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Abstract. We propose a novel problem to simplify weighted graphs by
pruning least important edges from them. Simplified graphs can be used
to improve visualization of a network, to extract its main structure, or
as a pre-processing step for other data mining algorithms.

We define a graph connectivity function based on the best paths be-
tween all pairs of nodes. Given the number of edges to be pruned, the
problem is then to select a subset of edges that best maintains the overall
graph connectivity. Our model is applicable to a wide range of settings,
including probabilistic graphs, flow graphs and distance graphs, since the
path quality function that is used to find best paths can be defined by
the user. We analyze the problem, and give lower bounds for the effect
of individual edge removal in the case where the path quality function
has a natural recursive property. We then propose a range of algorithms
and report on experimental results on real networks derived from public
biological databases.

The results show that a large fraction of edges can be removed quite
fast and with minimal effect on the overall graph connectivity. A rough
semantic analysis of the removed edges indicates that few important
edges were removed, and that the proposed approach could be a valuable
tool in aiding users to view or explore weighted graphs.

1 Introduction

Graphs are frequently used to represent information. Some examples are social
networks, biological networks, the World Wide Web, and so called BisoNets,
used for creative information exploration [2]. Nodes usually represent objects,
and edges may have weights to indicate the strength of the associations between
objects. Graphs with a few dozens of nodes and edges may already be difficult to
visualize and understand. Therefore, techniques to simplify graphs are needed.
An overview of such techniques is provided in reference |3].

In this chapter, we propose a generic framework and methods for simplifica-
tion of weighted graphs by pruning edges while keeping the graph maximally
connected. In addition to visualization of graphs, such techniques could have
applications in various network design or optimization tasks, e.g., in data com-
munications or traffic.

* This chapter is a modified version of article “Network Simplification with Minimal

Loss of Connectivity” in the 10th IEEE International Conference on Data Mining
(ICDM), 2010 [1].
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The framework is built on two assumptions: the connectivity between nodes is
measured using the best path between them, and the connectivity of the whole
graph is measured by the average connectivity over all pairs of nodes. We signif-
icantly extend and generalize our previous work [4]. The previous work prunes
edges while keeping the full original connectivity of the graph, whereas here we
propose to relax this constraint and allow removing edges which result in loss of
connectivity. The intention is that the user can flexibly choose a suitable trade-off
between simplicity and connectivity of the resulting network. The problem then
is to simplify the network structure while minimizing the loss of connectivity.

We analyze the problem in this chapter, and propose four methods for the
task. The methods can be applied to various types of weighted graphs, where
the weights can represent, e.g., distances or probabilities. Depending on the
application, different definitions of the connectivity are possible, such as the
shortest path or the maximum probability.

The remainder of this article is organized as follows. We first formalize the
problem of lossy network simplification in Section 2] and then analyze the prob-
lem in Section [Bl We present a range of algorithms to simplify a graph in Sec-
tion Ml and present experimental results in Section Bl We briefly review related
work in Section [} and finally draw some conclusions in Section [1

2 Lossy Network Simplification

Our goal is to simplify a given weighted graph by removing some edges while
still keeping a high level of connectivity. In this section we define notations and
concepts, and also give some example instances of the framework.

2.1 Definitions

Let G = (V, E) be a weighted graph. We assume in the rest of the chapter that
G is undirected. An edge e € F is a pair e = {u,v} of nodes u,v € V. Each
edge has a weight w(e) € R. A path P is a set of edges P = {{u1, u2}, {ua,us},

ooy {uk—1,ux}} C E. We use the notation uy 5 up to say that P is a path
between u; and ug, or equivalently, to say that u; and wuy are the endvertices
of P. A path P can be regarded as the concatenation of several sub-paths, i.e.,
P =P U...UP,, where each P; is a path.

We parameterize our problem and methods with a path quality function
q(P) — RT. The form of the path quality function depends on the type of
graph and the application at hand. For example, in a probabilistic or random
graph, it can be the probability that a path exists. Without loss of generality,
we assume that the value of any path quality function is positive, and that a
larger value of ¢ indicates better quality.

Given two nodes u and v in a weighted graph, they might be linked by a direct
edge or a path, or none in a disconnected graph. A simple way to quantify how
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strongly they are connected is to examine the quality of the best path between
them [4]. Thus, the connectivity between two nodes w and v in the set E of edges
is defined as

maXPCE:uvP;U q(P) if such P exists

—00 otherwise.

C(u,v; E) = { (1)
A natural measure for the connectivity of a graph is then the average connectivity
over all pairs of nodes,

2
C(K E) = |V|(|V| . 1) u’ve;u#v C(U,U,E), (2)

where |V is the number of nodes in the graph. Without loss of generality, in
the rest of the chapter we assume the graph is connected, so C(V, E) > 0. (If
the graph is not connected, we simplify each connected component separately,
so the assumption holds again.)

Suppose a set of edges Er C E is removed from the graph. The connectivity
of the resulting graph is C(V, E \ ER), and the ratio of connectivity kept after
removing Ep is

C(V,E\ ER)

rk(V,E, Eg) = B 3)

Clearly, connectivity can not increase when removing edges. 7k = 1 means the
removal of edges does not affect the graph’s connectivity. 0 < rk < 1 implies that
the removal of edges causes some loss of connectivity, while 7k = —oo implies
the graph has been cut into two or more components.

Our goal is to remove a fixed number of edges while minimizing the loss of
connectivity. From the definitions in Equations ([I)-B]) it follows that cutting
the input graph drops the ratio to —oo. In this chapter, we thus want to keep
the simplified graph connected (and leave simplification methods that may cut
the graph for future work). Under the constraint of not cutting the input graph,
possible numbers of edges remaining in the simplified graph range from V] —1
to |E|. This follows from the observation that a maximally pruned graph is a
spanning tree, which has |V| — 1 edges. Thus numbers of removable edges range
from 0 to |E| — (|]V] —1).

In order to allow users to specify different simplification scales, we introduce
a parameter 7y, with values in the range from 0 to 1, to indicate the strength of
pruning. Value 0 indicates no pruning, while value 1 implies that the result should
be a spanning tree. Thus, the number of edges to be removed by an algorithm
is |[Er| = [v(|E| — (V] — 1))]. Based on notations and concepts defined above,
we can now present the problem formally.

Given a weighted graph G = (V, E), a path quality function ¢, and a parameter
v, the lossy network simplification task is to produce a simplified graph H =
(V,F), where F C E and |[E\F| = [y(|E|—(]V]—1))], such that rk(V, E, E\ F)
is maximized. In other words, the task is to prune the specified amount of edges
while keeping a maximal ratio of connectivity.
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2.2 Example Instances of the Framework

Consider a random (or uncertain) graph where edge weight w(e) gives the prob-
ability that edge e exists. A natural quality of a path P is then its probability,
i.e., the probability that all of its edges co-exist: ¢(P) = I, ,yepw({u,v}).
Intuitively, the best path is the one which has the highest probability.

If edge weights represent lengths of edges, then the shortest path is often
considered as the best path between two given nodes. Since in this case smaller
values (smaller distances) indicate higher quality of paths, one can either reverse
the definitions where necessary, or simply define the path quality as the inverse
of the length, i.e., ¢(P) = 1/length(P).

A flow graph is a directed graph where each edge has a capacity w(e) to
transport a flow. The capacity ¢(P) of a path is limited by the weakest edge
along that path: ¢(P) = ming, ,}ep w({u,v}) = q(P). The best path is one that
has the maximal flow capacity. If the flow graph is undirected, the graph can
be simplified without any loss of quality to a spanning tree that maximizes the
smallest edge weight in the tree.

3 Analysis of the Problem

In this section, we investigate some properties of the problem of lossy network
simplification. We first note that the ratio of connectivity kept rk(V, E, ER) is
multiplicative with respect to successive removals of sets of edges. Based on
this we then derive two increasingly fast and approximate ways of bounding
rk(V, E, ER). These bounds will be used by algorithms we give in Section [l

3.1 Multiplicativity of Ratio of Connectivity Kept

Let Er be any set of edges to be removed. Consider an arbitrary partition of
Epg into two sets Ex and F%, such that Er = ELUFE% and ELNE% = (). Using
Equation (B]), we can rewrite the ratio of connectivity kept by Eg as

rk(V, E, E5 U E2)

C(V,E\(ERUE?R))
C(V,E)
C(V,E\ER) C(V,E\ER\E3%)
C(V,E) ~  C(V,E\EL)

In other words, the ratio of connectivity kept rk(-) is multiplicative with respect
to successive removals of sets of edges.

An immediate consequence is that the ratio of connectivity kept after remov-
ing set E'r of edges can also be represented as the product of ratios of connectivity
kept for each edge, in any permutation:

rk(V,E,Eg) = I k(V,E\ Ei_y, e)),
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where e; the ith edge in the chosen permutation and E; = {ey,...,e;} is the set
of 4 first edges of ER.

Note that the ratio of connectivity kept is mot multiplicative for the ratios
rk(V, E,{e;}) of connectivity kept with respect to the original set E of edges.
It is therefore not straightforward to select an edge set whose removal keeps the
maximal rk(V, E, Er) value among all possible results.

The multiplicativity directly suggests, however, to greedily select the edge
maximizing rk(V, E '\ E;_1,e;) at each step. The multiplicativity property tells
that the exact ratio of connectivity kept will be known throughout the process,
even if it is not guaranteed to be optimal. We will use this approach in the brute
force algorithm that we give in Section @l Two other algorithms will use the
greedy search too, but in a more refined form that uses results from the next
subsections.

3.2 A Bound on the Ratio of Connectivity Kept

Recall that the connectivity of a graph is the average connectivity among all
pairs of nodes. In principle, the removal of an edge may cause the connectivity
between any arbitrary pair of nodes to decrease. We now derive a lower bound for
the connectivity kept, based on the effect of edge removal only on the endpoints
of the edge itself.

Many path quality functions are recursive in the sense that sub-paths of a best
path are also best paths between their own endpoints. (This is similar to the
property known as optimal substructure in dynamic programming.) Additionally,
a natural property for many quality functions g is that the effect of a local change
is at most as big for the whole path P as it is for the modified segment R C P.

Formally, let P = arg max, . p q(P) be a best path (between any pair
UM

of nodes u and v), let m € P be a node on the path, let R C P be a subpath
(segment) of P and S a path (not in P) with the same endvertices as R. Function
q is a local recursive path quality function if

g(P) = q( argmax ¢(P1) U argmax ¢(P))
PlCE:uilwn PgCE:mizw

and
a(P\RUS) _ o(5)
q(P)  ~ q(R)

Examples of local recursive quality functions include the (inverse of the) length
of a path (when edge weights are distances), the probability of a path (when
edge weights are probabilities), and minimum edge weight on a path (when edge
weights are flow capacities). A negative example is average edge weight.

The local recursive property allows to infer that over all pairs of nodes, the
biggest effect of removing a particular edge will be seen on the connectivity of
the edge’s own endvertices. In other words, the ratio of connectivity kept for any
pair of nodes is at least as high as the ratio kept for the edge’s endvertices.
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To formalize this bound, we denote by k(F,e) the ratio of connectivity kept
between the endvertices of an edge e = {u, v} after removing it from the set E
of edges:

—00 if C(u,v; E\ {e}) = —o0;
R(E,e) = { (UMD S Clu, v B\ {e}) < al{e}); (4)
1 if C(u,v; B\ {e}) = q({e}).

The first two cases directly reflect the definition of ratio of connectivity kept
(Equation [B]) when edge e is the only path (case one) or the best path (case
two) between its endpoint. The third case applies when {e} is not the best
path between between its endpoints. Then, its absence will not cause any loss of
connectivity between v and v, and k(E,e) = 1.

Theorem 1. Let G = (V, E) be a graph and e € E an edge, and let q be a local
recursive path quality function. The ratio of connectivity kept if e is removed is
lower bounded by rk(V,E, e) > k(E,e).

Sketch of a proof. The proof is based on showing that the bound holds for
the ratio of connectivity kept for any pair of nodes. (1) Case one: k(E, e) = —oco
clearly is a lower bound for any ratio of connectivity kept. (2) Case two: Consider
any pair of nodes u and v. In the worst case the best path between them contains
e and, further, the best alternative path between u and v is the one obtained
by replacing e by the best path between the endvertices of e. Since ¢ is local
recursive, even in this case at least fraction k(F, e) of connectivity is kept between
u and v. (3) Case three: edge e has no effect on the connectivity of its own
endvertices, nor on the connectivity of any other nodes.

Theorem [I] gives us a fast way to bound the effect of removing an edge and
suggests a greedy method to the lossy network simplification problem by remov-
ing an edge with the largest x. Obviously, only based on k(FE,e) < 1, we can
not infer the exact effect of removing edge e, nor the relative difference between
removing two alternative edges. However, computing « is much faster than com-
puting 7k, since only the best path between the edge’s endvertices needs to be
examined, not all-pairs best paths.

3.3 A Further Bound on the Ratio of Connectivity Kept

Previously, we suggested two ways to compute or approximate the best alterna-
tive path for an edge [4]. The global best path search finds the best path with
unlimited length and thus gives the exact C(u,v; E'\ {e}) and k values. However,
searching the best path globally takes time. A faster alternative, called triangle
search, is to find the best path of length two, denoted by Sa(e). That is, let
Sa(e) = {{u,wH{w,v}} C E, e & Sa(e), be a path between the endvertices u, v
such that ¢(S2(e)) is maximized. Obviously, path S2(e) may not be the best path
between the edge’s endvertices, and therefore ¢(Sz2(e)) is a lower bound for the
quality of the best path between the endvertices of e.
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To sum up the results from this section, we have two increasingly loose lower
bounds for the ratio of connectivity kept for local recursive functions. The first
one is based on only looking at the best alternative path for an edge. The second
one is a further lower bound for the quality of this alternative path. Denoting
by Sa(e) the best path of length two as defined above, we have

S.
rk(V,E,e) > k(E,e) > min(q< 2(¢)) ,1).
q({e})
In the next section, we will give algorithms that use these lower bounds to
complete the simplification task with different trade-offs between connectivity
kept and time complexity.

4 Algorithms

We next present four algorithms to simplify a given graph by pruning a fixed
number of edges while aiming to keep a high connectivity. All algorithms take
as input a weighted graph G, a path function g and a ratio . They prune
n = v(|E| — ([V| — 1)) edges. The first algorithm is a naive approach, simply
pruning a fraction of the weakest edges by sorting edges according to the edge
weight. The second one is a computationally demanding brute-force approach,
which greedily removes an edge with the highest rk value in each iteration. The
third and fourth algorithms are compromises between these extremes, aimed
at a better trade-off between quality and efficiency. The third one iteratively
prunes the edge which has the largest « value through global search. The fourth
algorithm prunes edges with the combination of triangle search and global search.

4.1 Naive Approach

Among the four algorithms that we present, the simplest approach is the naive
approach (NA), outlined in Algorithm [Il It first sorts edges by their weights
in an ascending order (Line [I). Then, it iteratively checks the edge from the
top of the sorted list (Line [7), and prunes the one whose removal will not lead
to disconnected components (Line §)). The algorithm stops when the number of
edges removed reaches n, derived from G and ~.

The computational cost of sorting edges is O(|E|log |E|) (Line[d). On Line[T]
we use Dijkstra’s algorithm with a complexity of O((|E|+ |V])log|V]) to check
whether there exists a path between the edge’s endvertices. So, the total compu-
tational complexity of the naive approach is O(|E|log |E| +n(|E| +|V|) log [V]).

4.2 Brute Force Approach

The brute force approach (BF), outlined in Algorithm [2] prunes edges in a
greedy fashion. In each iteration, it picks the edge whose removal best keeps the
connectivities, i.e., has the largest rk value. It first calculates the rk(V, F, e) value
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Algorithm 1. NA algorithm
Input: A weighted graph G = (V, E), q and v
Output: Subgraph H C G
1: Sort edges E by weights in an ascending order.
F+—FE
n (Bl - (V] - 1))
{ Tteratively prune the weakest edge which does not cut the graph }
i+ 1,7+ 1{jis an index to the sorted list of edges }
while i <n do
if C(u,v; F\ {e;}) is not — co then
F e F\{e}
141 +1
j+—7+1
: Return H = (V, F)

P XA T

— =

for every edge e (Line [I0), and then stores the information of the edge whose
rk(V, F,e) value is the highest at the moment (Line [[I]), and finally prunes the
one which has the highest 7k value among all existing edges (Line [IG]). As an
optimization, set M is used to store edges that are known to cut the remaining
graph (Lines [ and [0, and the algorithm only computes rk(V, F,e) for the
edges which are not in M (Line [§]).

When computing rk(V, F, e) for an edge (Line [I0), all-pairs best paths need
to be computed with a cost of O(|V|(|E| + |V])log|V|). (This dominates the
connectivity check on Line [@) Inside the loop, rk(V, F,e) is computed for all
edges in each of n iterations, so the total time complexity is O(n|E||V|(|E| +
[V[) log [V']).

Algorithm 2. BF algorithm

Input: A weighted graph G = (V| E), q and ~
Output: Subgraph H C G

1. F+< F

2 n (B - (V] - 1))

3: { Iteratively prune the edge with the highest rk value. }
4: M <+ 0 { edges whose removal is known to cut the graph. }
5: for r=1ton do

6: 71k largest + —oc

7. e largest < null

8: for e={u,v}in F and e ¢ M do

9: if graph (V, F\ {e}) is connected then

10: compute rk(V, F,e) = Cgﬁ)}f”

11: if rk(V,F,e) > rk largest then

12: rk largest < rk(V, F,e)

13: e largest + e

14: else

15: M+ M+e

16:  F < F\{e largest}
17: Return H = (V, F)
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4.3 Path Simplification

The outline of the path simplification approach (PS) is in Algorithm Bl The
main difference to the brute force approach is that PS calculates x instead of
rk(V, F,e) for each edge.

The method finds, for each edge, the best possible alternative path S globally
(Line @l). Tt then prunes in each loop the edge with the largest lower bound & of
connectivity kept. As an efficient shortcut, as soon as we find an edge whose « is
equal to 1, we remove it immediately. Again, list M is used to store information
of those edges whose removal cuts the graph.

Algorithm 3. PS algorithm

Input: A weighted graph G = (V| E), q and ~
Output: Subgraph H C G

1: F+ F

2 n (1Bl — (IV] - 1))
3: {Iteratively prune the edge with the largest x value. }
4: M« 0
5: for r=1ton do
6: K largest + —oo
7: e largest < null
8: for e={u,v}in Fande¢ M do
9: Find path S such that ¢(S) = C(u,v; F'\ {e})
10: if ¢(S) > q({e}) then
11: K<+ 1
12: F + F\{e}
13: break
14: else if 0 < ¢(5) < ¢q({e}) then
15: K q(é({i}))
16: else
17: K < —00
18: M+ M+e
19: if k> kK largest then
20: K largest < k
21: e largest « e

22:  F <« F\ {e largest}
23: Return H = (V, F)

The complexity of the innermost loop is dominated by finding the best path
between the edge’s endvertices (Line [), which has time complexity O((|E| +
|V|) log|V]). This is done n times for O(|E|) edges, so the total time complexity
is O(n|E|(|E| + |V|)log |[V]). While still quadratic in the number of edges, this
is a significant improvement over the brute force method.

4.4 Combinational Approach

The fourth and final algorithm we propose is the combinational approach (CB),
outlined in Algorithm [l The difference to the path simplification (PS) method
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Algorithm 4. CB algorithm
Input: A weighted graph G = (V| E), q and ~
Output: Subgraph H C G

1: F+ F

2: n (Bl - (V] -1))
3: { Iteratively prune the edge with the largest x using triangle search }
4: r+1
5: find < true
6: while r <n and find = true do
7 K largest + —oo
8 e largest < null

for e = {u,v} in F do
10: Find path So = {{u, w}{w,v}} C F\ {e} that maximizes q(S2)
11: if ¢(S2) > g({e}) then
12: K+ 1
13: F + F\{e}
14: r—r+1
15: break
16: else if 0 < ¢(S2) < g({e}) then
17: K ;(({Sf}))
18: else
19: K $— —00
20: if k> k largest then
21: Kk largest < Kk
22: e largest + e
23:  if k largest > 0 then
24: F + F\ {e largest}
25: rr+1
26:  else
27: find « false

28: if r < n then
29:  apply the path simplification (PS) method in Algorithm [3to prune n — r edges
30: Return H = (V, F)

above is that the best path search is reduced to triangle search (Line [I0). How-
ever, triangle search is not always able to identify a sufficient number of edges
to be removed, depending on the number and quality of triangles in the graph.
Therefore the combinational approach invokes the PS method to remove addi-
tional edges if needed (Line 29)).

The computational complexity of triangle search for a single edge is O(|V|)
(Line [0). Thus, if we only apply triangle search, the total cost is O(n|E||V).
However, if additional edges need to be removed, the worst case computational
complexity equals the complexity of the path simplification method (PS).

5 Experiments

To assess the problem and methods proposed in this chapter, we carried out
experiments on real graphs derived from public biological databases. With the
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experiments, we want to evaluate the trade-off between the size of the result and
the loss of connectivity, compare the performances of the proposed algorithms,
study the scalability of the methods, and assess what the removed edges are like
semantically in the biological graphs.

5.1 Experimental Setup

We have adopted the data and test settings from Toivonen et al. [4]. The data
source is the Biomine database [5] which integrates information from twelve ma-
jor biomedical databases. Nodes are biological entities such as genes, proteins,
and biological processes. Edges correspond to known or predicted relations be-
tween entities. Each edge weight is between 0 and 1, and is interpreted as the
probability that the relation exists. The path quality function is the probability
of the path, i.e., the product of weights of the edges in the path. This function
is local recursive.

For most of the tests, we use 30 different graphs extracted from Biomine. The
number of nodes in each of them is around 500, and the number of the edges
ranges from around 600 to 900. The graphs contain some parallel edges that can
be trivially pruned. For more details, see reference [4]. For scalability tests, we
use a series of graphs with up to 2000 nodes, extracted from the same Biomine
database.

The algorithms are coded in Java. All tests were run on standard PCs with
x86 64 architecture with Intel Core 2 Duo 3.16GHz, running Linux.

5.2 Results

Trade-Off between Size of the Result and Connectivity Kept. By con-
struction, our methods work on a connected graph and keep it connected. As
described in Section 2] maximally simplified graphs are then spanning trees, with
|[V| — 1 edges. The number of edges removed is algorithm independent: they all
remove fraction « of the |E| — (V| — 1) edges that can be removed. The distri-
bution of the number of edges to be removed in our test graphs, relative to the
total number of edges, are shown as a function of v in Figure [Il These graphs
are relatively sparse, and approximately at most 35% of edges can be removed
without cutting the graph.

In this chapter, we extend a previous simplification task [4] from lossless to
lossy simplification (with respect to the connectivity of the graph). In other
words, in the previous proposal the ratio of connectivity kept must always stay
at 1. We now look at how many more edges and with how little loss of connec-
tivity our new methods can prune. We use the path simplification method as a
representative here (and will shortly compare the proposed methods).

In Figure 2 we plot the ratio of connectivity kept by the four methods of
Toivonen et al. [4] for two different graphs, randomly selected from our 30 graphs.
Four different types of points are positioned horizontally according to n, the
number of edges pruned by the previous methods. The z-axis shows the number
of edges pruned in terms of -y, computed as v = n/(|E|—(|]V|—1)). Results of the
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Fig. 1. Fraction of edges removed by Fig.2. Ratio of connectivity kept

different v value. Each boxplot shows
the distribution of results over 30 test
graphs.

by the four methods of Toivonen et
al. |4] and by the path simplification
method for two graphs (green and red).
1G=Iterative Global, IT=Iterative Tri-

angle, SG=Static Global, ST=Static
Triangle.

path simplification method proposed in this chapter are shown as lines. Among
the four previous methods, the Iterative Global (IG) method prunes the maximal
number of edges. Significantly more edges can be pruned, with larger values of ~,
while keeping a very high ratio of connectivity. This indicates that the task of

lossy network simplification is useful: significant pruning can be achieved with
little loss of connectivity.

Comparison of Algorithms. Let us next compare the algorithms proposed in
this chapter. Each of them prunes edges in a somewhat different way, resulting
in different ratios of connectivity kept. These ratios with respect to different ~y
are shown in Figure 8l For v = 1 (Figure Ble)), where the result of all methods
is a spanning tree, we also plot the results of a standard maximum spanning tree
method [6] that maximizes the sum of edge weights.

Among all methods, the brute force approach expectedly always keeps the
highest ratio of graph connectivity. When + is between 0.2 and 0.6, the brute
force method can actually keep the original connectivity, and even when v =1
it still keeps around 93% connectivity.

Overall, the four proposed methods perform largely as expected. The sec-
ond best method is path simplification, followed by the combinational approach.
They both keep high connectivities for a wide range of values for -, still approx-
imately 90% with v = 0.8. The naive approach is clearly inferior, but it also
produces useful results for smaller values of ~.

An interesting observation can be made from Figure B(e) where v = 1. The
maximum spanning tree has similar ratios of connectivity kept with all methods
except the brute force method, which can produce significantly better results.
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Fig. 3. Ratio of connectivity kept by each of the four algorithmic variants. Each boxplot
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Fig. 4. Two examples where the brute force and path simplification methods remove
different edges. In (a) and (c), dashed edges are removed by the brute force method.
In (b) and (d), dashed edges are removed by the path simplification method.

This illustrates how the problem of keeping maximum connectivity in the limit
(v =1) is different from finding a maximum spanning tree. (Recall that the lossy
network simplification problem is parameterized by the path quality function ¢
and can actually have quite different forms.)

Figure @ shows two simple examples where the brute force method removes
different edges than the path simplification method (or the maximum spanning
tree method). The removed edges are visualized with dotted lines; Figures [f(a)
and (c) are the results of the brute force method, and (b) and (d) are the results
of the path simplification method. Consider the case in Figures [@(a) and (b).
Since k({b,c}) = %030 = 0.7 and k({a,c}) = *THI7 = 0.91, edge {a,c}
is removed by the path simplification method. However, when considering the
connectivity between node ¢ and other nodes which are a’s neighbors, removing
{b, ¢} keeps connectivity better than removing edge {a, c}.

We notice that the brute force method has a clear advantage from its more
global viewpoint: it may select an edge whose weight is higher than the weight
of the edge removed by the other methods that work more locally. We will next
address the computational costs of the different variants.

Running Times. We next compare the running times of the four algorithms.
Running times as functions of v are shown in Figure il As we already know
from the complexity analysis, the brute force method is quite time consuming.
Even when v is small, like 0.2, the brute force method still needs nearly one
hundred minutes to complete. With the increase of v, the time needed by the
brute force increases from 100 to more than 400 minutes, while the other three
methods only need a few seconds to complete. The second slowest method is the
path simplification, which running time increases linearly with v from 5 to 50
seconds. The naive approach always needs less than 1 second to complete.
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The combinational approach is the fastest one when ~ is very small, but it
comes close to the time the path simplification method needs when + is larger.
The reason for this behavior is that the combinational approach removes varying
shares of edges using the computationally more intensive global search: Figure [G]
shows that, with small values of , all or most edges are removed with the efficient
triangle search. When + increases, the fraction of edges removed by global search

correspondingly increases.

In order to evaluate the scalability of the methods, we ran experiments with
a series of graphs with up to 2000 nodes. The node degree is around 2.5. The
running times as functions of graph size are shown in Figures [[ (with v = 0.4)

and [§ (with v = 0.8).
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All methods have superlinear running times in the size of the graph, as is
expected by the time complexity analysis. As such, these methods do not scale
to very large graphs, at least not with large values of ~.

A Rough Semantic Analysis of Removed Edges. We next try to do a
rough analysis of what kind of edges are pruned by the methods in the biological
graphs of Biomine. The methods themselves only consider edge weights, but from
Biomine we also have edges labels describing the relationships. We classify edges
to important and irrelevant by the edge labels, as described below, and will then
see how the methods of this chapter prune them.

In Biomine, certain edge types can be considered elementary: edges of an
elementary type connect entities that strongly belong together in biology, such
as a protein and the gene that codes for it. An expert would not like to prune
these links. On the other hand, if they are both connected to a third node, such
as a biological function, then one of these edges could be considered redundant.
Since the connection between the protein and gene is so essential, any connections
to either one could be automatically considered to hold also for the other one.
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Fig.9. Shares of different semantic categories among all removed edges with v = 0.8
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An explicit representation of such an edge would be considered “semantically
irrelevant”.

Following the previous setting [4], we considered the edge types codes for, is
homologous to, subsumes, and has synonym as “important.” Then, we computed
the number of those edges that are “semantically irrelevant.” Additionally, we
marked the edges which have the same endvertices as “Parallel” edges. For the
sake of completeness, we also counted the number of “other edges” that are
neither important nor semantically irrelevant, nor parallel edges.

The semantic categories of the edges removed with v = 0.8 are shown in
Figure[@ Among edges removed by the naive approach, 3% are important, 45%
are irrelevant, 8% are parallel and around 44% are other edges. The results of the
path simplification and the combinational approach are quite similar: with edges
removed by them there are around 2% important edges, 60% irrelevant edges,
around 8% parallel edges and 30% other edges. (We do not analyze the semantic
types of edges removed by the brute force method due to its time complexity.)

We notice that the path simplification and the combinational approach remove
more irrelevant edges than the naive approach does. The reason is that these
irrelevant edges may have a high weight, but they also have high x value, in
most cases, Kk = 1.

The results indicate that the path simplification and the combinational ap-
proaches could considerably complement and extend expert-based or semantic
methods, while not violating their principles.

6 Related Work

Network simplification has been addressed in several variants and under differ-
ent names. Simplification of flow networks [7, I8] has focused on the detection of
vertices and edges that have no impact on source-to-sink flow in the graph. Net-
work scaling algorithms produce so-called Pathfinder networks [9-11] by pruning
edges for which there is a better path of at most g edges, where ¢ is a parameter.
Relative Neighborhood Graphs [12] only connect relatively close pairs of nodes.
They are usually constructed from a distance matrix, but can also be used to
simplify a graph: indeed, relative neighborhood graphs use the triangle test only.

The approach most closely related to ours is path-oriented simplification [4],
which removes edges that do not affect the quality of best paths between any pair
of nodes. An extreme simplification that still keeps the graph connected, can be
obtained by Minimum Spanning Tree (MST) |6, [13] algorithms. Our approach
differs from all these methods in an important aspect: we measure and allow loss
of network quality, and let the user choose a suitable trade-off.

There are numerous measures for edge importance. These can be used to
rank and prune edges with varying results. Representative examples include
edge betweenness |14], which is measured as the number of paths that run along
the edge, and Birnbaum’s component importance [15], defined as the probability
that the edge is critical to maintain a connected graph.
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The goal of extracting a subgraph graph is similar to the problem of reliable
subgraph or connection subgraph extraction [16-18]). Their problem is, however,
related to a set of (query) nodes, while our problem is independent of query
nodes. They also prune least useful nodes, while we only prune edges.

We have reviewed related work more extensively in [3].

7 Conclusion

We have addressed the problem of network simplification given that the loss
of connectivity should be minimized. We have introduced and formalized the
task of selecting an edge set whose removal keeps the maximal ratio of the
connectivity. Our framework is applicable to many different types of networks
and path qualities. We have demonstrated the effect on random (or uncertain)
graphs from a real-world application.

Based on our definition of ratio of connectivity kept, we have proposed a naive
approach and a brute force method. Moreover, we have shown that the property
of local recursive path quality functions allows to design a simpler solution: when
considering the removal of one edge, the ratio of connectivity kept between the
edge’s endvertices can be used to bound the ratio for all pairs of nodes. Based
on this observation, we have proposed two other efficient algorithms: the path
simplification method and the combinational approach.

We have conducted experiments with 30 real biological networks to illustrate
the behavior of the four methods. The results show that the naive approach is
in most cases the fastest one, but it induces a large loss of connectivity. The
brute force approach is very slow in selecting the best set of edges. The path
simplification and the combinational approach were able to select a good set in
few seconds for graphs with some hundreds of nodes. A rough semantic analysis
of the simplification indicates that, in our experimental setting, both the path
simplification and the combinational approach have removed very few important
edges, and a relatively high number of irrelevant edges. We suggest those two
approaches can well complement a semantic-based simplification.

Future work includes development of more scalable algorithms for the task of
lossy network simplification. The problem and algorithms we proposed here are
objective techniques: they do not take into account any user-specific emphasis on
any region of the network. Future work may be to design query-based simplifi-
cation techniques that would take user’s interests into account when simplifying
a network. It would also be interesting to combine different network abstraction
techniques with network simplification, such as a graph compression method to
aggregate nodes and edges [19].
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