
Engineering Energy-Aware Web Services toward

Dynamically-Green Computing

Peter Bartalos and M. Brian Blake

Department of Computer Science and Engineering
University of Notre Dame
Notre Dame, Indiana, USA

{peter.bartalos.1,m.brian.blake}@nd.edu

Abstract. With the emergence of commodity computing environments
(i.e. clouds), information technology (IT) infrastructure providers are
creating data centers in distributed geographical regions. Since
geographic regions have different costs and demands on their local power
grids, cloud computing infrastructures will require innovative manage-
ment procedures to ensure energy-efficiency that spans multiple regions.
Macro-level measurement of energy consumption that focuses on the in-
dividual servers does not have the dynamism to respond to situations
where domain-specific software services are migrated to different data
centers in varying regions. Next-generation models will have to under-
stand the impact on power consumption for a particular software appli-
cation or software service, at a micro-level. A challenge to this approach
is to develop a prediction of energy conservation a priori. In this work,
we discuss the challenges for measuring the power consumption of an in-
dividual web service. We discuss the challenges of determining the power
consumption profile of a web service each time it is migrated to a new
server and the training procedure of the power model. This potentially
promotes creating a dynamically-green cloud infrastructure.

Keywords: Energy-awareness, web service, service-oriented software
engineering, green web service.

1 Introduction

By applying clean software interfaces to human-based capabilities or legacy
software systems [11], web services are modular, network accessible software ap-
plications that promote the open sharing of domain-specific capabilities across
organizations. With the current priority on sustainability, attention must be
placed on the energy-efficiency of IT assets in all organizations. While the large
majority of work in energy-awareness concentrates on measuring and repurpos-
ing hardware resources, the aim of this paper is to understand how to allocate the
specific software service that is most energy-efficient. This paper provides insight
into the problem of determining the power consumed when processing a particu-
lar web service operation. This work leverages the fact that one web service can
provide multiple operations while also potentially being replicated on multiple

G. Pallis et al. (Eds.): ICSOC 2011, LNCS 7221, pp. 87–96, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



88 P. Bartalos and M.B. Blake

servers. More specifically with respect to energy usage, the same operation is
accessible at multiple places; however, invoking the same operation on different
servers might result in varying degrees of power consumption. It is also impor-
tant to realize, that the same operation invoked on the same server, but at a
different time, also may result in a different power consumption. In other words,
the power consumption changes over time and across regions. This is mainly
caused by the fact that invoking the same operation during distinct states of the
server, mainly characterized by the utilization of its hardware resources, does
not result in performing exactly the same computation. This means that the
power consumed when processing a particular web service operation request is
not invariant according to time and requires dynamic determination.

Several factors must be considered when determining the power consumed
by web services. The power estimation model must provide power estimations
relative to distinct possible states of the server. Thus, if the state of the server
at the time the request is to be processed is known, we can provide accurate
consumption estimation for a particular web service on that server. Since the
future state of the server is unpredictable, this approach assumes that the server
state changes negligibly in the short period of time that it takes to execute a
typical web service. We anticipate that our approach will be effective for provid-
ing dynamic power estimation information to environmentally-aware web service
management systems that dynamically discover and compose web services across
clouds [1,2,12]. This approach will promote effect decision-making when select-
ing the particular instance of the service (service running on a concrete server)
that consumes the least energy of multiple redundant options. This approach
that we call green web services is an inevitable step towards the realization of
sustainable cloud environments.

Our work addresses the following research questions:

– What are the challenges of evaluating the power consumption of web ser-
vices?

– Which hardware conditions, as measure by system performance monitors or
counters, should be used and how should the data be monitored and collected?

– How is a model for a specific web service achieved? How can a model be
devised through a training process?

2 Power Modeling Background and Related Work

State-of-the-art studies have demonstrated that relatively precise computer power
consumption estimations can be derived from the readily-available hardware per-
formance systemmeasurement tools. In this context, the challenge is to: 1) choose
the appropriate counters that most effectively capture the state of the computer,
2) define the mathematical model calculating the estimated power from the com-
puter state, and 3) define the power model training process.

There are currently several power estimation models in related literature
[3,5,6,10,9,4,8]. Through these models, an estimation of the power consumption



Energy-Aware Web Services 89

of the server, under various workloads, based on readily available system mea-
surement tools can be created. Consistently across the related work, the power
estimation models leverage system measurement tools or counters that monitor
the hardware conditions on the machines for which they reside. These coun-
ters measure conditions such as the usage of different CPU instructions, various
memory access operations, and distinct hard drive access. The power estimation
model is represented by a function of these attributes. This function is usually
a linear combination of the attributes, X1, . . . , Xn, with an additional constant
representing the idle power consumption: P = Pidle+β1X1+β2X2+ . . .+βnXn,
i.e. the model is represented by the coefficients, β, of the attributes with addi-
tional constant for the idle power. The values of these coefficients are determined
during a training process by reggression.

Related Work. The authors of [9] present an approach for run-time modeling
and estimation of operating system power consumption. They focus on instanta-
neous estimation of the power consumed when executing OS-intensive workloads
(file management, compilation, database operations). One of the main results of
the study is the observation of a high correlation between the IPC and power. In
[4], the authors present a power estimation model for the Intel XScale R©PXA255
processors. The approach exploits the insight into the internal architecture and
operation of the processor. It achieves accuracy within an average of 4% error
using five processor performance counters. The authors of [8] focus on power
consumption estimation of virtual machines running on the same physical ma-
chine. Their solution is implemented by their customized tool, Joulemeter. It
uses a similar power model as the other mentioned approaches. However, their
motivation to use performance counters to predict power consumption is differ-
ent. Direct measurement of the power is possible only for a physical device. If
multiple virtual machines are running on one physical machine, it is not possible
to measure the power consumption of the virtual machines separately. Since the
performance counters can be monitored separately for each virtual machine, they
attempt to segregate the power consumption. The power estimation of Jouleme-
ter achieves accuracy, with errors within 0.4W - 2.4W.

Our Approach. Our experiments were performed using a model represented as
a linear combination of the following attributes: number of received/sent packets,
instructions executed, CPU cycles (the counter increments when the core clock
signal is not halted, i.e. it is varying according to the changing load), IPC (i.e.
instruction divided by cycles), percentage of non-idle CPU time, and last level
cache misses. The values of the weights (i.e. beta vector) are acquired by per-
forming a training stage, during which, samples of the measured attribute values
and the resulting power are collected. The power value is retrieved using a phys-
ical power meter that is connected to the server. After the samples are collected,
a regression method based on least squares is used to evaluate the power weights.
Note that the power meter is only required during the training stage. This pa-
per presents an insight to the specific problems related to the power estimation
of web services. We evaluate different training processes through experiments



90 P. Bartalos and M.B. Blake

and show which approach results in a model estimating the instantaneous power
(measured in Watts) during web service workloads the best. Note that in the
case of web service workloads, the power model can only be used to estimate
the total power. To estimate the power consumption (measured in Watt hours)
of one particular request contributing to the workload, the total power must
be split and the time dimension must be considered. Our preliminary approach
performs this according to the number of actually processed requests and the
execution time.

3 Web Service Power Estimation Challenges

Isolating the Specific Web Service. To determine the power consumption of
a specific web service, the process should clearly segregate the impact of a par-
ticular request. In general operations, web servers continuously process multiple
parallel web service requests. Each particular request might correspond to the
execution of distinct web service operation or operations (when considering a
composition service). Web services exploit different hardware resources, such as
CPU, memory, hard drives. These resources all represent some part of the total
power consumed as a result of the web service processing. Since the resources
are shared and exploited in parallel by multiple requests, it is not feasible to
determine the portion of the consumed power related to each of the requests. As
such, a physical power meter cannot be used to measure the power consumed by
one particular request. The power meter, generally, can only measure the overall
power consumption of the server.

Web Service Executions Are Inherently Short in Time Duration. Since
several web services execute in relatively short time, e.g. in milliseconds, the gen-
eral power meters do not effectively capture accurate measurements at this scale.
Furthermore, synchronizing the measurement with the processing of the request
by the server is a challenge. Thus, isolating the power consumption of web service
requests requires a custom model informed by the SOA paradigm. This model
must estimate the power consumed when processing a particular web service
operation request on a concrete server at a given moment.

Power Consumption Depends on the Actual Server State. Our prelimi-
nary experiments showed strong dependence between the actual server state and
the power consumed to process a web service request. Significant differences are
observed even when the same web service operation is executed with the same
inputs. The most influencing factor, describing the server state, is the CPU load.
Our results show that the nominal power consumption of one request is much
higher when the server is under-utilized. As the utilization rises, the differences
are lower. In our experiments, the nominal power consumption, while the server
was under-utilized, was in average 3 times higher than the consumption when
the utilization was high. However, at very high utilization rates, the consump-
tion rised again. Thus, the same results when measuring the power consumption
are only anticipated if the same circumstances are guaranteed.



Energy-Aware Web Services 91

Relationship between Input Data and Service Computation Is Unpre-
dictable. The knowledge of the inputs in advance is limited and in most of the
practical scenarios this information is not available. In general we can expect
a relation between the size, and the structure of the inputs and the complex-
ity of the computation. Considering the (de-)serialization of the I/O into/from
messages, large messages and more complex structures are more computation-
ally demanding. The dependence at the execution phase does not necessarily
have to hold. However, for many types of web services there is an obvious de-
pendence. For example, in the case of a web service sorting numbers, there is
a defined relation between the size of the input sequence and the amount of
required computation affecting the power consumption. As a result, for some
web services, an effective approach is to determine the power estimation by ref-
erencing a value calculated when the service was invoked using a representative
set of inputs. This value might be defined as the average, or maximum - similar
to the response time determined when evaluating the QoS characteristics of the
service.

4 Practical Problems When Building Power Estimation
Models

To build the power model, data must be collected using distinct software and/or
hardware components. To train the model correctly, the data collection must
be synchronized. Misalignment of data samples introduces errors in the power
estimation, so a precise sampling with respect to their alignment is a challenge.
The following types of data must be collected: 1) hardware performance counters,
2) web service execution statistics, and 3) power measurements. There are several
software tools and devices that provide access and facilitate the measurement of
the data required to build the power model for the server.

Monitoring System/Hardware Conditions.Measuring system performance
is possible due to built-in registries holding data related to specific events related
to the hardware, e.g. number of instructions, cycles, and last level cache misses
in CPU. The number of these registries on a CPU, i.e. counters incrementing
when the event occurs, is limited. Each particular processor model provides a
set of events, which might be measured by the programmable counter. Using
these, it is possible to develop various on-demand monitors. On some proces-
sors, the length of the registries storing performance data is too low. This causes
frequent overflows which then must be handled at higher application level. Some
performance statistics, such as network and hard drive traffic, are monitored at
the operating system (OS) level. Thus, OS specific tools must be used to access
the statistics. In our experiments, we used the Dell PowerEdge SC 1430 server,
with two Intel Xeon 5130 dual core processors, running Ubuntu 10.04. The net-
work traffic and the percentage of the non-idle CPU time were collected using
a Libstatgrab library, written in C. The CPU instructions, cycles, and last level
cache misses were measured by Intel Performance Monitor Counter, written in



92 P. Bartalos and M.B. Blake

C++. These applications showed high reliability during the experiments. Other
useful tools include:

– Libstatgrab library
https://launchpad.net/ubuntu/+source/libstatgrab/0.17-0ubuntu1

– Microsoft Windows Performance monitor
http://technet.microsoft.com/en-us/library/cc749249.aspx

– Windows Management Instrumentation http://msdn.microsoft.com/en-us/

library/windows/desktop/aa394582%28v=vs.85%29.aspx

– V-Tune Amplifier XE
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/

– Microsoft Visual studio: Premium and Ultimate version.
http://www.microsoft.com/visualstudio/en-us

Web Service Execution Statistics.Web service related statistics, such as the
number of requests and the corresponding response time, are natively supported
by different web servers. This also means that the access to these statistics is
platform dependent. In Java environment the servlet filters facilitate the collec-
tion of data. A filter can be implemented such that it triggers custom code each
time the server receives a request and when it sends back the response to the
client. On ASP.NET platform, intercepting filters are equivalent. In our work,
the Java servlet filters were used.

Power Measurements. Measuring the power consumed by a computer usually
requires an external physical power meter. Although, hardware-level measure-
ment of the computer power consumption is available on some platforms, e.g. [7],
these measurements generally do not occur a priori. There are several attainable
power meters that provide an interface to communicate with computers. The
communication is usually based on USB or Internet but is also accompanied by
a noticeable delay. Accessing the data from a device requires custom applica-
tions. The device itself and the related applications generally do not provide the
data at defined moments. Thus, synchronization with other measurements per-
formed on a computer is limited. In our work, we use the Watts UP .net power
meter connected via USB. To access its data, we enhance the linux application
available at (https://www.wattsupmeters.com), written in C.

Synchronizing All Measurements. It is clear from the previous discussion
that collecting all the necessary data requires multiple applications running con-
currently. The synchronization of these diverse applications, running in parallel,
presents a big technical challenge. In our work, a central Java application man-
ages the overall process by invoking the underlying applications in parallel. The
inter-application control is performed using Java Native Interface in the case
of PCM, and using the Runtime.exec() method for the rest of the applica-
tion. Since communication with the Watts UP device is accompanied by a non-
negligible delay, the central application synchronizes all the other applications
according to a signal received from the application handling the Watts UP de-
vice. The central application collects a defined number of samples, each of them

https://launchpad.net/ubuntu/+source/libstatgrab/0.17-0ubuntu1
http://technet.microsoft.com/en-us/library/cc749249.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394582%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394582%28v=vs.85%29.aspx
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://www.microsoft.com/visualstudio/en-us
https://www.wattsupmeters.com


Energy-Aware Web Services 93

taken during a specified time period. Ultimately, the applications are synchro-
nized only at the beginning of the data collection to limit the inter-application
communication. Our experiments show, that the applications remain sufficiently
synchronized even if the specified time period is 100 seconds. The misalignment
at the end of the collection is few milliseconds.

5 Training the Power Model

Our approach to generate a power model, while addressing the specific require-
ments of web service workloads, is based on a controlled simulation of web service
requests. The process recreates a variety of circumstances under which the server
is monitored and performance measurements are captured. We developed a set
of 6 different synthetic web services, each having 3 - 4 operations (20 in total),
which are invoked during the simulation. Each web service tends to utilize dis-
tinct hardware resources, i.e. CPU, memory, hard drive, or a varied combination.

The services used to test the model were created by wrapping op-
erations available in a mathematical library Apache commons library
http://commons.apache.org/. We implemented 11 distinct web service operations
which varied in the nature of their computation. Their execution time varies from
a few milliseconds up to 10s of milliseconds. We created two testsets using these
web services. In the first case, the service workload was generated using the same
operation over a defined period of time. Subsequently, another operation was ex-
ecuted in the same fashion. This environment emulates a server that executes
a smaller, limited set of web services at a time. The second testset was created
by randomly selecting the operation before every invocation. In both cases, we
simulated multiple clients independently invoking the web services concurrently.
While performing the workloads, we collected performance counter data to be
used as inputs for the model generation.

By running different configurations of our test environment and varying the
number of clients (running on the same network), we emulated web service work-
loads. In determining how to invoke the synthetic web services for training the
power model, we tested two simulation strategies. In our first simulation strat-
egy, the client randomly selects the requested operation before every invocation,
i.e. the requested operation changes over time. In the case of multiple clients,
this may result in parallel execution of different operations. In the second strat-
egy, the client continuously invokes the same web service operation, specified
by the training manager. The training manager starts the clients, collects the
required number of samples, and terminates the clients. In the case of the second
strategy, the training manager also specifies the specific web service operation
thus cycling through all the operations.

In our experiments, we tested the power model using three public
benchmarks: CPUburn utilizing the CPU - the burnBX command was
used http://linux.softpedia.com/get/System/Diagnostics/cpuburn-1407.shtml ,
Tiobench for hard drive IO operations http://linux.die.net/man/1/tiobench,
MBW testing the memory http://manpages.ubuntu.com/manpages/lucid/man1/

http://commons.apache.org/
http://linux.softpedia.com/get/System/Diagnostics/cpuburn-1407.shtml
http://linux.die.net/man/1/tiobench
http://manpages.ubuntu.com/manpages/lucid/man1/mbw.1.html


94 P. Bartalos and M.B. Blake

mbw.1.html . The power model (built using the benchmark workloads) achieved
a precision within a 4.84% error. It was less accurate than the models built us-
ing the synthetic services-based workloads. We anticipate, that this difference in
error was a result of the benchmark workloads not incorporating web service-
specific computations, e.g. serialization of the I/O and the overall management
of the request processing.

An important issue when training the power model is determining the number
of samples to collect. In general, more samples result in a more accurate model.
We collected 3200 samples, sampled every second, for both strategies. Tab.1
presents the mean relative error of the power model according to the number of
samples. The table illustrates the error separately for all of the test web service
operations, the average through all operations, and the error when the operations
were selected randomly. The different columns represent what portion of the 3200
collected samples were used to train the model (i.e. 10%, or 100%), for the two
strategies S1 and S2. The mean error of the model built from 320 samples while
performing strategy S1 is 3.86%. S2 achieves better results. The error in this case
is 2.49%. When using all the 3200 samples to train the model, S1 achieves mean
error 1.67%. S2 results almost the same error, 1.66%. Considering our server,
this error corresponds approximately to 3.3 Watts. The bottom line of Tab.1
shows that estimating the power while the service workload is made by random
operations is more accurate. Considering the number of required samples, we can
conclude that S1 requires more samples to achieve favorable accuracy. When the
number of samples is sufficiently high, it achieves similar results as S2. In this
case, S1 showed to be more accurate for the randomly selected service workload.
In the case that fewer samples are available for training, S2 achieves better
results. Fig.1 presents the error of the power model built using strategy S2 with
3200 samples. Each point of the graph represents one pair of the measured values
and its corresponding estimation retrieved from the model. Ideally, the points
should lie on a line y = x. The points above the line are overestimations of the
power and the points below the line represent underestimation.

Note that fewer samples do not necessarily cause higher error. Consider for
example results for the TestAddhoc web service operations and strategy S2. The
error is lower in the case when fewer samples were used. This means that the
model built using the selected 10% of the samples better characterizes the power
consumption while executing TestAddhoc. However, for several other operations,
this leads to lower accuracy, i.e. the model is less universal.

We also experimented with the training process executing locally on the server.
The experiments demonstrated that the models built while the service workload
was made by remote clients are more stable. It achieves similar results indepen-
dently on the workload. The model, using our first strategy, built while executing
the clients locally achieved low accuracy within 3.0% error. In the case of ran-
domly selected services, the accuracy within 1.0% error, was better than in the
case of remote clients. We can conclude that the models built with remote clients
are more universal.

http://manpages.ubuntu.com/manpages/lucid/man1/mbw.1.html


Energy-Aware Web Services 95

Table 1. Power estimation model error

S1 10% S2 10% S1 100% S2 100%

TestSort 5.28 0.49 1.65 0.57

TestAddhoc 6.27 0.53 1.69 0.64

TestAxisAngle 6.21 0.47 1.59 0.56

TestCircleFit 1.95 5.67 3.48 4.09

TestExactIntegration 4.24 0.59 1.54 0.60

TestLongly 0.82 4.16 1.67 2.56

TestLonglySpearman 2.28 4.10 0.85 2.20

TestError 2.39 1.38 1.92 1.07

TestQRColumnPermut 5.18 1.58 2.87 2.53

Testwave 4.65 3.08 0.85 1.00

Testplane 3.99 3.84 0.53 1.77

Average 3.86 2.49 1.67 1.66

Random selection 2.95 1.5 1.25 1.3

170 180 190 200 210 220 230 240
170

180

190

200

210

220

230

240

Measured power

M
o

d
e

le
d

p
o

w
e

r

Fig. 1. Power estimation model error

6 Conclusions

This paper explores server-side power consumption of web services. We discuss
the conceptual and practical problems when estimating the power required dur-
ing web service workloads. The approach is based on a model that derives the
power estimation from a variety of computer hardware conditions. We present
an evaluative body of knowledge of the training process, which is a critical part
of building the power model. We performed several experiments to investigate
what aspects affect the ability of the model to estimate the power consumed by
a particular web service. Our experiments demonstrated that the most accurate
universal model is built when the workload during the training is made by re-
mote clients. We considered two strategies to create service workloads. In first



96 P. Bartalos and M.B. Blake

strategy, one operation is selected to be executed for a defined period of time. In
the second strategy, the operation is randomly selected before every invocation.
Assuming that a sufficient number of samples are recorded during the training,
there is no significant difference between the two strategies. The strategy exe-
cuting one web service at a time showed more accurate results even when the
model is built from fewer samples.

Acknowledgments. The authors would like to thank Mr. Chris Ketant of
Rochester Institute of Technology for insights and his development of several
of the synthetic web services. The authors would like recognize the interaction
with Dr. Sekou Remy in comparing our regression approaches to relevant neural
network approaches for training the greenness web services. This work benefited
greatly from discussions with Tanya Salyers, Department of Mathematics, Uni-
versity of Notre Dame and Dr. Roman Dementiev from Intel. This project was
partially supported by NSF Award Number 0512610.

References

1. Bartalos, P., Bielikova, M.: Qos aware semantic web service composition approach
considering pre/postconditions. In: IEEE Int. Conf. on Web Services, pp. 345–352
(2010)

2. Bartalos, P., Bielikova, M.: Automatic dynamic web service composition: A survey
and problem formalization. Computing and Informatics 30(4), 793–827 (2011)

3. Bircher, W., John, L.: Complete system power estimation: A trickle-down approach
based on performance events. In: IEEE International Symposium on Performance
Analysis of Systems Software, pp. 158–168 (April 2007)

4. Contreras, G., Martonosi, M.: Power prediction for intel XScaleR processors using
performance monitoring unit events. In: Int. Symposium on Low Power Electronics
and Design 2005, pp. 221–226. ACM (2005)

5. Economou, D., Rivoire, S., Kozyrakis, C.: Full-system power analysis and mod eling
for server environments. In: Workshop on Modeling Benchmarking and Simulation
(2006)

6. Fan, X., Dietrich Weber, W., Barroso, L.A.: Power provisioning for a warehouse-
sized computer. In: International Symposium on Computer Architecture (2007)

7. Jenne, J., Nijhawan, V., Hormuth, R.: Dell energy smart architecture (desa) for
11g rack and tower servers (2009), http://www.dell.com

8. Kansal, A., Zhao, F., Liu, J., Kothari, N., Bhattacharya, A.A.: Virtual machine
power metering and provisioning. In: 1st ACM Symposium on Cloud Computing,
SoCC 2010, pp. 39–50. ACM, New York (2010)

9. Li, T., John, L.K.: Run-time modeling and estimation of operating system power
consumption. SIGMETRICS Perform. Eval. Rev. 31, 160–171 (2003)

10. Rivoire, S., Ranganathan, P., Kozyrakis, C.: A comparison of high-level full-system
power models. In: Conference on Power Aware Computing and Systems, HotPower
2008, p. 3. USENIX Association, Berkeley (2008)

11. Schall, D., Dustdar, S., Blake, M.: Programming human and software-based web
services. Computer 43(7), 82–85 (2010)

12. Wei, Y., Blake, M.B.: Service-oriented computing and cloud computing: Challenges
and opportunities. IEEE Internet Computing 14(6), 72–75 (2010)

http://www.dell.com

	Engineering Energy-Aware Web Services toward Dynamically-Green Computing
	Introduction
	Power Modeling Background and Related Work
	Web Service Power Estimation Challenges
	Practical Problems When Building Power Estimation Models
	Training the Power Model
	Conclusions
	References




