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Abstract. In this paper, we discuss the (im)possibility of construct-
ing chosen ciphertext secure (CCA secure) key encapsulation mecha-
nisms (KEMs) with low ciphertext overhead. More specifically, we rule
out the existence of algebraic black-box reductions from the (bounded)
CCA security of a natural class of KEMs to any non-interactive prob-
lem. The class of KEMs captures the structure of the currently most
efficient KEMs defined in standard prime order groups, but restricts an
encapsulation to consist of a single group element and a string. This
result suggests that we cannot rely on existing techniques to construct
a CCA secure KEM in standard prime order groups with a ciphertext
overhead lower than two group elements. Furthermore, we show how the
properties of an (algebraic) programmable hash function can be used to
construct a simple, efficient and CCA secure KEM based on the hard-
ness of the decisional Diffie-Hellman problem with a ciphertext overhead
of just a single group element. Since this KEM construction is covered
by the above mentioned impossibility result, this enables us to derive
a lower bound on the hash key size of an algebraic programmable hash
function, and rule out the existence of algebraic (poly, n)-programmable
hash functions in prime order groups for any integer n. The latter result
answers an open question posed by Hofheinz and Kiltz (CRYPTO’08) in
the case of algebraic programmable hash functions in prime order groups.

1 Introduction

The development of efficient and secure public key encryption has long been
a central research area in cryptography, and in particular, achieving security
against chosen ciphertext attacks (CCA security) while maintaining practical
efficiency has been the focus of many papers in the literature. One of the most
commonly used performance measures for public key encryption schemes, and
the measure that we are going to focus on in this paper, is ciphertext overhead
which expresses the additional cost in terms of storage and bandwidth when
operating with encrypted data as opposed to unencrypted data.

The currently most efficient encryption schemes are based on hybrid encryp-
tion [10]. In this approach, a public key component, referred to as a key en-
capsulation mechanism (KEM), is used to encrypt a random session key, and
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the message is then encrypted using a symmetric cipher which is referred to as
a data encapsulation mechanism (DEM). The ciphertext overhead of this type
of construction is dominated by the KEM. Specifically, if the KEM achieves
CCA security, a redundancy-free DEM can be used [27], since only one-time
CCA security is required of the DEM to obtain a CCA secure hybrid encryption
scheme. If the KEM achieves the slightly weaker notion of constrained CCA
security [20], an authenticated DEM is required, which will introduce a small
additional overhead corresponding to a message authentication code (MAC).!

The currently most efficient (constrained) CCA secure KEMs, which are prov-
ably secure in the standard model, are defined in prime order groups, and have
a ciphertext overhead of at least two group elements, e.g. [10,25,4,24,20,15]. An
overview of these is given in Table 1. Note that when considering constrained
CCA secure KEMs, the additional ciphertext overhead of a MAC must be taken
into account.? The KEM by Cramer et al. [9], which achieves a ciphertext over-
head of a single group element, can only be shown g-bounded CCA secure (for
a predetermined number of decryption queries ¢), and hence will not lead to a
fully CCA secure encryption scheme if combined with a DEM.

More Efficient Schemes? Given the existing KEMs, it is natural to ask: Is it
possible to construct a CCA secure KEM with a ciphertext overhead of less than
two group elements? Note that, besides being defined in prime order groups, the
KEMs in Table 1 share some structural properties. More specifically, all of the
KEMs include a random group element as part of the ciphertext which will be
used to derive the session-key in the decapsulation. The remaining element(s)
(except in KD [25], but see footnote®) are used to decide whether the ciphertext
is accepted as “valid”, but does not otherwise contribute to the computation of
the decapsulated key.

Given this, one might consider implementing a more space-efficient validity
check, using MACs and hash functions, as a potential strategy for reducing the
ciphertext overhead in the above mentioned schemes. To illustrate this approach,
consider a KEM by Cramer and Shoup [10, Sect. 9.3]. In this KEM, a public
key is of the form pk = (g, X1, X2 = ¢"* X2, X3 = ¢* X{?, X, = ¢*), where
g, X1 are group generators, and the private key is sk = (z1,22,y1,%2,2). A
ciphertext consists of (¢1 = g",co = X7,c3 = X5X35%) and the corresponding
session-key is K = X, where r is picked at random from Z,, p is the order of

! Alternatively, the KEM can be generically converted to a CCA secure KEM [2], but
this will likewise introduce an additional overhead of a MAC.

For KEMs defined in prime order groups, each group element in the ciphertext
overhead will contribute with at least 2\ bits for a security level of A bits, since the
order p of the group will have to satisfy p > 22* to prevent generic attacks against
the underlying assumptions of the security of the KEMs. On the other hand, a MAC
contributes with only A bits.

While the KEM in [25] makes use of “implicit rejection” and does not explicitly
check the validity of a ciphertext, it is relatively straightforward to make the scheme
use explicit rejection through a validity check. This KEM will be IND-CCCA secure
under the DDH assumption, and will fit the description mentioned here.
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Table 1. The currently most efficient KEMs in terms of ciphertext overhead. The
scheme Kiltz [24]" is identical to Kiltz [24], except that no hash function is used to
derive the session-key (see Sect. 4.2 of [24]). In the table, CCCA denotes constrained CCA
[20] and g-CCA denotes g-bounded CCA [9]. Furthermore, DDH denotes the decisional
Diffie-Hellman assumption, CDH the computational Diffie-Hellman assumption, GDH
the gap Diffie-Hellman assumption, GHDH the gap hashed Diffie-Hellman assumption,
and DBDH the decisional bilinear Diffie-Hellman assumption.

Scheme Security Hardness Ciphertext
assumption overhead
CS [10] IND-CCA DDH 3|G|
HaKu [15, Sect. 5] IND-CCA CDH 3|G|
HaKu [15, Sect. 4.1] ~ OW-CCA CDH 3|G|
KD [25] IND-CCCA DDH 2|G|
HoKi [20] IND-CCCA DDH 2G|
HaKu [15, Sect. 6] IND-CCCA DDH 2|G|
Kiltz [24] IND-CCA GHDH 2G|
Kiltz [24]" OW-CCA GDH 2|G]|
BMW [4] IND-CCA DBDH 2|G|
CHH+ [9] IND-g-CCA DDH 1|G|

the group, & = H(ey,c), and H is a target collision resistant hash function.
The decapsulation checks if ¢*T¥'*c32T¥2* = 3, and outputs the session-key
K = ¢4 if this is the case. Otherwise, the ciphertext is rejected.

To reduce the ciphertext overhead, we might consider a slightly modified
scheme in which the validity check is performed on the hash of the group elements
instead of on the group elements themselves i.e. a ciphertext is of the form
(c1 = g",c0 = X7,¢5 = H(X5X%?)), and the validity check is implemented
as H(c] T ei? 929y = ¢ Somewhat surprisingly, this leads to a CCA secure
scheme as noted in [11]. This reduces the ciphertext overhead to match that
of the other KEMs defined in standard prime order groups and based on non-
interactive assumptions, when taking into account the additional overhead of
a MAC required by these schemes e.g. Kurosawa-Desmedt [25], Hofheinz-Kiltz
[20] and Hanaoka-Kurosawa [15].

A similar approach can be used to reduce the ciphertext overhead of the
schemes Hofheinz-Kiltz [20], Hanaoka-Kurosawa [15], and Kurosawa-Desmedt
[25] with explicit rejection. This yields KEMs with a ciphertext overhead of just
a single group element and a hash value, which is lower than the currently most
efficient schemes. However, unlike the modified version of the Cramer-Shoup
KEM, the security proofs do not immediately extend to the modified KEMs.
Hence, it is not obvious what level of security these schemes provide.

1.1 Owur Contribution

In this paper, we discuss the impossibility of proving CCA security of KEMs in
standard prime order groups with low ciphertext overhead. More specifically, as
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our main result, we show that there is no algebraic black-box reduction from the
g-bounded one-way non-adaptive CCA security (OW-n-CCA1) of a class of KEMs
in which the ciphertext consists only of a single (random) group element and a
string, to the hardness of any non-interactive problem defined in the group, where
n is the number of group elements in the public key of the KEM. Since the ma-
jority of standard model security reductions are algebraic black-box reductions,
this result sheds light on the question regarding the minimal ciphertext over-
head achievable while maintaining CCA security by ruling out a natural class
of KEMs with similar structure to the currently most efficient KEMs defined
in standard prime order groups. Furthermore, the result holds even for security
against adversaries who are restricted to make a single parallel decryption query.
Hence, we can additionally rule out the existence of algebraic black-box reduc-
tions from the non-malleability of the captured KEMs due to the implications
shown in [18,26]. These results imply that the approach of minimizing ciphertext
overhead in the above mentioned schemes [20,15,25], by compressing group ele-
ments using a target collision resistant hash function (or a similar primitive), will
not yield CCA secure or non-malleable KEMs based on non-interactive assump-
tions. Additionally, since the DDH-based KEM by Cramer et al. [9] is contained
in the KEM class, our results imply that this scheme cannot be shown fully CCA
secure or non-malleable based on any non-interactive assumption.

Secondly, we show a simple construction of a CCA-secure KEM using pro-
grammable hash functions introduced by Hofheinz and Kiltz [21]. These hash
functions capture the “programmability” achieved by a random oracle, and have
been shown useful, for example, in the construction of short signatures in the
standard model [21,19]. We show that an algebraic (g, 1)-programmable hash
function allows the construction of a g-bounded CCA (IND-¢-CCA2) secure KEM
based on the DDH assumption, with a ciphertext overhead of just a single group
element (see Section 5.1 for the definition of a («, 8)-programmable hash func-
tion). Since this construction is covered by the above impossibility result, we can
derive a lower bound on the level of programmability provided by a hash func-
tion with a given hash key size. Specifically, we show that a hash function with
n group elements in the hash key cannot be («, 1)-programmable for any a > n.
Furthermore, we rule out the existence of algebraic (poly, 3)-programmable hash
functions in prime order groups for any 8 > 0. This result answers an open ques-
tion posed by Hofheinz and Kiltz [21] in the case of algebraic programmable hash
functions in prime order groups. We note that all known constructions of pro-
grammable hash functions are algebraic [21,19], and that the properties of these
hash functions suggest that this may be inherent [21, Sect. 1.5].

1.2 Used Techniques and Related Work

The type of impossibility results we show is commonly known as a black-box
separation [23]. More specifically, a black-box reduction from the security of a
cryptographic scheme to the hardness of a problem is an algorithm which, given
(black-box) access to any successful adversary against the scheme, successfully
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breaks any instance of the problem. A black-box separation result shows that
such a black-box reduction cannot exist.

Two main lines of techniques have been used for showing black-box separa-
tions: oracle separations [23,28] and meta-reductions [3,8]. The former technique
is typically used to show separations between primitives, e.g. [23,29,12,14,13],
and is based on showing the existence of an oracle under which the primitive
acting as a building block exists, but any instantiation of the “target” primitive
is broken. The latter technique is somewhat more direct, and aims at showing
that if there exists a reduction which, for example, reduces the security of a prim-
itive to a computational assumption, then there exists a meta-reduction which
uses the reduction as a black-box to break a (possibly different) computational
assumption. Meta-reductions have successfully been used in e.g. [3,8,1]. For an
overview of these definitions, techniques, and results, see [28,32].

While we are not considering a primitive-to-primitive reduction, we make
use of a variant of the oracle separation technique. In particular, we show the
existence of a distribution of oracles under which, on average over the choice of
the oracle, the non-interactive problem remains hard, while the CCA security of
any of the considered KEMs can be broken. We show that such a distribution
of an oracle is sufficient to rule out a fully black-box reduction [28] from the
security of a KEM in the considered class of KEMs, to the hardness of any
non-interactive problem. Since almost all security reductions for cryptographic
primitives are of this type, ruling out the existence of fully black-box reduction
gives strong evidence that the currently used techniques are not sufficient to
prove the security of the KEMs in question. Our proof techniques, especially our
formal treatment of the distribution of oracles, might be of independent interest.

The type of (fully) black-box reductions we are going to consider are algebraic
reductions [3,8,1]. Essentially, the algebraic property requires that the reduction
only creates group elements by means of the group operation, and does not map
arbitrary bit strings to group elements e.g. by applying a hash function to some
string to obtain a group element. More specifically, for an algebraic algorithm, it
is required that it is possible to compute the representation of a group element
output by the algorithm in terms of the group elements which are given as input.
For example, if an algebraic algorithm takes as input the group elements g1, g2
and outputs the element h, it should be possible to compute x1,z2 such that
917" -g52 = h, given access to the randomness used by the algorithm. As argued in
previous papers [3,1], considering algebraic reductions is not overly restrictive,
and almost all known security reductions for CCA secure KEMs in the standard
model are algebraic. In particular, the security reduction for the KEMs shown
in Table 1 are all algebraic.

2 Preliminaries

In this paper, we use the following basic notations and terminology. N denotes the
set of all natural numbers, and if n € N then [n] = {1,...,n}. “PPTA” denotes
a probabilistic polynomial time algorithm. If S is a set, “z < S” denotes picking
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z uniformly from S, and if D is a probability distribution, then “z < ID” denotes
choosing x according to D. If A is a probabilistic algorithm then y < A(x;r)
denotes that A computes y as output by taking z as input and using r as
randomness, and A€ denotes that A has access to the oracle ©. Unless otherwise
stated, A denotes the security parameter. A function f(A) : N — [0,1] is said
to be mnegligible (resp. noticeable) if for all positive polynomials p(A\) and all
sufficiently large A € N, we have f(\) < 1/p(A) (resp. f(A) > 1/p(X)). Let X be
a vector, then we denote by X[i] the i-th component of X.

Group Description. In this paper, we consider non-interactive problems with
respect to a family of prime-order groups {G} en indexed by the security pa-
rameter A. For convenience, we consider the following PTA | which we call a group
scheme, with which we will define such problems. (When A is easily inferred from
the context, we will usually leave out the subscript A and just write G.)

Definition 1. A group scheme GS is a deterministic PTA which takes a security
parameter 1 as input, and outputs a group instance A consisting of a description
of a group G, a prime p that corresponds to the order of the group G, and a
generator g € G. This process is denoted by A = (g,p,G) < GS(1?).

Note that since GS is assumed to be deterministic, there is a one-to-one corre-
spondence between A and the group description A generated by GS(1?*).

Algebraic Algorithms. Intuitively, an algorithm R is called algebraic if there
exists a corresponding algorithm, called the eztractor, such that for any group
element output by R, the extractor can compute the representation of the group
element with respect to the group elements given to R as input.

Formally, we adopt a similar approach to [1] and define the notion of algebraic
algorithms as follows:

Definition 2. Let R be a PPTA that takes A = (g,p, G) (output by GS), a string
aux € {0,1}*, and group elements X € G™ for somen € N as input, and outputs
a group element Y € G and a string ext € {0,1}*. R is called algebraic with
respect to GS if there exists a PPTA &£ receiving the same input as R (including
the same random coins r) such that for any A + GS(1*), all polynomial size X,
and any string aux € {0,1}*, the following probability is negligible in A:

Pr[(Y, ext) < R(A, X, aux;r); (y,ext) < E(A, X, auz,r) : Y # XY]

where the probability is over the choice of v and the randomness used by €, and
XY is defined by J[;¢(x ), X[i]yl,

Note that the definition of an algebraic algorithm does not exclude the possi-
bility that the auxiliary information aux contains group elements of G, but the
representation of the output element Y computed by the extractor must be with
respect to X.

The above definition of algebraic algorithms can naturally be extended to al-
gebraic “oracle” algorithms, which play an important role in our result. Specif-
ically, let R be an oracle PPTA that takes A = (g,p,G) (output by GS(1*)),
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a string auz € {0,1}*, and group elements X € G™ for some n € N as input,
and outputs a group element Y € G and a string ext € {0,1}*. Furthermore, let
g = q(\) be the number of queries made by R to the oracle. We say that R is
an algebraic oracle algorithm if there exists an algebraic algorithm R (which we
denote the decomposition of R) such that executing R (A, X, aux) is equivalent
to performing the following sequence of computations: First set Xo - X and
auxg < auz. Run (Y1, (ext||st1)) < R(A, Xo, auxo) and repeat

(X%, auz}) + O(A, Y, ext;); Xipr  (Xi||X5); auwiqpr + (sti||au]);
(Yisr, (extipa|lstiv)) < R(A, Xip1, aumig)

for i = 1,...,q. The last vector Y, output by R is assumed to contain the
single element Y. R

Note that since the decomposition R of an algebraic oracle algorithm R is
defined as an algebraic algorithm, the representation of any group element out-
put by R or included in the oracle queries made by R, can be calculated by
appropriately using the extractor for R. In this case, the representation is with
respect to all group elements that are given as input to R or returned in response
to R’s oracle queries.

The above definition can easily be extended to algorithms outputting multiple
group elements. Note that we will regard any algorithm whose output does not
contain any group elements, as an algorithm which outputs the “identity ele-
ment” 1g. Hence, this type of algorithm will also be considered to be algebraic.

Non-interactive Problems with Respect to a Prime Order Group. A non-
interactive problem (NIP) P with respect to a group scheme GS counsists of a
tuple of algebraic PPTAs, (I,V, U), that are defined as follows:

Instance Generator |: This algorithm takes a group description A = (g,p, G)
(output from GS(1%)) as input, and outputs a pair consisting of a problem
instance and a witness (y, w).

Verification Algorithm V: This algorithm takes a problem instance y, a string
x, and a witness w as input (where (y, w) are output by 1(4)), and outputs
T or L. We say that x is a valid solution to the problem instance y if
V(y,z,w) = T, and otherwise we say that x is an invalid solution.

Threshold Algorithm U: This algorithm takes a problem instance y as input,
and outputs a string z.

For a NIP P = (I,V,U) with respect to GS and an algorithm A, define the
experiment Expt(P;S’A()\) as:
(9,p,G) + GS(17); (y,w) + I(A); =+ A(1*,y); Return (V(y, z,w) < T)

Furthermore, define the threshold d(\) = Pr[ExptE&U()\) = 1]. Then, for an
algorithm A, we define the advantage of A in solving P by:

AdVES,A(/\) = PY[EXPtEs,A(/\) =1] = d(N).
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Definition 3. Let P be a NIP with respect to a group scheme GS. We say that
P is hard if, for any PPTA A, there exists a negligible function u(-) such that
Advgs 4(A) < ().

Intuitively, the algorithm U represents a trivial solution strategy for the problem
P, and any successful algorithm is required to be better than this U. Typically, U
always returns an invalid answer for “search” problems i.e. §(A) = 0, and returns
a random bit for “decision” problems i.e. §(A\) = 1/2.

The above definition of a non-interactive problem essentially captures all the
non-interactive problems defined for prime order groups, which are used to prove
the security of existing cryptographic primitives. Specifically, the definition in-
cludes the standard computational and decisional Diffie-Hellman problems as
well as their ¢-type variants (¢-SDH, ¢-ABDHE, etc.), and will even capture the
CPA security of a KEM.

Key Encapsulation. Since in this paper we will only treat KEMs based on a
group with prime order, for convenience we define a KEM with respect to a
group scheme GS, and change the security experiments accordingly.

A KEM I' with respect to a group scheme GS consists of the following three
PPTAs (KG, Enc,Dec). KG is a key generation algorithm which takes a group
description A = (g,p,G) (output from GS(1%)) as input, and outputs a pub-
lic/secret key pair (pk, sk); Enc is an encapsulation algorithm which takes pk as
input, and outputs a ciphertext ¢ and a session-key K € K (where K is a session-
key space specified by pk); and Dec is a decapsulation algorithm which takes sk
and c as input, and outputs a session-key K or an error symbol | indicating
that ¢ is “invalid”. We require Dec(sk,c) = K for all (pk, sk) output by KG(A)
and all (¢, K) output by Enc(pk).

Typically, security notions for KEMs are expressed by the combination of a
security goal (GOAL) and an adversary’s attack type (ATK). In this paper, we
will consider indistinguishability (IND) and one-wayness (OW) as security goals
GOAL, and chosen plaintext attacks (CPA), non-adaptive chosen ciphertext at-
tacks (CCA1), adaptive chosen ciphertext attacks (CCA2), and their g-bounded
analogues [9] (¢-CCA1 and ¢-CCA2) as an adversary’s attack types ATK. Due to
space limitations, we will only define 0W-¢-CCA1 security. See the full version for
the remaining definitions.

We say that a KEM I' = (KG, Enc, Dec) with respect to GS is OW-¢-CCA1
secure if, for any PPTA A, the following advantage function is negligible in A:

AdVZELEM(N) = Pr[A « GS(1%); (pk, sk) < KG(A); st « AP0 (pr);
(¢*, K*) < Enc(pk); K' + Ay(st,c*): K* = K|

where the decapsulation oracle Dec(sk, -) can only be queried ¢ times.

Algebraic Black-Box Reductions. We will consider the following type of reduc-
tions from the security of a KEM to the hardness of a non-interactive problem.
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Definition 4. Let GS be a group scheme, and let I be a KEM and P be a NIP
with respect to GS. Furthermore, let GOAL-ATK be a security notion for a KEM.
We say that there is an algebraic black-box reduction from the GOAL-ATK security
of I' to P if there exists an algebraic oracle PPTA R with the following property:
For any (possibly computationally unbounded) algorithm A, if Adv?ﬂ“_“‘m()\) is

non-negligible, then so is AdVES,R_A (N).

We note that this type of reduction is categorized as a “fully” black-box reduction
in the taxonomy by Reingold et al. [28]. In particular, the reduction algorithm
is required to work universally for all successful (possibly inefficient) algorithms.

3 A Class of Simple and Space Efficient KEMs

The class of KEMs we consider essentially captures the structure of the ex-
isting KEMs defined in standard prime order groups like Cramer-Shoup [10],
Kurosawa-Desmedt [25] (with explicit rejection), Hofheinz-Kiltz [20], Hanaoka-
Kurosawa [15], and Cramer et al. [9], but requires the ciphertexts to consist of
a single random group element and a string i.e. a ciphertext is required to be

of the form (¢", f(pk,r)) where r < Z,, p is the order of the group, pk is the
public key of the scheme, f: PK xZ, — {0,1}* is a scheme-dependent function,
and PK is the public key space. This captures the approach highlighted in the
introduction of replacing the group elements used for validity checking in the
above KEMs with the output of a hash function or similar primitive. However,
we note that f(pk,r) is not limited to be used in a potential validity check, but
might also be used when deriving the session-key. The session-keys encapsulated
by the ciphertexts are assumed to be group elements, but can be derived from
all the information available in the encapsulation in any “algebraic” way. Note
that this captures the key derivation in the above KEMs, and does not rule out
the use of target collision resistant hash function, or the use of a Waters hash
function [30] (and similar constructions).

We consider a class of KEMs Kgs ,, defined with respect to a group scheme
GS and a parameter n € N.

Definition 5. A KEM I' = (KG, Enc, Dec) with respect to a group scheme GS
belongs to Kgs,n, where n € N, if it has the following properties:

1. The public key space PK is {A} x {0,1}**) x G™, where p is a scheme-
dependent function and A = (g,p,G) + GS(1*) i.e. a public key pk returned
by KG(A) is of the form pk = (A, auzx, X1, ..., X,).

2. A ciphertext C € G x {0,1}* and the corresponding session-key K € G are
of the form

C=(c,d)=(g" f(pk,r))  and K = ghtkn T x/¥

i€[n]

where v < Zy,, and f: PK xZp — {0,1}* and fo,..., fn: PK X Zp — 7y
are efficiently computable scheme-dependent functions.
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For any pk = (A, auz, X1, ...,X,) € PK, the session-key obtained by decap-
sulating a ciphertext C = (c,d) generated by Enc(pk) is of the form

K = g¥oPk.Coyisyn) o (PR, Coynseyn) (1)

where ¥i(pk, C,y1,-..,yn) = Yi0o(Pk, C) + X ¥ii(Pk,C) - y; for i €
{O, 1}, Y = logg Xk fO’I“k‘ S [’I’L], and {1%73' : P’CXGX{O, 1}* — Zp}ie{o,l},je[n]
are efficiently computable scheme-dependent functions.

For any pk = (A, auz, X1, ..., X,) € PK, the second component d € {0,1}*
of a ciphertext C = (c,d) generated by Enc(pk) can be re-computed as follows:
d= {/;(pl@c, Y1, -5 Yn), wherey; =log, X; fori € [n] andi/; : PKXGXZy —
{0,1}* is a scheme-dependent function.

would like to note the following:

The values y1, . . ., y, defined above might not correspond to the private key
of the scheme, and the decapsulation might not be done as shown in (1), but
it is required that any valid session-key K output by Dec satisfy equation (1).
If a KEM in Kgs,,, satisfies correctness, it must hold that

fo(pk7r) + Z fi(pk7r) ‘Y = ’(/)O(pk7c7y17'"7yn)+r'w1(pk7c7y17"'7yn)

i€[n]

for any r € Z,. Hence, the requirement that the functions vy and v, are
linear functions in yi,...,y, is arguably a very mild restriction._

That the component d of a ciphertext can be recomputed using 1), is natural
if d is used as a part of a validity check. Note, however, that no requirements
are made regarding how a KEM in Kgs ,, implements validity checking.
That aur and d = f(pk,r) are strings imply that the representation of a
group element output by any algebraic algorithm taking a public key or a
ciphertext as input, cannot depend on group elements derived from auzx or d.
There are no restrictions on the scheme-dependent functions f, { fi}icfo,....n}

1;7 {%ij}ieqo,1},jem) (other than that they are efficiently computable), and
these might use non-linear functions like cryptographic hash functions and
MACs, which is not allowed in “structure-preserving” encryption [5].

Main Impossibility Result

The following theorem captures our main result.

Theorem 6. For any group scheme GS, for any KEM I' € Kgs,, where n € N,
and for any NIP P with respect to GS, if P is hard, then there is no algebraic
black-box reduction from the OW-n-CCA1 security of I' to P.

We

will show this theorem by using a variant of the oracle separation tech-

nique [23,28]. Specifically, the theorem follows from the following lemma. (In

the

lemma, Adv?;LS’ 4(A) denotes the advantage of an algorithm A in solving the

discrete logarithm problem wrt. GS. See the full version for a formal definition.)
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Lemma 7. Let GS be a group scheme, I' € Kgs,n be a KEM where n € N,
and P be a NIP with respect to GS. Furthermore, let GOAL € {OW,IND} and
ATK € {CPA,g-CCA1,CCA1,g-CCA2,CCA2} (with ¢ € N). Assume there exists a
distribution D of an oracle O satisfying the following two conditions:

1. There exists an algebraic oracle PPTA A such that Eop [Adv%?ﬂ“éATK(/\)] is
non-negligible.

2. For any algebraic oracle PPTA A, there exist PPTAs By and Ba, a polyno-
mial Q(N), and a negligible function u(\) such that

E
o

E_[AdvEs 4o (V] < QO - AdvE s, (V) + AdvEs s, (V) + ().

Then, if P is hard, there is no algebraic black-box reduction from the GOAL-ATK
security of I' to P.

Proof Sketch. (A formal proof can be found in the full version.) The lemma is
proved by contradiction. We assume simultaneously that the NIP P = (I,V,U)
is hard and that there is an algebraic black-box reduction from the GOAL-ATK
security of the KEM I" to P. The latter guarantees that there exists an algebraic
oracle PPTA R that satisfies Definition 4. We consider two separate cases: the
discrete logarithm (DL) problem with respect to GS is hard, and the DL problem
with respect to GS is not hard. For each case we will show a contradiction.

The second case is fairly easy to show and does not require the use of the
oracle O. Specifically, that the DL problem is not hard implies the existence of
an adversary A’ that successfully breaks the KEM I in the sense of the GOAL-ATK
security considered in the lemma, by simply recovering the randomness r from
the challenge ciphertext. Then, the definition of R implies that RA" can solve
P with non-negligible advantage. Here, note that RA" can be implemented by
a single PPTA R’ which internally runs A’ since both R and A’ are PPTAs.
However, the existence of such R’ contradicts that P is hard.

The first case, in which the DL problem is hard, has some similarities with
the above case, but is more interesting and more involved. We make use of the
oracle O chosen according to D. The first condition of the lemma guarantees
the existence of an algebraic oracle PPTA A which, given access to O, has non-
negligible “expected” advantage in breaking the GOAL-ATK security of the KEM
I', where the expectation is over the choice of O according to D.

Now, in order to reach a contradiction, we would like to construct an algebraic
oracle PPTA R which, given access to O (chosen according to D), has non-
negligible “expected” advantage in solving P, by using A and the reduction
algorithm R as building blocks. One might think that just running RAY on input
the problem instance y given to R is enough for that purpose, but this is not
the case. Recall that R is only guaranteed to work when A© successfully breaks
the GOAL-ATK security of I'. Furthermore, only the “expected” advantage of A
is guaranteed to be non-negligible. Hence, there is a possibility that a particular
choice of O is “bad,” and that A’s advantage under this O is not non-negligible.
If the oracle O is bad, then nothing is guaranteed about the success probability
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of RA7 in solving P. In particular, the advantage of R might even be negative,
and the overall expected advantage in solving P might not be non-negligible.
To deal with this issue, R first tests whether the given oracle O is “good” by
running RAY many times with independently generated problem instances. If
the success probability of RAC (measured by ﬁ) sufficiently exceeds the thresh-
old §(\), then R labels the oracle “good” and runs RAY with the given instance
y. Otherwise, R runs the threshold algorithm U on input y to avoid a heavy
negative contribution to the expected advantage. Constructed as above, R’s ex-
pected advantage (over the choice of O according to D) can be shown to be
non-negligible. Then, the existence of such an algebraic oracle algorithm, to-
gether with the second condition given in the lemma and the assumption that
the DL problem is hard, implies the existence of a PPTA B that solves P with
non-negligible advantage, which again contradicts that P is hard. Hence, we can
conclude that either P is not hard or there exists no algebraic black-box reduc-
tion from the GOAL-ATK security of I" to the hardness of P. O

To make use of the above Lemma 7, we will first define a distribution of oracles,
and then proceed to show that the conditions 1 and 2 are satisfied for this
distribution. This will complete the proof of Theorem 6.

4.1 The Oracle and the Distribution

The oracle we consider is associated to a KEM which belongs to the class Kgs ».
More specifically, for any KEM I' € K¢s , and corresponding public key space
PK, consider an oracle O = {01, Oz} defined by a function F' : PK — Zj x
{0, 1}* where n indicates the number of group elements in a public key of I" (i.e.
pk = (A, auz, X1,...,X,) and A = (g,p,G) < GS(11)):

— O, takes as input a public key pk, and returns L if pk ¢ PK. Other-
wise, 07 computes (r1,...,7r,,0) < F(pk) and the ciphertexts {(C;, K;) +
Enc(pk; i) }ien)- Lastly, Op returns (C1,...,Cy,0).

— O, takes as input a public key pk, session-keys (Ki,...,K,) € G", and a
tag o € {0,1} . If pk € PK, then Oy returns L. Otherwise, Oy computes
(riy...,rn,0") < F(pk) and (C;, K]) < Enc(pk;r;) for each i = [n], and
then checks if K; = K/ for all i € [n] and o = ¢’. If the check fails, then
Oy returns L. Otherwise, Oy computes {u; = ¥1(pk, Ci, y1, ..., Yn) }iepn) and
returns these values, where 1 is the scheme-dependent function of I'.

By picking the function F' : PK — Zj x {0, 1}* uniformly at random from all
possible functions with the proper domain and range, we obtain a distribution
of the defined oracle O. In the following, this distribution will be denoted D.

4.2 Breaking a KEM Using the Oracle

We will now show that an oracle O chosen according to the distribution ID defined
in Section 4.1 can be used to break the 0W-n-CCA1 security of a KEM in Kgs p.
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Lemma 8. Let GS be a group scheme, I' € Kgs., be a KEM where n € N, and
let D be the distribution of the oracles O = (01, O3) described above. Then there
exists an algebraic oracle PPTA A such that EOFD[AdV%’_XLO_CCAI()\)] > 3

4n? "
Proof Sketch. (A formal proof can be found in the full version.) In the following,
we consider the OW-n-CCA1 experiment in which we take into account the choice
of oracle O according to ID. Note that the success probability of an adversary A
in this experiment is given by E@HD[Adv%’;{ECCM(A)].

Recall that the session-key K of a ciphertext C' = (c¢,d) of the KEM I is
of the form K = g¥o®Pk:Coyrsyn) cr(Pk,Coynsvn) where 9y (pk, C,y1, ..., yn) =
1,0(pk, C) + Zie[n] 1,:(pk, C) - y;. Therefore, from a OW-n-CCA1 adversary’s
viewpoint, the difficulty of recovering a session-key K from a ciphertext C must
lie in the calculation of the component c2ieim) ¥1.1(PRC)yi However, we construct
an algebraic oracle PPTA A that makes use of the oracle O and the decapsulation
oracle Oge. to calculate this component for the challenge ciphertext C*, and
thereby break the OW-n-CCA1 security of I'. A is constructed as follows:

Given a public key pk = (A, auz, X1, ..., X,,) for I'; A simply submits this to
O1 to obtain n randomly generated ciphertexts (Cy,...,Cy) under pk. Then
A submits (C1,...,Cp) to Ogec to obtain the corresponding decapsulations
(Ki,...,K,). Lastly, A will submit (K1,...,K,) to Oz to obtain the values
{u = V1.0(0k, Cs) + Yiepuy ©1,4(Pk, C) - yi} jeiay, where i = log, X, for i € [n].

For a ciphertext C, let ¥ (pk,C) = (¢Y11(pk,C), ..., Y1.n(pk,C)) € Zy be
a row vector. Furthermore, let y¥' = (y1,...,yn) € Zy and let v} = u; —
Yn,0(pk, C;) for all j € [n]. Using the values returned by O, A can construct a
system of equations {t(pk, Cj) -y = u}}c[n)- If the vectors {1(pk, Cj)} jen) are
linearly independent, this system will have the unique solution y* = (y1,...,yx),
and A will be able to recover this by solving the equation system. Obtaining y
allows A to trivally calculate K*.

The tricky part is the case in which the vectors {4 (pk,C})} e[; are lin-
early dependent. Recall that the ciphertexts (Ci,...,C),) are generated ran-
domly by the oracle 01, and that the challenge ciphertext C* is likewise ran-
domly generated by the OW-n-CCA1 experiment. The key observation, which we
will show in the full proof, is that if the vectors {1(pk,C})}jc}n) are linearly
dependent, then there is a high probability that the vector ¥ (pk,C*) is lin-
early dependent on the n — 1 vectors {4 (pk, C;)} jen—1)- Hence, (pk,C*) -y =
Eie[n] Yn,i(pk, C*) - y; can be represented as a linear combination of the n — 1
values {u; = (pk,C;) - y}jein—1), where the latter are known to .A. Therefore,
in this case, A can calculate ¢1 (pk, C*) = ¢1,0(pk, C*) + Zie[n] Yn,i(pk, C*) - ys,
from which A can recover K*.

In the full proof, we will show that regardless of the probability that the n
vectors {1 (pk, C;)} je[n) are linearly dependent, A will have an expected success
probability with the claimed lower bound. O

Breaking Non-malleability. Inspecting the proof of the above lemma reveals that
the n decapsulation queries made by A can be done in a single parallel decapsula-
tion query containing n ciphertexts. Since indistinguishability against a parallel
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chosen ciphertext attack is implied by the notion of non-malleability [18,26],
this implies that the constructed adversary can be used to successfully attack
the non-malleability of the KEM I" as well. Hence, our impossibility result can
easily be extended to rule out the existence of an algebraic black-box reduction
from the non-malleability of a KEM I' € K¢s ,, to a NIP P with respect to GS.

4.3 Simulating the Oracle While Solving a NIP

In this subsection, we will show that the oracle defined in Section 4.1 is essentially
useless for an algebraic algorithm trying to solve a NIP.

Lemma 9. Let GS be a group scheme, I' € Kgs,n be a KEM where n € N,
and P be a NIP with respect to GS. Furthermore, let D be the distribution of
the oracles O = (01, 02) (corresponding to I') defined as above. Then, for any
algebraic oracle PPTA A, there exist PPTAs By and Ba, a polynomial Q(X), and
a negligible function p(X\) such that

B [AdVEs 4o (V] < Q) - AdvE s, () + AdvEs s, () + (V).

Proof Sketch. (A formal proof can be found in the full version.) In the following,
we consider the NIP hardness experiment Exptzs’ 4(A) in which we take into
account the choice of the oracle O according to D. Note that the advantage of
an adversary A in this experiment is given by Eop [/—\dvzs’ a0 (N)].

To prove the lemma, we show that for any algebraic oracle PPTA A with
access to O and which attempts to solve the NIP P, it is possible to construct
another PPTA By which has almost the same advantage as A in solving the
same P without access to O.

More specifically, By will make use of A as a building block and simulate the
oracle O = (01, 02) chosen according to D for A. By takes a problem instance
y (of P) as input, and generates an empty list L which is used to simulate O.
Then By picks randomness r 4 and runs A with input y and randomness r 4.

The main difficulty of simulating the oracle O = (O1,0s) is that A may
use 01 and Oy multiple times in any order. Recall, however, that when chosen
according to D, the function F used in O; and Qs is a random function, and the
tag o € {0,1}*, which is contained in the output of F', works like an information-
theoretically secure MAC. Therefore, when A asks an Os-query with a fresh
pk (that has not appeared in any of A’s previous queries), By can immediately
return L, which will be an almost perfect simulation of O for this type of query.
By simulates O; by “lazy-sampling” of the random function F' and generating
ciphertexts {C; = (ci,d;)}icn) using Enc. All values returned to A in an O;-
query, as well as the encapsulated session-keys, are stored by Bs in the list L.
Furthermore, when A makes a valid Os-query (pk, K1, ..., K,, o) (for which Oy
will not return L), Bs can run the extractor corresponding to (the decomposition
of) A to obtain values {u;};c[n such that K; = cj*g* for some value z; € Z,
unknown to By. Lastly, By returns (u,...,u,). Whether the values {K}ic[n)
are correct decapsulation results can be checked using the list L. Note that since
the randomness r 4 is chosen by Ba, Bs is able to run the extractor for A.
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Here, however, we have to be careful because the above simulation could fail
if either of the following events occurs: (1) the extractor fails, or (2) there is an in-
dex i € [n] such that the extracted value u; is different from ¢ (pk, Ci, y1, - - - , Yn)-
Fortunately, the probability of (1) occurring is negligible by the definition of an
algebraic oracle algorithm. Moreover, the probability of (2) occurring for an index
i € [n] in one of A’s Oz-queries can be bounded by the advantage Adv[él“sf,1 (A\) of
another PPTA B; which solves the DL problem. Put differently, By succeeds in
simulating the oracle O for A almost perfectly. Furthermore, since Bs succeeds
in solving P whenever A does, the lemma follows. a

5 Lower Bounds for Programmable Hash Functions

In this section, we show lower bounds on the “programmability” of an algebraic
programmable hash functions defined in a prime order group. We will do this
indirectly, by first showing how to construct a CCA secure KEM based on the
DDH assumption, with a ciphertext consisting of just a single group element,
from an algebraic programmable hash function. Since this KEM construction
is captured by the class considered in the previous sections, we can derive the
lower bounds by combining this with the previous impossibility result.

5.1 Programmable Hash Functions

Definition 10. Let o, € N. A (a, 8)-programmable hash function H with
respects to a group scheme GS and with input length £(X), consists of the following
four algorithms (HGen, Eval, HTrapGen, HTrapEval)

— HGen takes a group description A = (g,p,G) (output from GS(1*)) and
returns a hash key k.

— Eval takes k and a string s € {0, 1}[(’\) as input, and returns a group element
of G.

— HTrapGen takes A and group elements hi,hs as input, and returns a hash
key k and a trapdoor T.

— For all group elements hi,ho € G, the statistical difference between the
keys k <+ HGen(A) and the first component k of the output from
HTrapGen(A, h1, ha) is negligible.

— On input a string s € {0, 1}5()‘) and trapdoor T, HTrapEval returns as, bs € Z,
such that Eval(k, s) = h{*hb:.

— For all group elements hi,hos € G and (k,7) < HTrapGen(A), and for all
Strings s1, . .., 50 € {0, 1N and s}, .. ., 523 € {0, 1YW such that s; # st for
alli,j, the probability Prlas, = --- = as, = 0Aay,,. .. s, # 0] is noticeable
in A, where (as;,bs;) < HTrapEval(7, s;), (as,bs ) < HTrapEval(r, s}), and

the probability is taken over the randommness used by HTrapGen.

If H is (g(\), B)-programmable for every polynomial ¢(\), we say that H is
(poly, B)-programmable. Furthermore, we say that a programmable hash func-
tion is algebraic if all algorithms of H are algebraic algorithms.



On the Impossibility of Constructing Efficient Key Encapsulation 827

In the following, we will make explicit use of the extractors for HGen and Eval.
More specifically, let k + HGen(A) be given by x = (auz, X1,...,X,) where
X; € G for all i € [n] and it is assumed that auz does not contain any elements
of G. Let h € G be an element returned by Eval on input a string s. Then, if
HGen and Eval are algebraic algorithms, there exist extractors Eygen and Egyal
with the following properties:

— Oninput A = (g, p, G) and randomness rygen used to run HGen, Engen returns
values (y1,...,yn) such that X; = g¥ for all i € [n].

— On input k = (auz, X1,...,X,) and a string s € {0, 1}50‘)7 EEval Teturns
values (a1, ..., an) such that b =[], Xa’ = Eval(k, s).

We note that all known constructions of programmable hash functions [21,19]
are algebraic.

5.2 A Simple KEM Based on a Programmable Hash Function

We now show how to construct an IND-g-CCA2 secure KEM with ciphertexts
consisting of a single group element, from an algebraic (g, 1)-programmable
hash function. Let H = (HGen, Eval, HTrapGen, HTrapEval) be an algebraic pro-
grammable hash function with respect to GS. Let £(\) be the input length of H.
We also assume that any group element of G where A = (g, p, G) + GS(1?) can
be described with ¢(A) bits. Then we construct a KEM I as follows:

KG : On input A = (g,p,G), pick randomness rHgen for HGen and run x =
(auz, X1,...,X,) < HGen(A;rygen). Furthermore, run Engen(A, THgen) to
obtain (y1,...,yn) such that X; = g¥ for all ¢ € [n], and set pk + (A, k)
and sk < (K, Y1,-«-,Yn)-

¢ : Oninput pk = (4, k), pick randomness r € Z,,, and compute the ciphertext
¢ = ¢" and the session-key K = Eval(k, c)". (Here, c is treated as an ¢(\)-bit

string.)
¢ : On input sk = (k,y1,...,yn) and ¢ = ¢g", compute h < Eval(x, ¢), run the
extractor Egyal to obtain (aq, ..., a,) satisfying h = Hie[n] X", and compute

the session-key K = c2oicin] %i¥i

The correctness of the KEM follows from the properties of the extractors Exgen
and gEvaI3

K = Eval(k, )" H X)) = H( )aii = (2ieln) GV
1€[n]
Note that the DDH-based KEM by Cramer et al. [9] can be seen as a concrete

instantiation of the above KEM in which we use the concrete programmable
hash function proposed in [19, Sect. 3.3].

Theorem 11. Let GS be a group scheme. Assume that H is an algebraic (q,1)-
programmable hash function with respect to GS. Then there exists an algebraic
black-box reduction from the IND-q-CCA2 security of the above KEM I to the
hardness of the DDH problem with respect to GS.

The proof of the above theorem is given in the full version.
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Note that due to the assumed algebraic property of the programmable hash
function, the above KEM I falls into the class Kgs,, described in Section 3,
where n is the number of group elements in the hash key of the programmable
hash. Furthermore, the DDH problem is captured by the definition of a non-
interactive problem described in Section 2. Hence Theorem 6 implies that there
exists no algebraic black-box reduction from the OW-n-CCA1 security of the KEM
I' to the hardness of any non-interactive problem*. On the other hand, the
above Theorem 11 shows that such a reduction (from the stronger security
notion IND-n-CCA2) is possible assuming the existence of an algebraic (n,1)-
programmable hash function. Since any (n,3)-programmable hash function is
(n, B8')-programmable if 8 > ', this immediately gives us the following theorem.

Theorem 12. For any group scheme GS and any integer 5 € N, there exists no
algebraic (n, 8)-programmable hash function with respect to GS whose hash key
contains less than n group elements of G, where G is the group described by A
which is output by GS.

Considering the case in which the parameter n for the programmable hash func-
tions is considered to be any polynomial in A, we obtain the following theorem,
which answers the open question posed by Hofheinz and Kiltz [21] in the case of
algebraic programmable hash function defined in prime order groups.

Theorem 13. For any group scheme GS and any integer 5 € N, there exists no
algebraic (poly, B)-programmable hash functions with respect to GS.

6 Discussion

We have shown that there exists no algebraic black-box reduction from the
OW-n-CCA1 security of a KEM in the class Kgs n, to the hardness of any non-
interactive problem with respect to GS. The class Kgs ,, essentially captures the
structure of the efficient KEMs [10,20], [15, Sect. 4.1], and [25] (with explicit
rejection), but requires the ciphertext to consist of just a single random group
element and a string.

Our results leave several open problems. Specifically, it remains an open
problem to prove the (non-)existence of a CCA secure KEM based on a non-
interactive assumption, defined in a standard prime order group, and with a
ciphertext overhead of just two group elements. Another interesting question is
whether our results can be extended to rule out constrained CCA [20] secure
KEMs based on non-interactive assumptions.

Furthermore, we have focused on simple KEMs in which the session-key lies
within the group. More precisely, the KEM class Kgs , does not capture the

* Note that this does not contradict the results by Cramer et al. [9]. More specifically,
while the KEM defined in [9] was shown to be IND-n~-CCA under the DDH assumption
via an algebraic black-box reduction, the scheme requires a public key containing
O(n?)) group elements.
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structure of schemes which make use of a pairing to derive the session-key like
[4], or apply a type of key-derivation function, such as the hardcore bit-based
schemes like [15, Sect. 5], [17, Sect. 3], and [31, Sect. 3], the HDH-based versions
of [15, Sect. 4.2] and [6, Sect. 6.2], or a combination of these like [17, Sect. 5.2 and
5.3] and [31, Sect. 5]. Note, however, that these schemes apply the key-derivation
function (and/or the pairing) to one or more “seed” group elements to obtain
a session-key. Here, it might be interesting to investigate the security provided
by the “core part” of the schemes, in which the seed group element(s) is con-
sidered to be the session-key. Note that for all of the above mentioned schemes,
these “core parts” can be shown to be OW-CCA2 secure under an appropriate
non-interactive assumption. Furthermore, the structure of these “core parts” is
captured by Kgs  if the ciphertext is reduced to consist of a single random group
element and a string, for example, by applying the approach of compressing the
group elements used for validity checking. In this case, our results imply that
these “core parts” cannot be shown 0W-n-CCA1 secure based on a non-interactive
assumption via an algebraic black-box reduction. This observation might pro-
vide some insight into the (im)possibility of constructing more efficient KEMs
that make use of key-derivation functions, but drawing any formal conclusions
regarding this, remains an open problem.

Since our results are restricted to KEMs defined in prime order groups, it is
natural to ask whether similar results will hold in composite order groups. Note,
however, that in composite order groups, it is possible to achieve a KEM with a
ciphertext overhead of just a single group element [22, Sect. 5]. While this KEM
only achieves constrained CCA security (based on a non-interactive assumption),
it can be converted to a fully CCA secure KEM using the techniques from [2]
which will result in an additional ciphertext overhead of a MAC.

Lastly, we have shown lower bounds on the programmability of algebraic pro-
grammable hash functions in prime order groups. Furthermore, the definition of
a programmable hash function requires the hash function to have some “alge-
braic properties” (see the discussion in [21, Sect. 1.5]), which seems to suggest
that constructions of programmable hash functions are inherently algebraic.
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