
To Hash or Not to Hash Again?

(In)Differentiability Results for H2 and HMAC

Yevgeniy Dodis1, Thomas Ristenpart2, John Steinberger3,
and Stefano Tessaro4

1 New York University
dodis@cs.nyu.edu

2 University of Wisconsin–Madison
rist@cs.wisc.edu

3 Tsinghua University
jpsteinb@gmail.com

4 Massachusetts Institute of Technology
tessaro@csail.mit.edu

Abstract. We show that the second iterate H2(M) = H(H(M)) of a
random oracle H cannot achieve strong security in the sense of indiffer-
entiability from a random oracle. We do so by proving that indifferen-
tiability for H2 holds only with poor concrete security by providing a
lower bound (via an attack) and a matching upper bound (via a proof
requiring new techniques) on the complexity of any successful simulator.
We then investigate HMAC when it is used as a general-purpose hash
function with arbitrary keys (and not as a MAC or PRF with uniform,
secret keys). We uncover that HMAC’s handling of keys gives rise to
two types of weak key pairs. The first allows trivial attacks against its
indifferentiability; the second gives rise to structural issues similar to
that which ruled out strong indifferentiability bounds in the case of H2.
However, such weak key pairs do not arise, as far as we know, in any
deployed applications of HMAC. For example, using keys of any fixed
length shorter than d − 1, where d is the block length in bits of the un-
derlying hash function, completely avoids weak key pairs. We therefore
conclude with a positive result: a proof that HMAC is indifferentiable
from a RO (with standard, good bounds) when applications use keys of
a fixed length less than d− 1.

Keywords: Indifferentiability, Hash functions, HMAC.

1 Introduction

Cryptographic hash functions such as those in the MD and SHA families are con-
structed by extending the domain of a fixed-input-length compression function
via the Merkle-Damg̊ard (MD) transform. This applies some padding to a mes-
sage and then iterates the compression function over the resulting string to com-
pute a digest value. Unfortunately, hash functions built this way are vulnerable
to extension attacks that abuse the iterative structure underlying MD [22, 34]:

R. Safavi-Naini and R. Canetti (Eds.): CRYPTO 2012, LNCS 7417, pp. 348–366, 2012.
c© International Association for Cryptologic Research 2012

To Hash or Not to Hash Again? 349

given the hash of a message H(M) an attacker can compute H(M ‖X) for some
arbitrary X , even without knowing M .

In response, suggestions for shoring up the security of MD-based hash func-
tions were made. The simplest is due to Ferguson and Schneier [20], who advocate
a hash-of-hash construction: H2(M) = H(H(M)), the second iterate of H . An
earlier example is HMAC [5], which similarly applies a hash function H twice,
and can be interpreted as giving a hash function with an additional key input.
Both constructions enjoy many desirable features: they use H as a black box, do
not add large overheads, and appear to prevent the types of extension attacks
that plague MD-based hash functions.

Still, the question remains whether they resist other attacks. More generally,
we would like that H2 and HMAC behave like random oracles (ROs). In this
paper, we provide the first analysis of these functions as being indifferentiable
from ROs in the sense of [13, 29], which (if true) would provably rule out most
structure-abusing attacks. Our main results surface a seemingly paradoxical fact,
that the hash-of-hashH2 cannot be indifferentiable from a RO with good bounds,
even if H is itself modeled as a keyed RO. We then explore the fall out, which
also affects HMAC.

Indifferentiability. Coron et al. [13] suggest that hash functions be designed
so that they “behave like” a RO. To define this, they use the indifferentiability
framework of Maurer et al. [29]. Roughly, this captures that no adversary can
distinguish between a pair of oracles consisting of the construction (e.g., H2) and
its underlying ideal primitive (an ideal hash H) and the pair of oracles consisting
of a RO and a simulator (which is given access to the RO). A formal definition
is given in Section 2. Indifferentiability is an attractive goal because of the MRH
composition theorem [29]: if a scheme is secure when using a RO it is also secure
when the RO is replaced by a hash construction that is indifferentiable from a
RO. The MRH theorem is widely applicable (but not ubiquitously, c.f., [31]),
and so showing indifferentiability provides broad security guarantees.

While there exists a large body of work showing various hash constructions
to be indifferentiable from a RO (c.f., [1, 7, 11–13, 15, 16, 23]), none have yet
analyzed either H2 or HMAC. Closest is the confusingly named HMAC con-
struction from [13], which hashes a message by computing H2(0d ‖M) where H
is MD using a compression function with block size d bits. This is not the same
as HMAC proper nor H2, but seems close enough to both that one would expect
that the proofs of security given in [13] apply to all three.

1.1 The Second Iterate Paradox

Towards refuting the above intuition, consider that H2(H(M)) = H(H2(M)).
This implies that an output of the construction H2(M) can be used as an inter-
mediate value to compute the hash of the message H(M). This property does
not exist in typical indifferentiable hash constructions, which purposefully en-
sure that construction outputs are unlikely to coincide with intermediate values.
However, and unlike where extension attacks apply (they, too, take advantage

350 Y. Dodis et al.

of outputs being intermediate values), there are no obvious ways to distinguish
H2 from a RO.

Our first technical contribution, then, is detailing how this structural property
might give rise to vulnerabilities. Consider computing a hash chain of length �
using H2 as the hash function. That is, compute Y = H2�(M). Doing so requires
2� H-applications. But the structural property of H2 identified above means
that, givenM and Y one can computeH2�(H(M)) using only oneH-application:
H(Y) = H(H2�(M)) = H2�(H(M)). Moreover, the values computed along the
first hash chain, namely the values Yi ← H2i(M) and Y ′

i ← H2i(H(M)) for
0 ≤ i ≤ � are disjoint with overwhelming probability (when � is not unreasonably
large). Note that for chains of RO applications, attempting to cheaply compute
such a second chain would not lead to disjoint chains. This demonstrates a way
in which a RO and H2 differ.

We exhibit a cryptographic setting, called mutual proofs of work, in which
the highlighted structure of H2 can be exploited. In mutual proofs of work, two
parties prove to each other that they have computed some asserted amount of
computational effort. This task is inspired by, and similar to, client puzzles [18,
19, 24, 25, 33] and puzzle auctions [35]. We give a protocol for mutual proofs
of work whose computational task is computing hash chains. This protocol is
secure when using a random oracle, but when using instead H2 an attacker can
cheat by abusing the structural properties discussed above.

Indifferentiability lower bound. The mutual proofs of work example al-
ready points to the surprising fact that H2 does not “behave like” a RO. In fact,
it does more, ruling out proofs of indifferentiability for H2 with good bounds.
(The existence of a tight proof of indifferentiability combined with the compo-
sition theorem of [29] would imply security for mutual proofs of work, yielding
a contradiction.) However, we find that the example does not surface well why
simulators must fail, and the subtletly of the issues here prompt further inves-
tigation. We therefore provide a direct negative result in the form of an indif-
ferentiability distinguisher. We prove that should the distinguisher make q1, q2
queries to its two oracles, then for any simulator the indifferentiability advantage
of the distinguisher is lower-bounded by 1− (q1q2)/qS − q2S/2

n. (This is slightly
simpler than the real bound, see Section 3.2.) What this lower bound states is
that the simulator must make very close to min{q1q2, 2n/2} queries to prevent
this distinguisher’s success. The result extends to structured underlying hash
functions H as well, for example should H be MD-based.

To the best of our knowledge, our results are the first to show lower bounds on
the number of queries an indifferentiability simulator must use. That a simulator
must make a large number of queries hinders the utility of indifferentiability.
When one uses the MRH composition theorem, the security of a scheme when
using a monolothic RO must hold up to the number of queries the simulator
makes. For example, in settings where one uses a hash function needing to be
collision-resistant and attempts to conclude security via some (hypothetical)
indifferentiability bound, our results indicate that the resulting security bound
for the application can be at most 2n/4 instead of the expected 2n/2.

To Hash or Not to Hash Again? 351

Upper bounds for second iterates. We have ruled out good upper bounds
on indifferentiability, but the question remains whether weak bounds exist. We
provide proofs of indifferentiability for H2 that hold up to about 2n/4 distin-
guisher queries (our lower bounds rule out doing better) when H is a RO. We
provide some brief intuition about the proof. Consider an indifferentiability ad-
versary making at most q1, q2 queries. The adversarial strategy of import is to
compute long chains using the left oracle, and then try to “catch” the simulator
in an inconsistency by querying it on a value at the end of the chain and, after-
wards, filling in the intermediate values via further left and right queries. But
the simulator can avoid being caught if it prepares long chains itself to help it
answer queries consistently. Intuitively, as long as the simulator’s chains are a bit
longer than q1 hops, then the adversary cannot build a longer chain itself (being
restricted to at most q1 queries) and will never win. The full proofs of these
results are quite involved, and so we defer more discussion until the body. We
are unaware of any indifferentiability proofs that requires this kind of nuanced
strategy by the simulator.

1.2 HMAC with Arbitrary Keys

HMAC was introduced by Bellare, Canetti, and Krawczyk [5] to be used as
a pseudorandom function or message authentication code. It uses an underly-
ing hash function H ; let H have block size d bits and output length n bits.
Computing a hash HMAC(K,M) works as follows [26]. If |K| > d then rede-
fine K ← H(K). Let K ′ be K padded with sufficiently many zeros to get a d
bit string. Then HMAC(K,M) = H(K ′ ⊕ opad ‖H(K ′ ⊕ ipad ‖M)) where opad
and ipad are distinct d-bit constants. The original (provable security) analyses of
HMAC focus on the setting that the keyK is honestly generated and secret [3, 5].
But what has happened is that HMAC’s speed, ubiquity, and assumed security
properties have lead it to be used in a wide variety of settings.

Of particular relevance are settings in which existing (or potential) proofs of
security model HMAC as a keyed RO, a function that maps each key, message
pair to an independent and uniform point. There are many examples of such
settings. The HKDF scheme builds from HMAC a general-purpose key derivation
function [27, 28] that uses as key a public, uniformly chosen salt. When used with
a source of sufficiently high entropy, Krawczyk proves security using standard
model techniques, but when not proves security assuming HMAC is a keyed
RO [28]. PKCS#5 standardizes password-based key derivation functions that
use HMAC with key being a (low-entropy) password [30]. Recent work provides
the first proofs of security when modeling HMAC as a RO [9]. Ristenpart and
Yilek [32], in the context of hedged cryptography [4], use HMAC in a setting
whose cryptographic security models allow adversarially specified keys. Again,
proofs model HMAC as a keyed RO.

As mentioned previously, we would expect a priori that one can show that
HMAC is indifferentiable from a keyed RO even when the attacker can query
arbitrary keys. Then one could apply the composition theorem of [29] to derive
proofs of security for the settings just discussed.

352 Y. Dodis et al.

Weak key pairs in HMAC. We are the first to observe that HMAC has weak
key pairs. First, there exist K �= K ′ for which HMAC(K,M) = HMAC(K ′,M).
These pairs of keys arise because of HMAC’s ambiguous encoding of differing-
length keys. Trivial examples of such “colliding” keys include anyK,K ′ for which
either |K| < d and K ′ = K ‖ 0s (for any 1 ≤ s ≤ d− |K|), or |K| > d and K ′ =
H(K). Colliding keys enable an easy attack that distinguishes HMAC(·, ·) from a
random function R(·, ·), which also violates the indifferentiability of HMAC. On
the other hand, as long as H is collision-resistant, two keys of the same length
can never collide. Still, even if we restrict attention to (non-colliding) keys of
a fixed length, there still exist weak key pairs, but of a different form that we
term ambiguous. An example of an ambiguous key pair is K,K ′ of length d bits
such that K ⊕ ipad = K ′ ⊕ opad. Because the second least significant bit of ipad
and opad differ (see Section 4) and assuming d > n− 2, ambiguous key pairs of
a fixed length k only exist for k ∈ {d − 1, d}. The existence of ambiguous key
pairs in HMAC leads to negative results like those given for H2. In particular,
we straightforwardly extend the H2 distinguisher to give one that lower bounds
the number of queries any indifferentiability simulator must make for HMAC.

Upper bounds for HMAC. Fortunately, it would seem that weak key pairs do
not arise in typical applications. Using HMAC with keys of some fixed bit length
smaller than d− 1 avoids weak key pairs. This holds for several applications, for
example the recommendation with HKDF is to use n-bit uniformly chosen salts
as HMAC keys. This motivates finding positive results for HMAC when one
avoids the corner cases that allow attackers to exploit weak key pairs.

Indeed, as our main positive result, we prove that, should H be a RO or
an MD hash with ideal compression functions, HMAC is indifferentiable from
a keyed RO for all distinguishers that do not query weak key pairs. Our result
holds for the case that the keys queried are of length d or less. This upper bound
enjoys the best, birthday-bound level of concrete security possible (up to small
constants), and provides the first positive result about the indifferentiability of
the HMAC construction.

1.3 Discussion

The structural properties within H2 and HMAC are, in theory, straightforward
to avoid. Indeed, as mentioned above, Coron et al. [13] prove indifferentiable
from a RO the construction H2(0d ‖ M) where H is MD using a compression
function with block size d bits and chaining value length n ≤ d bits. Analogously,
our positive results about HMAC imply as a special case that HMAC(K,M),
for any fixed constant K, is indifferentiable from a RO.

We emphasize that we are unaware of any deployed cryptographic applica-
tion for which the use of H2 or HMAC leads to a vulnerability. Still, our results
show that future applications should, in particular, be careful when using HMAC
with keys which are under partial control of the attacker. More importantly, our
results demonstrate the importance of provable security in the design of hash
functions (and elsewhere in cryptography), as opposed to the more common

To Hash or Not to Hash Again? 353

“attack-fix” cycle. For example, the hash-of-hash suggestion of Ferguson and
Schneier [20] was motivated by preventing the extension attack. Unfortunately,
in so doing they accidentally introduced a more subtle (although less danger-
ous) attack, which was not present on the original design.1 Indeed, we discov-
ered the subtlety of the problems within H2 and HMAC, including our explicit
attacks, only after attempting to prove indifferentiability of these constructions
(with typical, good bounds). In contrast, the existing indifferentiability proofs of
(seemingly) small modifications of these hash functions, such as H2(0d ‖M) [13],
provably rule out these attacks.

1.4 Prior Work

There exists a large body of work showing hash functions are indifferentiable
from a RO (c.f., [1, 7, 11–13, 15, 16, 23]), including analyses of variants of H2

and HMAC. As mentioned, a construction called HMAC was analyzed in [13] but
this construction is not HMAC as standardized. Krawczyk [28] suggests that the
analysis of H2(0 ‖M) extends to the case of HMAC, but does not offer proof.2

HMAC has received much analysis in other contexts. Proofs of its security as
a pseudorandom function under reasonable assumptions appear in [3, 5]. These
rely on keys being uniform and secret, making the analyses inapplicable for
other settings. Analysis of HMAC’s security as a randomness extractor appear
in [14, 21]. These results provide strong information theoretic guarantees that
HMAC can be used as a key derivation function, but only in settings where the
source has a relatively large amount of min-entropy. This requirement makes the
analyses insufficient to argue security in many settings of practical importance.
See [28] for further discussion.

Full version. Due to space constraints, many of our technical results and
proofs are deferred to the full version of this paper [17].

2 Preliminaries

Notation and games. We denote the empty string by λ. If |X | < |Y | then
X ⊕ Y signifies that the X is padded with |Y | − |X | zeros first. For set X and

value x, we write X ∪← x to denote X ← X ∪{x}. For non-empty sets Keys, Dom,
and Rng with |Rng | finite, a random oracle f : Keys×Dom → Rng is a function
taken randomly from the space of all possible functions Keys × Dom → Rng .
We will sometimes refer to random oracles as keyed when Keys is non-empty,
whereas we omit the first parameter when Keys = ∅.

We use code-based games [10] to formalize security notions and within our
proofs. In the execution of a game G with adversary A, we denote by GA the

1 We note the prescience of the proposers of H2, who themselves suggested further
analysis was needed [20].

2 Fortunately, the HKDF application of [28] seems to avoid weak key pairs, and thus
our positive results for HMAC appear to validate this claim [28] for this particular
application.

354 Y. Dodis et al.

event that the game outputs true and by AG ⇒ y the event that the adversary
outputs y. Fixing some RAM model of computation, our convention is that the
running time Time(A) of an algorithm A includes its code size. Queries are unit
cost, and we will restrict attention to the absolute worst case running time which
must hold regardless of queries are answered.

Hash functions. A hash function H [P] : Keys × Dom → Rng is is a fam-
ily of functions from Dom to Rng, indexed by a set Keys, that possibly uses
(black-box) access to an underlying primitive P (e.g., a compression function).
We call the hash function keyed if Keys is non-empty, and key-less otherwise.
(In the latter case, we omit the first parameter.) We assume that the number
of applications of P in computing H [P](K,M) is the same for all K,M with
the same value of |K| + |M |. This allows us to define the cost of computing a
hash function H [P] on a key and message whose combined length is �, denoted
Cost(H, �), as the number of calls to P required to compute H [P](K,M) for
K,M with |K|+ |M | = �. For a keyed random oracle R : Keys ×Dom → Rng ,
we fix the convention that Cost(R, �) = 1 for any � for which there exists a key
K ∈ Keys and message M ∈ Dom such that |K|+ |M | = �.

A compression function is a hash function for which Dom = {0, 1}n × {0, 1}d
and Rng = {0, 1}n for some numbers n, d > 0. Our focus will be on keyless
compression functions, meaning those of the form f : {0, 1}n×{0, 1}d → {0, 1}n.
Our results lift in a straightforward way to the dedicated-key setting [8]. The
�-th iterate of H [P] is denoted H�[P], and defined for � > 0 by H�[P](X) =
H [P](H [P](· · ·H [P](X)) · · ·) where the number of applications of H is �. We
let H0[P](X) = X . We will often write H instead of H [P] when the underlying
primitive P is clear or unimportant.

Merkle-Damgård. Let Pad : {0, 1}≤L → ({0, 1}n)+ be an injective padding
function. The one used in many of the hash functions within the SHA family
outputs M ‖ 10r ‖ 〈|M |〉64 where 〈|x|〉64 is the encoding of the length of M as
a 64-bit string and r is the smallest number making the length a multiple of d.
This makes L = 264−1. The function MD[f] : ({0, 1}n)+ → {0, 1}n is defined as

MD[f](M) = f(f(· · · f(f(IV,M1),M2), · · ·),Mk)

where |M | = kd and M1 ‖ · · · ‖Mk. The function SMD[f] : {0, 1}≤L → {0, 1}n
is defined as SMD[f](M) = MD[f](Pad(M)).

Indifferentiability from a RO. Let R : Keys×Dom → Rng be a random
oracle. Consider a hash construction H [P] : Keys ×Dom → Rng from an ideal
primitive P . Let game RealH[P] be the game whose main procedure runs an

adversary AFunc,Prim and returns the bit that A outputs. The procedure Func on
input K ∈ Keys and M ∈ Dom returns H [P](K,M). The procedure Prim on
input X returns P (X). For a simulator S, let game IdealR,S be the game whose
main procedure runs an adversary AFunc,Prim and returns the bit that A outputs.
The procedure Func on input K ∈ Keys and M ∈ Dom returns R(K,M). The
procedure Prim on input X returns SR(X). The indifferentiability advantage
of D is defined as

To Hash or Not to Hash Again? 355

Advindiff
H[P],R,S(D) = Pr

[
RealDH[P] ⇒ y

]
− Pr

[
IdealDR,S ⇒ y

]
.

We focus on simulators that must work for any adversary, though our negative
results extend as well to the weaker setting in which the simulator can depend
on the adversary. The total query cost σ of an adversary D is the cumulative
cost of all its Func queries plus q2. (This makes σ the total number of P uses
in game RealH[P]. In line with our worst-case conventions, this means the same
maximums hold in IdealR,S although here it does not translate to P applica-
tions.)

We note that when Keys is non-empty, indifferentiability here follows [8] and
allows the distinguisher to choose keys during an attack. This reflects the desire
for a keyed hash function to be indistinguishable from a keyed random oracle
for arbitrary uses of the key input.

3 Second Iterates and Their Security

Our investigation begins with the second iterate of a hash function, meaning
H2(M) = H(H(M)) where H : Dom → Rng for sets Dom ⊇ Rng . For simplic-
ity, let Rng = {0, 1}n and assume that H is itself modeled as a RO. Is H2 good
in the sense of being like a RO? Given that we are modeling H as a RO, we
would expect that the answer would be “yes”. The truth is more involved. As
we’ll see in Section 4, similar subtleties exist in the case of the related HMAC
construction.

We start with the following observations. When computing H2(M) for some
M , we refer to the value H(M) as an intermediate value. Then, we note that the
value Y = H2(M) is in fact the intermediate value used when computing H2(X)
for X = H(M). Given Y = H2(M), then, one can compute H2(H(M)) directly
by computingH(Y). That the hash value Y is also the intermediate value used in
computing the hash of another message is cause for concern: other hash function
constructions that are indifferentiable from a RO (c.f., [2, 7, 8, 13, 23]) explicitly
attempt to ensure that outputs are not intermediate values (with overwhelming
probability over the randomness of the underlying idealized primitive). Moreover,
prior constructions for which hash values are intermediate values have been
shown to not be indifferentiable from a RO. For example Merkle-Damg̊ard-based
iterative hashes fall to extension attacks [13] for this reason. Unlike with Merkle-
Damg̊ard, however, it is not immediately clear how an attacker might abuse the
structure of H2.

We turn our attention to hash chains, where potential issues arise. For a hash
function H , we define a hash chain Y = (Y0, . . . , Y�) to be a sequence of � + 1
values where Y0 is a message and Yi = H(Yi−1) for 1 ≤ i ≤ �. Likewise when
using H2 a hash chain Y = (Y0, . . . , Y�) is a sequence of � + 1 values where Y0

is a message and Yi = H2(Yi−1) for 1 ≤ i ≤ �. We refer to Y0 as the start of the
hash chain and Y� as the end. Two chains Y, Y ′ are non-overlapping if no value
in one chain occurs in the other, meaning Yi �= Y ′

j for all 0 ≤ i ≤ j ≤ �.
For any hash function and given the start and end of a hash chain Y =

(Y0, . . . , Y�), one can readily compute the start and end of a new chain with just

356 Y. Dodis et al.

H HY0 Y�Y1 · · · Y�−1HY ′
0 H Y ′

�−1 H Y ′
�

H2�(Y0)

H2�(Y ′
0)

Fig. 1. Diagram of two hash chains Y = (Y0, . . . , Y�) and Y ′ = (Y ′
0 , . . . , Y

′
�) for hash

function H2

two hash calculations. That is, set Y ′
0 ← H(Y0) and Y ′

� ← H(Y�). However, the
chain Y ′ = (Y ′

0 , . . . , Y
′
�) and the chain Y overlap. For good hash functions (i.e.,

ones that behave like a RO) computing the start and end of a non-overlapping
chain given the start and end of a chain Y0, Y� requires at least � hash computa-
tions (assuming � � 2n/2).

Now considerH2. Given the start and end of a chain Y = (Y0, . . . , Y�), one can
readily compute a non-overlapping chain Y ′ = (Y ′

0 , . . . , Y
′
�) using just two hash

computations instead of the expected 2� computations. Namely, let Y ′
0 ← H(Y0)

and Y ′
� ← H(Y�). Then these are the start and end of the chain Y ′ = (Y ′

0 , . . . , Y
′
�)

because

H2�(Y ′
0) = H2�(H(Y0)) = H(H2�(Y0))

which we call the chain-shift property of H2. Moreover, assuming H is itself a
RO outputing n-bit strings, the two chains Y, Y ′ do not overlap with probability
at least 1− (2�+2)2/2n. Figure 1 provides a pictoral diagram of the two chains
Y and Y ′.

3.1 A Vulnerable Application: Mutual Proofs of Work

In the last section we saw that the second iterate fails to behave like a RO in
the context of hash chains. But the security game detailed in the last section
may seem far removed from real protocols. For example, it’s not clear where
an attacker would be tasked with computing hash chains in a setting where it,
too, was given an example hash chain. We suggest that just such a setting could
arise in protocols in which parties want to assert to each other, in a verifiable
way, that they performed some amount of computation. Such a setting could
arise when parties must (provably) compare assertions of computational power,
as when using cryptographic puzzles [18, 19, 24, 25, 33, 35]. Or this might work
when trying to verifiably calibrate differing computational speeds of the two
parties’ computers. We refer to this task as a mutual proof of work.

Mutual proofs-of-work. For the sake of brevity, we present an example
hash-chain-based protocol and dispense with a more general treatment of mu-
tual proofs of work. Consider the two-party protocol shown in the left diagram
of Figure 2. Each party initially chooses a random nonce and sends it to the
other. Then, each party computes a hash chain of some length —chosen by the

To Hash or Not to Hash Again? 357

P1 P2

X2 ←$ {0, 1}n X2 � X1 ←$ {0, 1}n
X1�

Y1 ← H�1 (X1)
�1, Y1� Y2 ← H�2 (X2)

�2, Y2�
Ŷ1 ← {Hi(X1) | 0 ≤ i ≤ �1} Ŷ1 ← {Hi(X1) | 0 ≤ i ≤ �1}
Ŷ2 ← {Hi(X2) | 0 ≤ i ≤ �2} Ŷ2 ← {Hi(X2) | 0 ≤ i ≤ �2}
Y ′
2 ← H�2 (X2) Y ′

1 ← H�1 (X1)

Ret (Y ′
2 = Y2)∧ Ret (Y ′

1 = Y1)∧
(Ŷ1 ∩ Ŷ2 = ∅) (Ŷ1 ∩ Ŷ2 = ∅)

main POWH[P],n,�1
:

X2 ←$ {0, 1}n
X1 ←$ APrim(X2)

Y1 ← H�1 [P](X1)

(�2, Y2) ←$ APrim(�1, Y1)

Ŷ1 ← {Hi[P](X1) | 0 ≤ i ≤ �1}
Ŷ2 ← {Hi[P](X2) | 0 ≤ i ≤ �2}
Y ′
2 ← H�2 [P](X2)

If q ≥ �2 ·Cost(H, n) then

Ret false

Ret (Y ′
2 = Y2 ∧ Ŷ1 ∩ Ŷ2 = ∅)

subroutine Prim(u)

q ← q + 1 ; Ret P(u)

Fig. 2. Example protocol (left) and adversarial P2 security game (right) for mutual
proofs of work

computing party— starting with the nonce chosen by the other party, and sends
the chain’s output along with the chain’s length to the other party. At this point,
both parties have given a witness that they performed a certain amount of work.
So now, each party checks the other’s asserted computation, determining if the
received value is the value resulting from chaining together the indicated number
of hash applications and checking that the hash chains used by each party are
non-overlapping. Note that unlike puzzles, which require fast verification, here
the verification step is as costly as puzzle solution.

The goal of the protocol is to ensure that the other party did compute exactly
their declared number of iterations. Slight changes to the protocol would lead
to easy ways of cheating. For example, if during verification the parties did not
check that the chains are non-overlapping, then P2 can easily cheat by choosing
X1 so that it can reuse a portion of the chain computed by P1

Security would be achieved should no cheating party succeed at convincing
an honest party using less than �1 (resp. �2) work to compute Y1 (resp. Y2). The
game POWH[P],n,�1 formalizes this security goal for a cheating P2; see the right

portion of Figure 2. We let Advpow
H[P],n,�1

(A) = Pr
[
POWA

H[P],n,�1

]
. Note that

the adversary A only wins should it make q < �2 ·Cost(H,n) queries, where �2
is the value it declared and Cost(H) is the cost of computing H . Again we will
consider both the hash function H [P](M) = P (M) that just applies a RO P
and also H2[P](M) = P (P (M)), the second iterate of a RO. In the former case
the can make only �2 − 1 queries and in the latter case 2�2 − 1.

When H [P](M) = P (M), no adversary making q < �2 queries to Prim can
win the POWH[P],n,�1 game with high advantage. Intuitively, the reason is that,

despite being given X1 and Y1 where Y1 = P �1(X1), a successful attacker must
still compute a full �2-length chain and this requires �2 calls to P . A more formal
treatment appears in the full version.

Attack against any second iterate. Now let us analyze this protocol’s
security when we use as hash function H2[P] = P (P (M)) for a RO P : Dom →
Rng with Rng ⊆ Dom. We can abuse the chain-shift property of H2 in order to
win the POWH2,P,n,�1 game for any n > 0 and �1 > 2. Our adversary A works
as follows. It receives X2 and then chooses it’s nonce as X1 ← Prim(X2). When

358 Y. Dodis et al.

it later receives Y1 = P 2�1(X1), the adversary proceeds by setting �2 = �1 + 1
and setting Y2 ← Prim(Y1). Then by the chain-shift property we have that

Y2 = P (Y1) = P (P 2�1(X1)) = P (P 2�1(P (X2))) = P 2�2(X2) .

The two chains will be non-overlapping with high probability (over the coins
used by P). Finally, A makes only 2 queries to Prim, so the requirement that
q < 2�2 is met whenever �1 > 1.

Discussion. As far as we are aware, mutual proofs of work have not before
been considered — the concept may indeed be of independent interest. A full
treatment is beyond the scope of this work. We also note that, of course, it is easy
to modify the protocols using H2 to be secure. Providing secure constructions
was not our goal, rather we wanted to show protocols which are insecure using
H2 but secure when H2 is replaced by a monolothic RO. This illustrates how,
hypothetically, the structure of H2 could give rise to subtle vulnerabilities in an
application.

3.2 Indifferentiability Lower and Upper Bounds

In this section we prove that any indifferentiability proof for the double iterate
H2 is subject to inherent quantitative limitations. Recall that indifferentiability
asks for a simulator S such that no adversary can distinguish between the pair of
oracles H2[P], P and R,S where P is some underlying ideal primitive and R is a
RO with the same domain and range as H2. The simulator can make queries to
R to help it in its simulation of P . Concretely, building on the ideas behind the
above attacks in the context of hash chains, we show that in order to withstand
a differentiating attack with q queries, any simulator for H2[P], for any hash
construction H [P] with output length n, must issue at least Ω(min{q2, 2n/2})
queries to the RO R. As we explain below, such a lower bound severely limits the
concrete security level which can be inferred by using the composition theorem
for indifferentiability, effectively neutralizing the benefits of using indifferentia-
bility in the first place.

The distinguisher. In the following, we let H = H [P] be an arbitrary hash
function with n-bit outputs relying on a primitive P , such as a fixed input-length
random oracle or an ideal cipher. We are therefore addressing an arbitrary second
iterate, and not focusing on some particular ideal primitive P (such as a RO as
in previous sections) or construction H . Indeed, H could equally well be Merkle-
Damg̊ard and P an ideal compression function, or H could be any number of
indifferentiable hash constructions using appropriate ideal primitive P .

Recall that Func and Prim are the oracles associated with construction and
primitive queries to H2 = H2[P] and P , respectively. Let w, � be parameters (for
now, think for convenience of w = �). The attackerDw,� starts by issuing � queries
to Func to compute a chain of n-bit values (x0, x1, . . . , x�) where xi = H2(xi−1)
and x0 is a random n-bit string. Then, it also picks a random index j ∈ [1 .. w],
and creates a list of n-bit strings u[1], . . . ,u[w] with u[j] = x�, and all remaining
u[i] for i �= j are chosen uniformly and independently. Then, for all i ∈ [1 .. w],

To Hash or Not to Hash Again? 359

the distinguisher Dw,� proceeds in asking all Prim queries in order to compute
v[i] = H(u[i]). Subsequently, the attacker compute y0 = H(x0) via Prim queries,
and also computes the chain (y0, y1, . . . , y�) such that yi = H2(yi−1) by making
� Func queries. Finally, it decides to output 1 if and only if y� = v[j] and x�

as well as v[i] for i �= j are not in {y0, y1, . . . , y�}. The attacker Dw,� therefore
issues a total of 2� Func queries and (2w + 1) · Cost(H,n) Prim queries.

In the real-world experiment, the distinguisher Dw,� outputs 1 with very high
probability, as the condition y� = v[j] always holds by the chain-shifting property
of H2. In fact, the only reason for D outputting 0 is that one of x� and v[i]
for i �= j incidentally happens to be in {y0, y1, . . . , y�}. The (typically small)
probability that this occurs obviously depends on the particular construction
H [P] at hand; it is thus convenient to define the shorthand

p(H,w, �) = Pr [{x�, H(U1), . . . , H(Uw−1)} ∩ {y0, y1, . . . , y�} �= ∅] ,
where x0, y0, x1, . . . , y�−1, x�, y� are the intermediate value of a chain of 2� +
1 consecutive evaluations of H [P] starting at a random n-bit string x0, and
U1, . . . , Uw−1 are further independent random n-bit values. In the full version of
this paper we prove that for H [P] = P = R for a random oracle R : {0, 1}∗ →
{0, 1}n we have p(H,w, �) = Θ((w� + �2)/2n). Similar reasoning can be applied
to essentially all relevant constructions.

In contrast, in the ideal-world experiment, we expect the simulator to be
completely ignorant about the choice of j as long as it does not learn x0, and
in particular it does not know j while answering the Prim queries associated
with the evaluations of H(u[i]). Consequently, the condition required for Dw,�

to output 1 appears to force the simulator, for all i ∈ [1 .. w], to prepare a distinct
chain of � consecutive R evaluations ending in v[i], hence requiring w · � random
oracle queries.

The following theorem quantifies the advantage achieved by the above distin-
guisher Dw,� in differentiating against any simulator for the construction H [P].
Its proof is given in the full version.

Theorem 1. [Attack against H2] Let H [P] be an arbitrary hash construction
with n-bit outputs, calling a primitive P , and let R : {0, 1}∗ → {0, 1}n be a
random oracle. For all integer parameters w, � ≥ 1, there exists an adversary
Dw,� making 2� Func-queries and (w+1) ·Cost(H,n) Prim-queries such that for
all simulators S,

Advindiff
H2 [P],R,S(Dw,�) ≥ 1− p(H,w, �)− 5�2

2n+1
− qS�

2n
− q2S

2n
− qS

w · � − 1

w
,

where qS is the overall number of R queries by S when replying to Dw,�’s Prim
queries.

Discussion. We now elaborate on Theorem 1. If we consider the distinguisher
Dw,� from Theorem 1, we observe that by the advantage lower bound in the
theorem statement, if �, w � 2n/4 and consequently p(H,w, �) ≈ 0, the num-
ber of queries made by the simulator, denoted qS = qS(2�, w + 1) must sat-
isfy qS = Ω(w · �) = Ω(q1 · q2) to ensure a sufficiently small indifferentiability

360 Y. Dodis et al.

advantage. This in particular means that in the case where both q1 and q2 are
large, the simulator must make a quadratic effort to prevent the attacker from
distinguishing. Below, in Theorem 2, we show that this simulation effort is es-
sentially optimal.

In many scenarios, this quadratic lower bound happens to be a problem, as we
now illustrate. As a concrete example, let SS = (key, sign, ver) be an arbitrary

signature scheme signing n bits messages, and let S̃S[R] = (k̃ey
R
, s̃ign

R
, ṽer

R
)

forR : {0, 1}∗ → {0, 1}n be the scheme obtained via the hash-then-sign paradigm

such that s̃ign
R
(sk,m) = sign(sk,R(m)). It is well known that for an adversary

B making qsign signing and qR random oracle queries, there exists an adversary
C making qsign signing queries such that

Advuf-cma
˜SS[R]

(BR) ≤ (qsign + qR)2

2n
+Advuf-cma

SS (C) , (1)

where Advuf-cma
˜SS[R]

(BR) and Advuf-cma
SS (C) denote the respective advantages in

the standard uf-cma game for security of signature schemes (with and without

a random oracle, respectively). This in particular means that S̃S is secure for
qsign and qR as large as Θ(2n/2), provided SS is secure for qsign signing queries.
However, let us now replaceR byH2[P] for an arbitrary constructionH = H [P].
Then, for all adversaries A making qP queries to P and qsign signing queries, we
can combine the concrete version of the MRH composition theorem proven in [31]
and (1) to infer that there exists an adversary C and a distinguisher D such that

Advuf-cma
˜SS[H2[P]]

(AP) ≤ Θ

(
(qsign · qP)2

2n

)
+Advuf-cma

SS (C) +Advindiff
H2[P],R,S(D) ,

where C makes qsign signing queries . Note that even if the term Advindiff
H2[P],R,S(D)

is really small, this new bound can only ensure security for the resulting signature
scheme as long as qsign · qP = Θ(2n/2), i.e., if qsign = qP , we only get security up
to Θ(2n/4) queries, a remarkable loss with respect to the security bound in the
random oracle model.

We note that of course this does not mean that H2[P] for a concrete H and P
is unsuitable for a certain application, such as hash-then-sign. In fact,H2[P] may
well be optimally collision resistant. However, our result shows that a sufficiently
strong security level cannot be inferred from any indifferentiability statement via
the composition theorem, taking us back to a direct ad-hoc analysis and completely
loosing the one main advantage of having indifferentiability in the first place.

Upper bound. Our negative results do not rule out positive results completely:
there could be indifferentiability upper bounds, though for simulators that make
aroundO(q2) queries. Ideally, we would like upper bounds that match closely the
lower bounds given in prior sections. We do so for the special case ofH2[g](M) =
g(g(M)) for g : {0, 1}n → {0, 1}n being a RO.

Theorem 2. Let q1, q2 ≥ 0 and N = 2n. Let g : {0, 1}n → {0, 1}n and R :
{0, 1}n → {0, 1}n be uniform random functions. Then there exists a simulator S
such that

To Hash or Not to Hash Again? 361

Advindiff
G[g],R,S(D) ≤ 2((4q1 + 3)q2 + 2q1)

2

N
+

2((4q1 + 3)q2 + 2q1)(q1 + q2)

(N − 2q2 − 2q1)

for any adversary D making at most q1 queries to its left oracle and at most q2
queries to its right oracle. Moreover, for each query answer that it computes, S
makes at most 3q1 + 1 queries to RO and runs in time O(q1). �
The proof of the theorem appears in the full version of the paper. We note that
the simulator used must know the maximum number of queries the attacker will
make, but does not otherwise depend on the adversary’s strategy. The security
bound of the theorem is approximately (q1q2)

2/N , implying that security holds
up to q1q2 ≈ 2n/2.

4 HMAC as a General-Purpose Keyed Hash Function

HMAC [5] uses a hash function to build a keyed hash function, i.e. one that
takes both a key and message as input. Fix some hash function3 H : {0, 1}∗ →
{0, 1}n. HMAC assumes this function H is built by iterating an underlying
compression function with a message block size of d ≥ n bits. We define the
following functions:

FK(M) = H((ρ(K)⊕ ipad) ‖M)

GK(M) = H((ρ(K)⊕ opad) ‖M)
where ρ(K) =

{
H(K) if |K| > d

K otherwise.

The two constants used are ipad = 0x36d/8 and opad = 0x5cd/8. These constants
are given in hexadecimal, translating to binary gives 0x36 = 0011 01102 and
0x5c = 0101 11002. Recall that we have defined the⊕ operator so that, if |K| < d,
it first silently pads out the shorter string by sufficiently many zeros before
computing the bitwise xor. It will also be convenient to define xpad = ipad⊕opad.
The function HMAC : {0, 1}∗ × {0, 1}∗ → {0, 1}n is defined by

HMAC(K,M) = GK(FK(M)) = (GK ◦ FK)(M) .

We sometimes write HMACd[P], HMACd, or HMAC[P] instead of HMAC when
we want to make the reliance on the block size and/or an underlying ideal
primitive explicit.

In the following sections, we will therefore analyze the security of HMAC in
the sense of being indifferentiable from a keyed RO. As we will see, the story is
more involved than one might expect.

4.1 Weak Key Pairs in HMAC

Towards understanding the indifferentiability of HMAC, we start by observing
that the way HMAC handles keys gives rise to two worrisome classes of weak
key pairs.

3 RFC 2104 defines HMAC over strings of bytes, but we chose to use bits to provide
more general positive results — all our negative results lift to a setting in which
only byte strings are used. Note also that for simplicity we assumed H with domain
{0, 1}∗. In practice hash functions often do have some maximal length (e.g., 264),
and in this case HMAC must be restricted to smaller lengths.

362 Y. Dodis et al.

Colliding keys. We say that keys K �= K ′ collide if ρ(K) ‖ 0d−|ρ(K)| =
ρ(K ′) ‖ 0d−|ρ(K′)|. For any message M and colliding keys K,K ′ it holds that
HMAC(K,M) = HMAC(K ′,M). Colliding keys exist because of HMAC’s am-
biguous encoding of different-length keys. Examples of colliding keys include any
K,K ′ for which |K| < d and K ′ = K ‖ 0s where 1 ≤ s ≤ d− |K|. Or any K,K ′

such that |K| > d and K ′ = H(K). As long as H is collision-resistant, two keys
of the same length can never collide.

Colliding keys enable a simple attack against indifferentiability. Consider
HMAC[P] for any underlying function P . Then let A pick two keys K �= K ′

that collide and an arbitrary message M . It queries its Func oracle on (K,M)
and (K ′,M) to retrieve two values Y, Y ′. If Y = Y ′ then it returns 1 (guess-
ing that it is in game RealHMAC[P],R) and returns 0 otherwise (guessing that it
is in game IdealR,S). The advantage of A is equal to 1 − 2n regardless of the
simulator S, which is never invoked.

Note that this result extends directly to rule out related-key attack security [6]
of HMAC as a PRF should a related-key function be available that enables
deriving colliding keys.

Ambiguous keys. A pair of keys K �= K ′ is ambiguous if ρ(K) ⊕ ipad =
ρ(K ′)⊕ opad. For any X , both FK(X) = GK′(X) and GK(X) = FK′(X) when
K,K ′ are ambiguous. An example such pair is K,K ′ of length d bits for which
K ⊕K ′ = xpad.

For any keyK, there exists one keyK ′ that is easily computable and for which
K,K ′ are ambiguous: set K ′ = ρ(K)⊕ xpad. Finding a third key K ′′ that is also
ambiguous with K is intractable should H be collision resistant. The easily-
computable K ′ will not necessarily have the same length as K. In fact, there
exist ambiguous key pairs of the same length k only when k ∈ {d− 1, d}. For a
fixed length shorter than d−1, no ambiguous key pairs exist due to the fact that
the second least significant bit of xpad is 1. For a fixed length longer than d bits,
if n < d− 1 then no ambiguous key pairs exist and if n ≥ d− 1 then producing
ambiguous key pairs would require finding K,K ′ such thatH(K)⊕H(K ′) equals
the first n bits of xpad. This is intractable for any reasonable hash function H .

Ambiguous key pairs give rise to a chain-shift like property. Let M be some
message and K,K ′ be an ambiguous key pair. Then, we have that ρ(K ′) =
ρ(K)⊕ xpad and so FK(M) = GK′(M). Thus,

HMAC(K ′, FK(M)) = GK′(HMAC(K,M)) .

As with H2, this property gives rise to problems in the context of hash chains.
A hash chain Y = (K,Y0, . . . , Y�) is a key K, a message Y0, and a sequence of �
values Yi = H(K,Yi−1) for 1 ≤ i ≤ �. So a keyed hash chain Y = (K,Y0, . . . , Y�)
for HMAC has Yi = HMAC(K,Yi−1) for 1 ≤ i ≤ �. Given K,Y0, Y� for a chain
Y = (K,Y0, . . . , Y�), it is easy for an adversary to compute the start and end of
a new chain Y ′ = (K ′, Y ′

0 , . . . , Y
′
�) that does not overlap with Y . See Figure 3.

In the full version, we detail how this structure can be abused in the context of
an HMAC-based mutual proofs of work protocol. We also give an analogue of

To Hash or Not to Hash Again? 363

FK GKY0 Y�Y1 · · · Y�−1GKY ′
0 FK Y ′

�−1 FK Y ′
�

HMAC�(K,Y0)

HMAC�(K ′, Y ′
0)

Fig. 3. Diagram of two hash chains (K,Y) = (Y0, . . . , Y�) and (K′, Y ′) = (Y ′
0 , . . . , Y

′
�)

for HMAC where ρ(K′) = ρ(K)⊕ xpad

Theorem 1, i.e., a lower bound on the indifferentiability of HMAC from a RO
when ambiguous key pairs can be queried.

4.2 Indifferentiability of HMAC with Restricted Keys

We have seen that HMAC’s construction gives rise to two kinds of weak key pairs
that can be abused to show that HMAC is not indifferentiable from a keyed RO
(with good bounds). But weak key pairs are serendipitously avoided in most
applications. For example, the recommended usage of HKDF [28] specifies keys
of a fixed length less than d− 1. Neither kind of weak key pairs exist within this
subset of the key space.

While one can show indifferentiability for a variety of settings in which weak
key pairs are avoided, we focus for simplicity on the case mentioned above. That
is, we restrict to keys K for which |K| = k and k is a fixed integer different less
than d− 1. The full version provides a more general set of results, covering also,
for example, use of HMAC with a fixed key of any length less than or equal to d.

As our first positive result, we have the following theorem, which establishes
the security of HMAC when modeling the underlying hash function as a RO.

Theorem 3. Fix d, k, n > 0 with k < d− 1. Let P : {0, 1}∗ → {0, 1}n be a RO,
and consider HMACd[P] restricted to k-bit keys. Let R : {0, 1}∗ × {0, 1}∗ →
{0, 1}n be a keyed RO. Then there exists a simulator S such that for any distin-
guisher A whose total query cost is σ it holds that

Advindiff
HMACd[P],R,S(A) ≤ O

(
σ2

2n

)

S makes at most q2 queries and runs in time O(q2 log q2) where q2 is the number
of Prim queries made by A. �

The use of O(·) just hides small constants. The proof is given in the full version.
Combining Theorem 3 with the indifferentiability composition theorem allows
us to conclude security for HMACd[H] for underyling hash function H that is,
itself, indifferentiable from a RO. For example, should H be one of the proven-
indifferentiable SHA-3 candidates. This does not, however, give us a security
guarantee should H not be indifferentiable from a RO, as is the case with MD
based hash functions. We therefore also prove, in the full version, the following

364 Y. Dodis et al.

theorem that establishes indifferentiability of HMAC using an underlying hash
function built via the strengthened Merkle-Damg̊ard (SMD) domain extension
transform.

Theorem 4. Fix d, k, n > 0 with k < d − 1 and d ≥ n. Let f : {0, 1}n ×
{0, 1}d → {0, 1}n be a RO and consider HMACd[SMD[f]] restricted to k-bit keys.
Let R : {0, 1}∗×{0, 1}∗ → {0, 1}n be a keyed RO. Then there exists a simulator
S such that for any distinguisher A whose total query cost is σ ≤ 2n−2 it holds
that

Advindiff
HMACd[SMD[f]],R,S(A) ≤ O

(
σ2

2n

)

S makes at most q2 queries and runs in time O(q2 log q2) where q2 is the number
of Prim queries by A. �

We note that the restriction to σ ≤ 2n−2 in the theorem statement is just
a technicality to make the bound simpler and likewise the use of O(·) in the
advantage statement hides just a small constant.

Unlike our positive results about H2, the bounds provided by Theorems 3
and 4 match, up to small constants, results for other now-standard indifferen-
tiable constructions (c.f., [13]). First, the advantage bounds both hold up to
the birthday bound, namely σ ≈ 2n/2. Second, the simulators are efficient and,
specifically, make at most one query per invocation. All this enables use of the
indifferentiability composition theorem in a way that yields strong, standard
concrete security bounds.

Acknowledgments. The authors thank Hugo Krawczyk for providing signifi-
cant feedback and suggestions, in particular encouraging the authors to include
positive results for the indifferentiability of HMAC; Niels Ferguson for in-depth
discussions regarding the security of H2; and the anonymous reviewers for their
helpful suggestions. Dodis was supported in part by NSF grants CNS-1065134,
CNS-1065288, CNS-1017471, CNS-0831299. Ristenpart was supported in part
by NSF grant CNS-1065134. Steinberger is supported by the National Basic Re-
search Program of China Grant 2011CBA00300, 2011CBA00301, the National
Natural Science Foundation of China Grant 61033001, 61061130540, 61073174,
and by NSF grant 0994380. Tessaro was supported in part by NSF grants CCF-
0915675, CCF-1018064, and DARPA contracts FA8750-11-C-0096, FA8750-11-
2-0225.

References

1. Andreeva, E., Mennink, B., Preneel, B.: On the Indifferentiability of the Grøstl
Hash Function. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280,
pp. 88–105. Springer, Heidelberg (2010)

2. Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-Property-Preserving It-
erated Hashing: ROX. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 130–146. Springer, Heidelberg (2007)

To Hash or Not to Hash Again? 365

3. Bellare, M.: New Proofs for NMAC and HMAC: Security Without Collision-
Resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619.
Springer, Heidelberg (2006)

4. Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek,
S.: Hedged Public-Key Encryption: How to Protect against Bad Randomness. In:
Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer, Hei-
delberg (2009)

5. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15.
Springer, Heidelberg (1996)

6. Bellare, M., Kohno, T.: A Theoretical Treatment of Related-Key Attacks: RKA-
PRPs, RKA-PRFs, and Applications. In: Biham, E. (ed.) EUROCRYPT 2003.
LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003)

7. Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension
and the EMD Transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

8. Bellare, M., Ristenpart, T.: Hash Functions in the Dedicated-Key Setting: Design
Choices and MPP Transforms. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki,
A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 399–410. Springer, Heidelberg (2007)

9. Bellare, M., Ristenpart, T., Tessaro, S.: Multi-Instance Security and Its Application
to Password-Based Cryptography. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 312–329. Springer, Heidelberg (2012)

10. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Frame-
work for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

11. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiability
of the Sponge Construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181–197. Springer, Heidelberg (2008)

12. Chang, D., Nandi, M.: Improved Indifferentiability Security Analysis of chopMD
Hash Function. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 429–443.
Springer, Heidelberg (2008)

13. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard Revisited: How
to Construct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

14. Dodis, Y., Gennaro, R., H̊astad, J., Krawczyk, H., Rabin, T.: Randomness Extrac-
tion and Key Derivation Using the CBC, Cascade and HMAC Modes. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494–510. Springer, Heidelberg (2004)

15. Dodis, Y., Reyzin, L., Rivest, R.L., Shen, E.: Indifferentiability of Permutation-
Based Compression Functions and Tree-Based Modes of Operation, with Applica-
tions to MD6. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 104–121.
Springer, Heidelberg (2009)

16. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damg̊ard for Practical
Applications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 371–388.
Springer, Heidelberg (2009)

17. Dodis, Y., Ristenpart, T., Steinberger, J., Tessaro, S.: To Hash or Not to Hash,
Again? On the Indifferentiability of the Second Iterate and HMAC (2012); Full
version of this paper. Available from authors’ websites

18. Dwork, C., Naor, M.: Pricing via Processing or Combatting Junk Mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993)

366 Y. Dodis et al.

19. Dwork, C., Naor, M., Wee, H.: Pebbling and Proofs of Work. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 37–54. Springer, Heidelberg (2005)

20. Ferguson, N., Schneier, B.: Practical cryptography. Wiley (2003)
21. Fouque, P.-A., Pointcheval, D., Zimmer, S.: HMAC is a randomness extractor and

applications to TLS. In: Abe, M., Gligor, V. (eds.) ASIACCS 2008: 3rd Conference
on Computer and Communications Security, pp. 21–32. ACM Press (March 2008)

22. Franks, J., Hallam-Baker, P., Hostetler, J., Leach, P., Luotonen, A., Sink, E., Stew-
art, L.: An Extension to HTTP: Digest Access Authentication. RFC 2069 (Pro-
posed Standard) (January 1997); Obsoleted by RFC 2617

23. Hirose, S., Park, J.H., Yun, A.: A Simple Variant of the Merkle-Damg̊ard Scheme
with a Permutation. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 113–129. Springer, Heidelberg (2007)

24. Juels, A., Brainard, J.G.: Client puzzles: A cryptographic countermeasure against
connection depletion attacks. In: ISOC Network and Distributed System Security
Symposium – NDSS 1999. The Internet Society (February 1999)

25. Karame, G.O., Čapkun, S.: Low-Cost Client Puzzles Based on Modular Exponenti-
ation. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS,
vol. 6345, pp. 679–697. Springer, Heidelberg (2010)

26. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message Au-
thentication. RFC 2104 (February 1997)

27. Krawczyk, H., Eronen, P.: HMAC-based extract-and-expand key derivation func-
tion (HKDF). RFC 5869 (Proposed Standard) (January 2010)

28. Krawczyk, H.: Cryptographic Extraction and Key Derivation: The HKDF Scheme.
In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Hei-
delberg (2010)

29. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results on
Reductions, and Applications to the Random Oracle Methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

30. PKCS #5: Password-based cryptography standard (RFC 2898). RSA Data Secu-
rity, Inc., Version 2.0 (September 2000)

31. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with Composition: Limita-
tions of the Indifferentiability Framework. In: Paterson, K.G. (ed.) EUROCRYPT
2011. LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011)

32. Ristenpart, T., Yilek, S.: When good randomness goes bad: Virtual machine reset
vulnerabilities and hedging deployed cryptography. In: Network and Distributed
Systems Security– NDSS 2010. ISOC (2010)

33. Stebila, D., Kuppusamy, L., Rangasamy, J., Boyd, C., Gonzalez Nieto, J.: Stronger
Difficulty Notions for Client Puzzles and Denial-of-Service-Resistant Protocols. In:
Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 284–301. Springer, Heidelberg
(2011)

34. Tsudik, G.: Message authentication with one-way hash functions. In: Proceedings
IEEE INFOCOM 1992, vol. 3, pp. 2055–2059. IEEE (1992)

35. Wang, X.F., Reiter, M.K.: Defending against denial-of-service attacks with puzzle
auction. In: IEEE Symposium on Security and Privacy, pp. 78–92 (2003)

	To Hash or Not to Hash Again? (In)Differentiability Results for H2 and HMAC
	Introduction
	The Second Iterate Paradox
	HMAC with Arbitrary Keys
	Discussion
	Prior Work

	Preliminaries
	Second Iterates and Their Security
	A Vulnerable Application: Mutual Proofs of Work
	Indifferentiability Lower and Upper Bounds

	HMAC as a General-Purpose Keyed Hash Function
	Weak Key Pairs in HMAC
	Indifferentiability of HMAC with Restricted Keys

	References

