
S-BPM Method by Comparison 14

14.1 To Go

A. Fleischmann et al., Subject-Oriented Business Process Management,
DOI 10.1007/978-3-642-32392-8_14, # The Author(s) 2012

269

This book provides comprehensive insights into the subject-oriented methodology.

In addition to deriving and justifying the concept, we have developed a subject-

oriented process model for dealing with models. To complete the picture with

respect to BPM, we examine the extent to which other methods also comprise

subject-oriented elements. The focus on subjects while reflecting standard sentence

semantics of natural language can be spotted in the canon of existing approaches for

modeling business processes in various places. The following overview of essential

diagrammatic or formal modeling methods for business processes shows the differ-

ent links of existing approaches to the modeling categories subject, predicate, and

object. The respective approaches are comparatively described.

After a review of the concepts for modeling, we follow the historical develop-

ment of business process modeling and start with activity- or function-oriented

approaches—they refer to the predicate. The object-oriented approaches stem from

software engineering and refer to objects. The subject reference can be traced back

to the theory of process-directed data processing. Finally, there are integrated

approaches that include at least two of the three constituent characteristics of

subject-oriented business process modeling.

14.2 Subject, Predicate, and Object in Modeling

Business processes are sequences of actions in a company that will be described by

a model. Developing business processes means that a model of the existing or a new

requirement for a target business process is created.

Business processes can also be interpreted as descriptions of socio-technical

systems (Sinz 2010). Business process models describe the properties and behavior

of process participants and their interaction with(in) the technical and organiza-

tional environment. These models can be viewed from different perspectives. The

process of model construction is preceded by an analysis that leads to specific facts

either being considered essential or merely supplemental (cf. Scholz and Holl 1999;

Denert 1991). In Scholz and Holl (1999), crucial model elements are termed

essentials and complimentary ones accidentals.

Depending on which model elements are considered essential when defining

business processes, different approaches to modeling are used. Accidental elements

270 14 S-BPM Method by Comparison

are grouped around essential ones. The following aspects of modeling are currently

being used (cf. Scholz and Holl 1999; Denert 1991):

• The functional approach focuses on functions. Examples of function-oriented

models are control flow diagrams and data flow diagrams according to de-Marco

(1979) or Event-driven Process Chains (EPCs).

• In data-driven approaches, accidents are grouped around data. A well-known

example of data-driven modeling approaches is Entity-Relationship Diagrams.

• In the object-oriented approach, accidents are grouped around objects. Objects in

computer science are data structures, encapsulated with the operations on these

data structures. The object-oriented modeling approach is currently considered

the most accepted. A well-known method of description is the Unified Modeling

Language (UML).

A prerequisite for modeling is that the models are adequately described and

documented, so that they can be understood by all and model content can be

communicated or discussed. Models are used in particular in BPM for analysis of

business processes with the involvement of different actors.

In the above list, some well-known languages for documenting results of process

analysis have been given. Modeling, ultimately, describes part of reality using an

“artificial” language. A model is thus an artifact, an artificially created structure

which contains an excerpt of the reality as perceived by humans. The formalism of

models for business processes is such that they can be mapped to IT. In the last few

decades in computer science, a paradigm shift from flow orientation to object

orientation has occurred. Applied to modeling, the essential aspects have been

shifted from the predicate (batch processing, while . . .do. . .) to the object, while

subjects were treated only rudimentarily so far. Subject-oriented business process

modeling puts the subject into the center of attention. Participants of the S-BPM

ONE 2010 congress in Karlsruhe created the hypothesis that after 1970 and 1990,

the year 2010 could mark the beginning of a new paradigm switch, namely to

subject orientation (see Fig. 14.1).

Fig. 14.1 Temporal evolution of flow orientation, object orientation, and subject orientation

14.2 Subject, Predicate, and Object in Modeling 271

14.3 Comparative Analysis

In the following, the best-known modeling approaches are presented and analyzed

for their coverage of the natural language sentence semantics and the resulting

impact for modeling. Finally, these are compared with the subject-oriented

modeling approach.

We exemplify the different approaches using the process for applying for a

business trip. It will be shown, in which models generally available for practical

description and definition of application programs in computer science, which parts

of the standard semantics of subject–predicate–object correspond to essential or

accidental elements, and how the process can be described in the respective

modeling approach.

We start out with the natural language description of the business trip application

process (see Fig. 14.2). This description focuses on the elements perceived as

essential aspects of the process when applying for business trips. It will now be

specified using various formal or semiformal modeling methods. The relevant

sections provide a brief overview of the history of the respective category of

approaches, before explaining their representatives in an exemplary way.

14.3.1 Modeling While Focusing on Predicates

14.3.1.1 Origin
In the beginning of data processing in the 1970s, mechanical and automated

processing was at the forefront. In mainframe data processing, actions were at the

center of attention. Terms such as “operator” or “data or information processing”

were coined at that time. Even in the first programming languages, operational

constructs are in the foreground; their core consists of commands such as “while . . .
do . . .”. The first computer systems were built to solve complex computational

problems of the time, stemming from mathematics or physics. For instance, the

trained civil engineer Konrad Zuse wanted to automate his statics’ calculations and

built the first calculating machine. For these activities, calculations were at the

focus of attention. The data were parameters of mathematical or physical formulas

and played a secondary role. Likewise, the actor, or the subject, was of minor

importance. The subject was the person interested in the results of the calculation.

The focus was on the action, i.e., the predicate. Programming was meant to define

complex sequences of actions.

Fig. 14.2 Natural language description of the business trip application process

272 14 S-BPM Method by Comparison

14.3.1.2 Flowcharts
One of the first models for algorithmic tasks was flowcharts or program flowcharts.

Flowcharts describe a sequence of operations to solve a task. A business trip

application can be mapped to a flowchart (see Fig. 14.3).

When flowcharts are used to describe a computational algorithm, it is clear who

initiates the individual actions in the flowchart: it is the person carrying out the task,

or the executing computer system. These standard subjects are not mentioned

explicitly. In addition, the data required for executing a flowchart are specified

only rudimentarily.

Using flowcharts, natural language supplements, such as subjects and objects,

can be added, but they are not integrated in the logic of the model. Figure 14.4

shows the example extended to subjects. They were added in natural language.

Fig. 14.3 Business trip application process as a flowchart

14.3 Comparative Analysis 273

In advanced forms of flowcharts, in addition to the verbs, the subjects and

objects are directly or indirectly represented as symbols. Figure 14.5 shows the

previous flowchart after adding the subjects “employee” and “manager” indirectly

by adding the symbols for the manual entry of the business trip application and the

decision-making results. The modified diagram also contains an object represented

by the symbol for a data set (business trip data).

Fig. 14.4 Business trip application process as a flowchart including subjects

274 14 S-BPM Method by Comparison

14.3.1.3 Event-Driven Process Chains
A control-flow-based method for representing business processes is Event-driven

Process Chains (EPC). Figure 14.6 shows the process of the business trip applica-

tion as an EPC.

The rectangles represent the actions of a process that may contain natural

language objects for illustration purposes. The individual actions are preceded by

Fig. 14.5 Business trip application process as a flowchart including subjects and objects

Fig. 14.6 Business trip application process as an EPC

14.3 Comparative Analysis 275

an event (hexagons), which represents the impulse to perform an action or the result

of the previous action. With the help of connectors, the results of a function can lead

to different events. The action “check request” could either lead to the event

“rejected” or “approved” (XOR). In addition to XOR, there are other connectors.

Details of EPCs and their use are described in Scheer (1998).

In practice, today mainly extended EPCs (eEPCs) are used. These complement

the original EPCs with elements of organization, data, and performance modeling.

These amendments correspond essentially to subjects and objects.

Figure 14.7 shows an extended EPC of the business trip application process.

Hereby, eEPCs in principle allow representing all language constructs. In such a

representation, functions are still at the center of attention. An identification of the

subject including its entire behavior is not possible due to the distributed represen-

tation of the subject in the diagram.

14.3.1.4 Petri Nets
An important model in theoretical computer science is Petri nets (cf. Stucky and

Winand 1997). They are an action-oriented modeling method, i.e., Petri nets are

predicate oriented. In contrast to control flow diagrams, they allow performing

multiple actions in parallel.

In order to also support data aspects, attributed Petri nets have been developed.

However, approaches to represent subjects are still missing.

Fig. 14.7 Business trip application process as eEPC including subject, predicate, and object

276 14 S-BPM Method by Comparison

Figure 14.8 shows a Petri net for the business trip application process. A Petri net

consists of an initial marking, places (solid bars), transitions (ovals), and arcs

(arrowed lines). Arcs connect transitions to places or places to transitions, but

never places to places or transitions to transitions. In general, transitions are

interpreted as actions and places as conditions for a transition. A transition can

switch when in its input places there is at least one so-called token. After switching,

each output place receives a token. The initial marking determines which places

have tokens to start the execution. In the figure, the place “employee requests

business trip” contains the token.

After switching the transition “employee provides business trip request”, the

token is reassigned as shown in Fig. 14.9. The token is removed from the place

“employee requests business trip” and a token appears in the place “business trip

request is available for manager”.

After that, either the transition “manager rejects business trip request” or the

transition “manager approves business trip request” can switch. The Petri net is

therefore referred to as nondeterministic. In case the transition “manager approves

business trip request” switches, the places “approved business trip request is

available for travel office” and “approved business trip request is available for

employee” are each provided with a token (see Fig. 14.10).

The example reveals that Petri nets focus on the sequence of actions. Subjects

and objects are complemented by natural language comments. In this case, this is

done by selecting appropriate names for the places and transitions. The advantage

of Petri nets as compared to flowcharts is that they are grounded in theory and

concurrency can be represented.

Fig. 14.8 Business trip application process as a Petri net with initial marking

14.3 Comparative Analysis 277

Fig. 14.10 Business trip application process as a Petri net with tokens after switching “manager

approves business trip request”

Fig. 14.9 Business trip application process as a Petri net with tokens assignment after switching

“employee provides business trip request”

278 14 S-BPM Method by Comparison

14.3.2 Modeling While Focusing on Objects

14.3.2.1 Origin
With the increasing use of computer systems in industry, the aspect of data

management and data processing has become increasingly important. In

companies, large data sets, such as order or invoice data, need to be stored and

manipulated. To meet these requirements, modeling languages have been

developed which bring the target of actions, namely the objects or data, to the

focus of attention.

14.3.2.2 Entity-Relationship Model
The Entity-Relationship Model (ER Model or ERM) describes data entities and

their mutual relationships. ER models are usually represented graphically. Their

advantage is their ability to map complex worlds using simple tools:

• Entity: object of actual world, either material or abstract (e.g., employee

“Schulz”, manager “Schmid”).

• Relationship: semantic relationship between two or more objects (e.g., employee

“Schulz” “is a staff member” of manager “Schmid”).

The model itself consists exclusively of entity types and relationship types:

• Entity type: typifying of similar entities (e.g., employee and manager), shown as

a rectangle.

• Relationship type: typifying of similar relationships (e.g., “is employee of”). The

semantics of the relationship between entity types is expressed in the ER

diagram by a short text label on the border, while it is left up to the modeler

what name he provides.

Figure 14.11 shows the ERM of the business trip application process. Each

employee has exactly one manager and each manager is boss of 1 to n employees.

Each employee has applied for none or up to n business trips. Each business

trip request contains exactly one travel date for the beginning and the end of the

business trip, respectively. A manager has to decide upon 0 to m business trip

requests.

Fig. 14.11 ERM for the business trip application process

14.3 Comparative Analysis 279

An ERM is focused on objects. Subjects and predicates are only indirectly

considered, namely by the name of the relationships. In case a predicate is used

to describe a relationship, a complete sentence may be the result. As demonstrated

by the example, this is however not compulsory. The introduction of subject and

predicate therefore depends on the discipline of the modeler. An ERM contains no

control flow, so that it is not clear when and what actions are performed (predicate).

Who the initiator of an action is, i.e., the subject, can only be concluded from the ER

diagram when for the marking of relationships corresponding terms are used in a

disciplined way.

14.3.2.3 Relational Data Model
For relational data models, analogous to the ERM, only data objects are considered,

but here in the form of tables. Subject and predicate are accidentals.

As structural elements in relational data models, only those relations can be

represented that can be described by tables. The rows of the tables are the data

records, and the columns correspond to the data fields of the records. A data model

usually consists of multiple tables. Relationships between any records, even in

different tables in a model, can be constructed by using the same field content

(primary and foreign keys).

Certain records are accessed via field contents. Figure 14.12 shows a data model

for the business trip application. The data model consists of three tables

“employees”, “managers”, and “business trip requests”. The table “managers”

includes all the supervisors; the table “employees” includes all employees with

a reference to their managers in the column “M-No.” The table “business trip

Fig. 14.12 Relational data model for the business trip application process

280 14 S-BPM Method by Comparison

requests” includes all business trip requests submitted so far. The column

“EM-No.” in the table “business trip requests” contains a reference to the employee

who has provided this business trip request.

On relational data models, logical, set-theoretic queries are defined (predicates)

that are used by users (subjects). A relational data model does not include which

users (subjects) are available in a certain situation or part of reality. The possible

predicates that are triggered by the users are specified by the so-called query

language, in general, the Structured Query Language (SQL).

In the example, the manager Werner Schmid (a user, subject) determines his

subordinates by an appropriate query (predicate) from the “employees” table

(objects). These are all the employees that contain a “1” in the column “M.-No.”

in the table “employees”. Then, in the “business trip requests” table, all business

trip requests are identified that contain in the “EM-No.” column a number of an

employee of Werner Schmid. The result set of this query therefore contains all the

business trip requests of Mr. Schmid’s employees, which can then be processed.

Using the query language for relational databases, the predicate is present, while it

is completely missing in the ERM.

Relational data models are very close to implementation. They can more or less

be directly realized by a relational database, using ERM as a modeling language

and the relational model already as a programming facility. In both modeling

languages, however, subjects are only marginally considered. For a database

application, there is always only “the” user, whoever that may be. The subject

concept comes into play only in the context of authorization concepts: Which users

can access which data in which way?

14.3.3 Modeling While Focusing on Predicate and Object

14.3.3.1 Origin
In the previously described modeling methods, either the subject or the predicate

has been neglected. In the predicate-centered methods, the object aspect has been

insufficiently described, in object-supporting methods, the predicate aspect. For

databases, although there is a query language that can be used to form predicates,

there is no way to define control flows (i.e., sequences of predicates). In the

technical implementation of such incomplete models, missing components must

be interpreted, which may lead to incorrect implementations.

It was natural, therefore, to develop modeling approaches considering action and

data aspects in a balanced way, i.e., modeling languages, such as the data flow

diagram, that contain predicates and objects. In this way, complete sentences can be

formed in terms of the standard semantics of sentences, namely passive sentences.

Passive sentences are used in natural languages, when the subject plays a minor

role. A passive description of the business trip application process could be as

follows: “The business trip application is filled out, the business trip request will be

checked, the check result is documented, and the travel accounts of the employees

(business trip directory) will be updated.”

14.3 Comparative Analysis 281

14.3.3.2 Data Flow Diagrams
Using data flow diagrams (DFD), the flow of data between functions, data

repositories, and external stakeholders who are not part of the operation of the

system are represented. The Structured Analysis by Tom DeMarco (DeMarco

1979) is an application of data flow diagrams for modeling.

In data flow diagrams, the following graphical elements are used:

• External interface (external partners, stakeholders, terminators): External

interfaces are represented as rectangles. They denote the relations of the consid-

ered system to the outside world. They send or receive data, but do not process

them. External interfaces trigger the system by the provision of data and can

therefore be considered under certain restrictions as subjects.

• Function (process, task, function): Functions are shown as circles or ovals. They

have the task of processing input into output data and contain the necessary

algorithms. The functions correspond to predicates according to the semantics of

natural language. Predicates of higher complexity can be refined by the

predicates of a control flow diagram.

• Data storage (store, repository): Stores are presented as two parallel lines. They

form a storage facility for data with different times of creation and use. They can

be regarded as special data storage functions.

• Data flow (information flow, data flow): The data flow is represented by arrows

between functions or data stores. The arrows are labeled with the name of the

data flowing. In a data dictionary, the structures of all information items used are

defined. The definition of data structures is done in Backus–Naur form. In this

respect, an ERM could of course also be used. The data corresponds to the

objects of the natural language sentence semantics.

• Context Diagram: Figure 14.13 shows the context diagram of the business trip

application process. The context diagram identifies the external interfaces and

illustrates the system to be developed as a function. The context diagram

describes how the application receives data from an external interface and

returns the result to the external interface. In this example, the external interface

can be interpreted as a subject (employee). However, the manager is missing,

since he is part of the system. If he and the update of the business trip data are

also relocated (to the outside), virtually nothing remains from the application.

Fig. 14.13 Context diagram for the business trip application process

282 14 S-BPM Method by Comparison

Figure 14.14 shows the refinement of the business trip process with the data flow

between the individual functions and data stores. It is important to note that no

control flow is connected to the data flow, although this might be suggested by the

representation.

Although data flow diagrams were already developed in the 1970s, they cover

predicate and object from the natural language sentence semantics. However,

subjects can only be introduced via auxiliary constructions which lead to

distortions. Data flow diagrams are no longer used in practice. The combination

of predicate–object has evolved and led to object-oriented modeling and imple-

mentation methods.

14.3.3.3 Object Orientation
The basic idea of object-oriented programming is coupling functions (methods) that

can be applied to data as closely as possible with the data being processed,

including their properties, and to encapsulate them from the outside. The functions

together with the data form an object in the sense of object-oriented modeling. The

data of an object can only be accessed with its own methods. Objects with similar

properties can be grouped into classes. Simple objects (or classes) can be developed

by operations such as inheritance, polymorphism, aggregation, associations, etc.

into complex structured objects and classes. For more details on the object-oriented

methodology, we refer to the extensive existing literature (cf. http://www.uml.org).

Fig. 14.14 Business trip application process as a data flow diagram

14.3 Comparative Analysis 283

http://www.uml.org

Today, object orientation is the common standard for modeling and program-

ming. Compared to approaches in which properties and functions are not consid-

ered in an integrated way, this modeling paradigm makes the claim of being able to

represent the observable world more accurately than other approaches.

The object-oriented modeling approach, with objects consisting of data and

functionality, covers the concepts of predicate and object according to the natural

language sentence semantics. The functions correspond to the predicates and the

data to the objects.

Figure 14.15 shows the object “business trip request” with the data “start of trip”,

“end of trip”, and “check result” and the functions “fill out”, “check”, and “enter

check result”. In case the business trip is approved, the travel directory represented

by the object “travel account” is updated.

The object “business trip request” now allows formulating incomplete sentences

such as “fill out business trip request” or “check business trip request”. To form

complete sentences in the original object-oriented approaches, subjects could only

be inserted into the model by natural language elements.

With the introduction of use case diagrams as contained in UML, this deficiency

has been removed. UML has been developed by the Object Management Group

(OMG) as a standardized language for modeling software and other systems. It

includes 13 different types of diagrams (http://www.omg.org/spec/UML/2.2/). One

of these diagram types is the use case diagram. The introduction of the subjects into

the grammar of modeling by use case and activity diagrams will be discussed in

Sect. 14.3.5.2.

14.3.4 Modeling While Focusing on Subjects

14.3.4.1 Origin
In computer science, there has long been the concept of parallel processes. A

process executes actions within a given time interval to achieve a specific goal

(Havey 2005). A process description defines the behavior of a process.

Fig. 14.15 Object or object class business trip request

284 14 S-BPM Method by Comparison

http://www.omg.org/spec/UML/2.2/

In the natural language sentence semantics, the subject is the starting point of

activities defined by the predicate. Thus, subjects represent the active elements of

reality. Subjects can execute defined sequences of actions (predicates). Subjects are

mutually independent and communicate with each other, if required, i.e., they

exchange information. Subjects, therefore, largely correspond to processes in

computer science. Using the process concept, subjects from reality can be mapped

to a corresponding construct in a model.

In the following sections, two concepts are introduced that put processes into the

center of attention. For this purpose, parallel processes are defined which synchro-

nize themselves through the exchange of messages, i.e., a process can send and

receive messages by way of so-called ports. Sending and receiving are therefore the

only possible predicates. Ports for message exchange can be interpreted as objects

of the natural language sentence semantics.

14.3.4.2 Calculus of Communicating Systems
Calculus of Communicating Systems (CCS) is a process algebra (Milner 1980). A

process algebra is used for algebraic modeling of parallel processes and consists of

elementary actions and operators for joining actions. Elementary actions cannot be

further detailed.

Processes can interact with the neighbors or independently perform activities in

parallel. The aim of CCS is to model the communication between processes, e.g., to

investigate their equivalence.

A process uses ports as enablers of communication with other processes,

whereby each port has a name. A distinction is made between send and receive

ports. Figure 14.16 shows the individual processes or subjects, respectively, of the

business trip application process. The employee sends the business trip request to

the manager. For the send port, the port name is marked with a horizontal line. The

manager sends the result to the employee, and, where appropriate, the approved

business trip request to the travel office.

In Figure 14.16, only the involved processes and their relationships are shown.

The internal behavior is not yet visible. This is described using operators. In our

Fig. 14.16 CCS processes for business trip request

14.3 Comparative Analysis 285

example, we use only a few of these operators; for a complete list, we refer to the

literature (Milner 1992; Milner et al. 1992a, b; Brinksma and Mader 2003).

Figure 14.17 shows the behavioral description of the individual processes and

their coupling to the business trip application process.

In the example, the process “employee” first sends the business trip request and

then waits for either the message “rejected” or “approved”. Once the employee

receives one of these messages, the process can be continued. In case he performs

the operation NIL, the process stops. The description of the processes “manager”

and “travel office” can be interpreted similarly. The last line in the figure shows the

composition of the entire process using the corresponding operator.

The business trip example shows that the active element in CCS, the actor, is

seen as essential, while predicate and object play a subordinate role. Thus, CCS can

be considered a subject-oriented method.

14.3.4.3 Communicating Sequential Processes
Communicating Sequential Processes (CSP) is also a process algebra. It was

developed by Tony Hoare (1985). CSP was first published as a programming

language construct and then formalized in the following years also due to the

influence of Milner (1980). In CSP, in contrast to CCS, there is initially no

distinction between sending and receiving. In case processes are linked by

operators, also events of the same name from the associated processes are linked.

In Figure 14.18, the business trip application process is described in CSP. For

employees, the event “business trip request” is enabled, and subsequently, either the

event “rejected” or “approved”. The event “SKIP” describes that the process is

completed. In the process “manager”, also the event “business trip request”

is possible and then, appropriate follow-up events. When the process “employee”

is linked to the process “manager” by using the || operator (see last line), they share

the initial event, and in both processes the corresponding transition (arrow in row 1

and 2) is executed.

Fig. 14.17 Description of the business trip application process in CCS

Fig. 14.18 Description of the business trip application process in CSP

286 14 S-BPM Method by Comparison

On a detailed level of CSP, it is possible to dissolve events into send and receive

operations that run on ports and can transfer data. In this way, in CSP, the predicates

“send” and “receive” exist, as well as objects (messages) on which these (simple)

predicates can be executed.

In CSP, analogously to CCS, the subject represents the essential part. Predicate

and object play a very subordinate role. Without natural language additions with

respect to predicate and object, a complete model of the business trip application

process cannot be created with CSP. Meaningful names are also essential for

understanding processes but do not contribute to the semantics.

14.3.5 Methods Considering Subject, Predicate, and Object

14.3.5.1 Origin
In all major formal modeling methods of computer science, natural language

sentences cannot be formed in the sense of natural language. Since this is always

necessary for achieving a thorough understanding, the missing elements have been

informally added. For instance, the rectangles for the actions in flowcharts were

labeled accordingly. Instead of “fill out”, the phrase “fill out business trip request”

was used for labeling the action symbol. In English literature, such constructs are

termed “verb–noun phrase” (Sharp and McDermott 2009, p. 45).

14.3.5.2 Use Case and Activity Diagrams in UML
UML has 13 diagram types. These are divided into six structural diagram types and

seven behavior diagram types. Using the behavior diagrams, dynamic aspects of a

program are described. The structure diagram types overlap in their representation

aspects, whereby mutual systematic transfer is not possible. All seven diagram

types include aspects of subjects, however, in an unclear form. In UML, all entities

of discourse are objects. In the following, those diagram types in which the subject

aspect most clearly comes to light are explained in more detail. These are the Use

Case Diagram and the Activity Diagram.

Use Case Diagrams allow describing the use of a system from a user perspective.

A use case shows which users (actors ¼ subject) perform what actions (predicates)

using the system. A use case describes the externally visible behavior of the

considered element (system, class, etc.) and encapsulates a coherent set of actions

that are executed in a fixed order. A use case does not indicate which classes

and which individual operations on the actions are involved. A description of the

use case is complete once the underlying processes are defined. To accomplish this,

an appropriate method of UML for modeling behavior, or a natural language

description, can be used.

Actors are considered special UML classes with specific properties and are not

considered as being definitely active. It can therefore only be determined

which actions occur between an actor and the system, but not who is the starting

point of an action. However, it is advisable to consider an actor as the starting point

of actions.

14.3 Comparative Analysis 287

Figure 14.19 shows the Use Case Diagram for the business trip application

process. The complete sequence of actions for “fill out request” could mean:

“enter start date of business trip”, “add business trip end date”, and “ask manager

for decision”. The other use cases can be described analogously.

Use Case Diagrams are often refined further by using activity diagrams in which

elements of data flow diagrams, Petri nets, flowcharts, etc. are combined. However,

the interplay of several activity diagrams by means of modeling signals and events

for exchanging information is only rudimentarily possible. This means that

representing the relationship between the individual use cases in our example is

not possible at all on the level of Use Case Diagrams and only to a limited extent on

the level of activity diagrams. An example in this respect is the alternative waiting

of an employee for approval or rejection.

The following example shows an activity diagram for the business trip applica-

tion (see Fig. 14.20). The individual activities have been grouped with so-called

swim lanes, depending on who performs the activity. In our example, there is a

dedicated swim lane for the employee, the manager, and the travel office. These

lanes can be considered as subjects who carry out the assigned activities. The

sequence of activities is specified by the control flow analogously to flowcharts.

It is possible to split up a single control flow by fork and join operations into

parallel control flows (fork) and to rejoin them again (join). In the business trip

application example, the control flow is split after the approval of the request by the

manager (shown in the picture with a black bar in the swim lane of the manager).

This means that the employee and the travel office obtain the approval in parallel.

The parallel control flows are then joined before the end node is reached.

Fig. 14.19 Use case diagram for the business trip application process

288 14 S-BPM Method by Comparison

The coordination of individual activities is done by shifting the control flow

between the individual lanes. However, it seems unrealistic that the control flow,

after completion of the business trip request by the employee, changes without

further delay to the manager. Normally, process participants exchange messages

when transferring the control flow. Such a transition of the control flow from one

process participant to another is not obvious, and visible only with cognitive effort

in an Activity Diagram.

In addition, fork and join operations in a neighboring swim lane are elusive and

artificial. In fact, they are often omitted, which is even officially allowed in BPMN

(http://www.omg.org/spec/BPMN/2.0) but immediately leads to semantic

difficulties when using Fork, and especially Join.

Despite the identified shortcomings, UML provides with use case and activity

diagrams and the other diagram types at least a limited possibility of complete

sentence construction in terms of the standard sentence grammar. In UML, actors

are not part of the model, so their behavior, and in particular the potential commu-

nication among stakeholders, is not considered in detail. This is also evident from

the fact that the actors do not appear in the other diagram types in UML, with the

exception of the time-sequence diagram.

Since the actors play an important role in business processes, UML also

represents in models only a limited perspective on reality.

14.3.5.3 A Subject-Oriented Approach Using PASS
The subject-oriented methodology presented mainly in Chap. 5 of this book is

based on the Parallel Activity Specification Scheme (PASS) of Fleischmann (1994).

Fig. 14.20 Activity diagram of the business trip application process

14.3 Comparative Analysis 289

http://www.omg.org/spec/BPMN/2.0

PASS uses elements of the Calculus of Communicating Systems by Milner and the

Communicating Sequential Processes by Hoare (see Sects. 14.3.4.2 and 14.3.4.3). It

integrates aspects of object orientation and adds a graphical notation (cf. Schmidt

et al. 2009, p. 54). In this way, S-BPM takes into account all parts of the natural

language sentence semantics, including subject, predicate, and object, whereas the

subject is in the role of “primus inter pares”.

14.3.6 Synopsis

The table in Fig. 14.21 summarizes the findings from the previous sections. The

more or less filled circle symbols express the assessment of various methods in

terms of their coverage of the standard sentence semantics of natural languages.

The table shows that parts of semantics are absent in many methods. We have

demonstrated that these are added pragmatically by natural language comments, or

by extending the basic set of symbols, to be able to form complete sentences.

Subject-oriented modeling targets active subjects (actors) and assigns activities

and business objects either to them, or to their communication relationships. It thus

meets the requirements of standard sentence semantics of natural language in its

originally conceived sequence. Therefore, it is the only approach which can be

considered complete in this respect. In addition, subject-oriented modeling is

intuitive: it reduces the learning curve for modeling to the effort required for

acquiring and mastering sentences of natural language.

Fig. 14.21 Model description languages in comparison with respect to standard semantics

structure of sentences (based on Schmidt et al. 2009, p. 55)

290 14 S-BPM Method by Comparison

References

Brinksma, E., Mader, A. Prozessalgebra, Teil 1, in: at - Automatisierungstechnik, Vol. 51, Issue 8,

S. A13–A16, 2003.

DeMarco, T., Structured Analysis and System Specification, Upper Saddle River 1979.

Denert, E., Software-Engineering - Methodische Projektabwicklung, Berlin 1991.

Fleischmann, A., Distributed Systems – Software Design and Implementation, Berlin 1994.

Havey, M., Essential Business Process Modeling, Sebastopol 2005.

Hoare, C., Communicating Sequential Processes, New Jersey 1985.

Milner, R., Calculus of Communicating Systems, Berlin u.a. 1980.

Milner, R., Parrow, J., Walker, D., A Calculus for Mobile Processes, Part I. Information and

Computation 100, pp. 1–40, 1992.

Milner, R., Parrow, J., Walker, D., A Calculus for Mobile Processes, Part II. Information and

Computation 100, pp. 41–77, 1992.

Milner, R., Functions as processes, in: Math. Struct. in Comp. Science, vol. 2, pp. 119–141, 1992.

Sharp, A., McDermott, P., Workflow Modeling, Norwood 2009.

Scholz, M., Holl, A., Objektorientierung und Poppers Drei-Welten-Modell als Theoriekerne, in:

Schütte, R. et al., Wirtschaftsinformatik und Wissenschaftstheorie. Grundpositionen und

Theoriekerne, Arbeitsbericht 4 des Instituts für Produktion und industrielles Informations-

management an der Universität Essen, Essen 1999.

Scheer A.-W., ARIS – Modellierungsmethoden, Metamodelle, Anwendungen, Berlin 1998.

Schmidt, W., Fleischmann, A. und Gilbert, O., Subjektorientiertes Geschäftsprozessmanagement,

HMD – Praxis der Wirtschaftsinformatik, Heft 266, S. 52–62, 2009.

Sinz, E.J., Konstruktionsforschung in der Wirtschaftsinformatik: Was sind die Erkenntnisziele

gestaltungsorientierter Wirtschaftsinformatik-Forschung?, in: Österle, H., Winter. R., Brenner,

W. (Hrsg.), Gestaltungsorientierte Wirtschaftsinformatik: Ein Plädoyer für Rigor und

Relevanz, Nürnberg, S. 29–34, 2010.

Stucky, W., Winand, U. (Hrsg.), Petri-Netze zur Modellierung verteilter DV-Systeme –

Erfahrungen im Rahmen des DFG-Schwerpunktprogramms “Verteilte DV-Systeme in der

Betriebswirtschaft“, Bericht 350, Karlsruhe 1997.

Open Access. This chapter is distributed under the terms of the Creative Commons Attribution

Non-commercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.

References 291

	14: S-BPM Method by Comparison
	14.1 To Go
	14.2 Subject, Predicate, and Object in Modeling
	14.3 Comparative Analysis
	14.3.1 Modeling While Focusing on Predicates
	14.3.1.1 Origin
	14.3.1.2 Flowcharts
	14.3.1.3 Event-Driven Process Chains
	14.3.1.4 Petri Nets

	14.3.2 Modeling While Focusing on Objects
	14.3.2.1 Origin
	14.3.2.2 Entity-Relationship Model
	14.3.2.3 Relational Data Model

	14.3.3 Modeling While Focusing on Predicate and Object
	14.3.3.1 Origin
	14.3.3.2 Data Flow Diagrams
	14.3.3.3 Object Orientation

	14.3.4 Modeling While Focusing on Subjects
	14.3.4.1 Origin
	14.3.4.2 Calculus of Communicating Systems
	14.3.4.3 Communicating Sequential Processes

	14.3.5 Methods Considering Subject, Predicate, and Object
	14.3.5.1 Origin
	14.3.5.2 Use Case and Activity Diagrams in UML
	14.3.5.3 A Subject-Oriented Approach Using PASS

	14.3.6 Synopsis

	References

