can be more sensitive
to thread mapping due to their complex memory access patterns and effects of the un-
derlying STM system.

6 Conclusion

In this paper, we proposed a dynamic thread mapping approach based on Machine
Learning for TM applications. We focused on TM applications composed of multi-
ple execution phases with potentially different transactional behavior in each phase.
We defined and implemented this mechanism in a state-of-art STM system, making it
transparent to the user. To the best of our knowledge, our work is the first to implement
dynamic thread mapping for TM applications.

Our results showed that there is not a single thread mapping strategy adapted for all
those complex applications. Instead, we could deliver a solution capable of detecting
phase changes during the execution of the applications and then predicting a suitable
thread mapping strategy adapted for each phase. We achieved performance improve-
ments up to 31% in comparison to the best single strategy.
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As future work, we aim at extending our predictor to consider a broader range of
STM conflict detection and resolution policies. Additionally, we intend to consider
more orthogonal TM characteristics to build even more diverse applications. Conse-
quently, we can extend the evaluation of our approach over more diverse scenarios.
Finally, we plan to use other machine learning algorithms to build new thread mapping
predictors and compare their performances.
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