Evaluating the Impact of a Model-Driven Web
Engineering Approach on the Productivity and
the Satisfaction of Software Development Teams

Yulkeidi Martinez!, Cristina Cachero?, and Santiago Meli4?

! Universidad Maximo Gémez Baez de Ciego de Avila, Cuba
2 DLSI. Universidad de Alicante, Spain

Abstract. BACKGROUND: Model-Driven Engineering claims a posi-
tive impact on software productivity and satisfaction. However, few ef-
forts have been made to collect evidences that assess its true benefits
and limitations.

OBJECTIVE: To compare the productivity and satisfaction of junior
Web developers during the development of the business layer of a Web
2.0 Application when using either a code-centric, a model-based (UML)
or a Model-Driven Engineering approach (OOH4RIA).

RESEARCH METHOD: We designed a full factorial, intra-subject
experiment in which 26 subjects, divided into five groups, were asked to
develop the same three modules of a Web application, each one using a
different method. We measured their productivity and satisfaction with
each approach.

RESULTS: The use of Model-Driven Engineering practices seems to
significantly increase both productivity and satisfaction of junior Web
developers, regardless of the particular application. However, modeling
activities that are not accompanied by a strong generation environment
make productivity and satisfaction decrease below code-centric practices.
Further experimentation is needed to be able to generalize the results to
a different population, different languages and tools, different domains
and different application sizes.

1 Introduction

It is a well known fact that the Web Engineering community advocates the use of
models in order to improve software development processes for Web applications.
However, there are many issues around modeling that are, as of today, cause of
controversy and heated debates: to which extent should practitioners model?
Which should be the level of detail of these models? Should practitioners strive
to maintain the models current, or should these models be disposable? These
and others are open questions whose answer currently partly depends on the
development culture of the person asked, and partly on the context in which such
practices are being adopted. In this respect we claim that, instead, the decision
about which is the adequate application of software modeling practices should be
answerable based on objective data regarding its impact on well-known process

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 223 2012.
(© Springer-Verlag Berlin Heidelberg 2012

224 Y. Martinez, C. Cachero, and S. Melia

and product quality dimensions. From these dimensions, productivity, defined
as a ratio of what is produced to what is required to produce it, outstands, due
to its impact during the selection of a development process in industry [I]. Also,
satisfaction is an important aspect of quality, since, being software development
a human process, the developer’s satisfaction is a key factor for the successful
adoption of such practices [2].

One quite well-known way of classifying modeling practices in industry is accord-
ing to the extent to which modeling is used to support the development process.
Fowler [3] describes three different modes in which modeling languages (and the
UML in particular) can be used: sketch, blueprint and programming language.

— Sketches are informal diagrams used to communicate ideas. They usually
focus on a particular aspect of the system and are not intended to show
every detail of it. It is the most common use of the UML, and the recom-
mended practice in agile, code-centric frameworks like Scrum. When models
are used as sketches, tools are rarely used, the modeling activity being mostly
performed in front of blackboards where designers join to discuss complex
or unclear aspects of the system. They are most useful in code-centric ap-
proaches, where the objective is to develop self-explaining code.

— Blueprints are diagrams that show most of the details of a system in order
to foster its understanding or to provide views of the code in a graphical
form. Blueprints are widely used in Model-Based Development (MBD) prac-
tices, such as the ones promoted by frameworks such as the Rational Unified
Process (RUP).

— Last but not least, models can be used to fully characterize the application.
If such is the case, the diagrams replace the code, and they are compiled
directly into executable binaries. This is the modeling use that lies at the
core of Web Engineering Model-Driven Development (MDD) approaches.

This classification has led some authors to characterize the modeling maturity
level of organizations based on the role of modeling in their software development
process, from manual, code-centric, to full, Model-Driven [4]. While code-centric
development methods require - at most - an informal use of modeling techniques
and languages, both MBD and MDD require a formal use of models, which
mainly relies on the use of Computer Aided Software Engineering (CASE) tools.
These tools may offer not only modeling environments - including model checkers
that may assure syntactical correctness, semantic accurateness, consistency or
completion of models, to name a few desirable model characteristics - but also
partial or even complete software generation environments that, in the case of
MDD CASE tools, are based on model transformations.

Both MBD and MDD tools work under the assumption that designing models
that can generate partial or complete code is much simpler and quicker than ac-
tually writing such code. This same view is sustained in MBD and MDD related
scientific literature. Such literature claims that the two most outstanding advan-
tages of MDD over code-centric or even MBD approaches are (a) short and long
term process productivity gains [5] and (b) a significant external software prod-
uct quality improvement [6/7]. These advantages are justified in literature by the

Evaluating the Impact of a Model-Driven Web Engineering Approach 225

higher level of compatibility between systems, the simplified design process, and
the better communication between individuals and teams working on the system
that the MDD paradigm fosters [8].However, neither the MBD nor the MDD re-
search community have yet been able to provide practitioners with a sufficient
body of practical evidence that soundly backs the purported gains of their recom-
mended modeling practices with respect to code-centric approaches [9I10]. Many
authors have written about the importance of providing empirical evidence in
software engineering [I1] but, unfortunately, the percentage of empirical studies
- be them surveys, experiments, case studies or postmortem analyses [I2]- that
provide data to illustrate the impact of MBD and MDD approaches over differ-
ent quality characteristics (such as productivity or satisfaction) is still very low,
which hampers the generalizability of the results. In order to guarantee such
generalizability, we also need to take into explicit consideration many factors
that may affect these characteristics, such as tool usage, adaptation of the de-
velopment methodology to the idiosyncrasy of the particular development team,
type, complexity and size of the project, and so on. This situation contrasts
with other disciplines and even other areas of Software Engineering [13], and it
is often mentioned as one of the causes that explain the low adoption level of
modeling practices by the practitioner’s mainstream [14].

Given this situation, the aim of this paper is to augment the repository of em-
pirical data that contributes to giving a scientific answer to the following research
question: What is the impact of the development method (be it rooted in a code-
centric, an MBD, or an MDD paradigm) on the productivity and satisfaction of
junior developers while developing Web 2.0 applications?

In order to answer this question, Section[2ldescribes some previous studies that
center on the impact of MBD and MDD practices on process productivity and
satisfaction with respect to traditional code-centric practices. Section Bl outlines
our experiment design, and analyzes its results and threats to validity. Finally,
Section M presents the conclusions and further lines of research.

2 Background

Although still scarce in number and not always systematically performed [I5], in
the last years we have witnessed an increase in the number of empirical studies
that provide empirical data regarding the impact of MBD and MDD practices
on the productivity and satisfaction of software development teams.

Regarding MBD, in [5] initial evidence is provided about the use of models
and tools as an effective way to reduce the time of development and to improve
software development variables such as productivity and product quality.

Regarding MDD, there is a number of experiments where productivity of
developers using different methods - some model-driven, others code-centered
- was measured [QTOI7I8T920]. The conclusion in all these studies is that,
as projects grow larger, the use of MDD development practices significantly
increases productivity (results ranging from two up to nine or even twenty times,
depending on the study). The only evidence contradicting these findings is an

226 Y. Martinez, C. Cachero, and S. Melia

industrial experience presented in [I4]. In this paper, the authors reported a set
of studies that showed contradictory results, with both software productivity
gains and losses, depending on the particular study. They explained the found
productivity losses by pointing at the use of immature tools and high start-up
costs. Also, these studies showed that modeling was considered to be an activity
at least as complex as programming with a traditional third generation language.

Last but not least, although most of the aforementioned studies include some
kind of global satisfaction score, there are few studies that center on the develop-
ers’ subjective perceptions while applying different methods. In [21], the author
empirically assessed the satisfaction of an MDD method (called MIMAT) that
includes Functional Usability Features (FUFs) in an MDD software development
process. The study concluded that the users’ satisfaction improves after includ-
ing FUFs in the software development process. Our experiment does not center
on the impact of a method enrichment, but compares different methods with
respect to the developer’s satisfaction and productivity.

Next, we present the quasi-experiment that we have performed to test the
impact of three methods, each one an example of a code-centric, an MBD and
an MDD approach respectively, on the productivity and satisfaction of junior
software developers.

3 Description of the Experiment

During the months of January and February 2011, a quasi-experiment was con-
ducted at the University of Alicante. A quasi-experiment differs from a true ex-
periment in that subjects are not randomly chosen. Quasi-experiments, although
suffering from a lower internal validity, are widely used and deemed useful in the
Empirical SE field, since they allow investigations of cause-effect relations in
settings such as ours, in which randomization is too costly [22].

3.1 Goals and Context Definition

Following the GQM template [23], our empirical study is aimed at analyzing
three methods, one representative of the code-centric paradigm, one representa-
tive of the MBD paradigm and one representative of the MDD paradigm, for the
purpose of comparison with respect to their productivity and satisfaction from
the point of view of junior software developers. The context of the study was a
set of M.Sc. students developing the business layer of a Web 2.0 application.

The design of the experiment was based on the framework for experimenta-
tion in SE suggested by [I2]. The whole data set is included in the replica-
tion package available at http://www.dlsi.ua.es/ ccachero/labPackages/
Productivity.vl.rar.

The research questions addressed in this study were formulated as follows:

— RQ1: Is the team’s productivity significantly different among methods, re-
gardless of the particular module being developed?

http://www.dlsi.ua.es/~ccachero/labPackages/Productivity.v1.rar
http://www.dlsi.ua.es/~ccachero/labPackages/Productivity.v1.rar

Evaluating the Impact of a Model-Driven Web Engineering Approach 227

— RQ2: Is the developer’s satisfaction significantly different among methods,
regardless of the particular module being developed?

These research questions were devised to be answerable by quantitative means.

Subjects and Application. The initial group of subjects were 30 students
of the Web Applications Developer Master at the University of Alicante. These
students were divided into six teams of 4 to 6 people. From them, the data
corresponding to Team 6 had to be dropped due to some of their components
abandoning the Master for work reasons soon after the experiment had started.
Therefore, the final set of observations corresponds to the observations of the
remaining five groups (26 subjects). Since the abandonment of the group had
nothing to do with the application being developed, the treatments that the
group were applying to his project nor the particular order in which they were
applying them, we can assume that the results of the experiments have not been
compromised. The final sample comprised 25 men and 1 women, of whom 75%
had more than 2 years of professional experience as developers of web appli-
cations. The mean age of the participants was 25,6 years old and all of them
were Computer Engineering graduates of the University of Alicante. Regarding
the subjects’ level of knowledge with respect to the different technologies and
methods used during the experiment, a questionnaire showed that 81% knew
UML, and that another 12% considered that they had a high-level of knowledge
of UML. It should also be noted that 76% of the subjects had previously pro-
grammed with VS and .NET during their degree courses, although only 12% had
applied them in industry. Finally, the subjects acknowledged no previous prac-
tical knowledge of MDD, although 56% of them were aware of the existence of
the paradigm. By the time the experiment took place, the subjects had received
additional training in all three methods. Such training consisted in 30 hours of
training in programming in C# using Visual Studio 2010, 20 hours of training
in UML modelling with RSM and 10 hours of training in modelling with the
OOH4RIA tool.

Each of the five groups developed a social media application for a different
domain:

— Trips: the social network for this domain is focused on establishing relation-
ships between people who want to reduce travel costs by sharing their own
cars.

— Events: the social network for this domain is centred on organized social
events.

— Hospitals: the social network for this domain aims at improving the commu-
nication between physicians and patients.

— Academics: the social network for this domain focuses on connecting and
sharing teaching contents among teachers and students.

— Facework: the social network for this domain helps workers to share infor-
mation about different tasks, resources and goals of the company.

All the applications shared the same complexity, which was controlled by defining
a set of functional features that all the applications had to support, regardless

228 Y. Martinez, C. Cachero, and S. Melia

of the domain. From them, the three functional features that were included in
our experiment were:

— Support for the establishment of a community of users (from now on Group)
to create contents and relationships among people of different environments
(professional, personal, etc., depending on the particular application being
developed).

— Support for the organization of events (from now on Events) where people
can invite their friends or colleagues to attend to a place where the event
is realized (the particular event being a celebration, a work meeting, etc.
depending on the particular application being developed)

— Support for an organizational community (from now on Organization) where
subjects (be them companies, celebrities, etc., depending on the particular
application) can publish content, photos, etc. in a unidirectional way to the
social network.

Each one of these functional features was designed as a module. In order to
further control the complexity of each module, we strictly defined their archi-
tecture, which was based on four main layers: the Business Objects layer (BO),
the Data Access Objects layer (DAO), the Data Transfer Objects layer (DTO)
and the Database layer (DB). In this way, it was possible to standardize to a
certain point the code that had to be developed and facilitate its measurement.
Although we are conscious that such strict architecture may hamper the exter-
nal validity of the experiment, this factor was kept constant across the three
treatments, in order to preserve the comparability of the results. The subjects
were asked to implement each module following a different method. The time
assigned for the implementation of each module was two weeks.

In order to develop the different projects, the students had to follow the Agile
Unified Process (Agile UP) methodology [24], a streamlined approach to software
development that is based on the IBM’s Rational Unified Process (RUP) [25].
The Agile UP lifecycle is serial in the large, iterative in the small, and delivers
incremental releases over time. Specifically, our experiment was situated in the
construction phase of Agile UP, which is focused on developing the system to
the point where it is ready for pre-production testing. The construction phase
is made up of a set of disciplines or workflows that groups different tasks of
this process. These disciplines, together with the impact of modelling practices
on each of them depending on the paradigm, are presented in Table [l All the
students had previously developed at least one application with Agile UP, and
they had an additional 10-hour training period to refresh the main concepts.

Table 1. Degree of automation of Agile UP disciplines by development paradigm

Discipline Code-Centric(.NET) Model-Based(RSM) Model-Driven(OOH4RIA)

Model Sketch or absent Blueprint Fully-fledged (DSL)
Implementation Manual Semi-automatic Automatic
Test Manual Manual Semiautomatic

Evaluating the Impact of a Model-Driven Web Engineering Approach 229

Implementation Language and Case Tools. The development environment
for the experiment was set up as follows:

— Code Development Environment: NET framework and NHibernate (Object-
Relational Mapping).

— IDE (Integrated Development Environment) Development Tool: Visual Stu-
dio 2010.

— Languages: C# and the Extensible Application Markup Language (XAML).

MBD Modeling Environment: Rational Software Modeler (RSM)

MDD Modeling Environment: OOH4RIA IDE

— Other tools: Subversion 1.6 (SVN), Jira (Issue Tracking) and Survey Monkey
(for questionnaires).

The code-centric treatment relied solely on the development enviroment provided
by the Visual Studio 2010 and the use of external tools that permit to manage
the collaborative work (Subversion). On the other hand, the MBD treatment
required the students to work with the UML class diagram of the RSM tool. Last
but not least, for the MDD treatment the students worked with the OOH4RIA
approach [26].

Students were scheduled to work on these three modules during six weeks
along the months of January and February 2011. By this time of the year, the
students had already gone through most of the topics of the master, and had
gathered a substantial amount of experience with the different tools and the
development environments. The experiment defined a tight timetable of deliv-
erables, one every two weeks. Each deliverable consisted of a set of source files
and a domain model. The source code had to contain four specific file types:
the Business Object files (BO), the Data Access Object files (DAO), the Data
Transfer Object files (DTO) and the Database files (DB). The teams were con-
tinuously monitored by a Master instructor whose role in the experiment was
to look after the quality of the data gathered, both in class and off-line through
the Jira and the SVN report systems.

3.2 Experiment Planning

Given the low number of development teams available, and in order to facilitate
the detection of method impact by controlling the variability among subjects,
the experiment was conceived as an intra-subject design. The combination team-
module-approach was defined using a Factorial Design [2728] (see Table[2]). This
kind of design avoids order effects and can provide some unique and relevant
information about how variables interact or combine in the effect they have on
the dependent variables. Also, this design eliminates any possible order effect.
Teams were randomly assigned to each treatment order.

In order to answer the research questions presented in Section B.Il we have
defined the following independent (experimentally manipulated) variables (IV)
or factors:

230 Y. Martinez, C. Cachero, and S. Melia

Table 2. Experiment design: a factorial, intra-subject design. Group marked with(*)
did not finish the experiment.

Team/Module Application Group Events Organization
1 Travel code-centric MBD MDD
2 Events code-centric MDD MBD
3 Hospital MBD MDD code-centric
4 Academics MDD MBD code-centric
5 Facework MBD code-centric MDD
6* Automobile MDD code-centric MBD

— Meth: Method, a categorical variable with three levels: code-centric, MBD,
MDD. It is important to note that, in this experiment, when we refer to
method we are in fact talking about a compound variable (method*tool),
due to the coupling of these two variables in our experimental settings.

— Mod: Module, a categorical variable with three possible values: Groups,
Events, Organization.

The Dependent (measurable) variables (DV) are:

— P(Meth, Mod), a ratio variable that measures the productivity of the team
with each method and module

— S(Meth,Mod), an interval variable, based on a 7-point Likert scale, that
measures the satisfaction of the developers with each method and module

The DV have been measured through the following collection procedures:

1. To measure Productivity we measured both the development time and the
size of the modules developed by each team.

— Development time: The student had to document the time of each de-
velopment activity through the JIRA tool.

— Module size: We measure the size of the code produced by students in
source lines of code (SLOC). SLOCs come in handly to express the size
of software among programmers with low levels of experience [29]. We
automated the obtention of this measure through the Line Counter [30]
tool.

2. To measure Satisfaction we defined a satisfaction scale (SS) made up of
eleven items, where each one was based on a 7-point Likert rating scale.

These measures have been used to test the following testable hypotheses, which
are based on the research questions and the existing empirical evidence presented
in Section

— Productivity Hypothesis (PH): Prod(MDD)>Prod(MBD)>Prod(code-
centric). Developer teams are significantly more productive with the MDD
method, followed by the MBD method, followed by the code-centric method.

— Productivity-Module Interaction Hypothesis (PMIH): P(Module*Meth)<
0.05. The effect on P of the particular module to which the method is applied
is insignificant compared to the effect of the method.

Evaluating the Impact of a Model-Driven Web Engineering Approach 231

— Satisfaction Hypothesis (SH): Satisf(MDD)>S(MBD)>S(code-centric). De-
velopers are significantly more satisfied with the MDD method, followed by
the MBD method, followed by the code-centric method.

— Satisfaction-Module Interaction Hypothesis (SMIH): S(Module*Meth)<0.05.
The effect on S of the particular module to which the method is applied is
insignificant compared to the effect of the method.

3.3 Instrumentation
Besides the instructional materials, all the students received three booklets:

— Modules Description Booklet: a requirements document describing the func-
tional and non functional requirements of the three modules included in the
experiment. This booklet was divided in three parts, and it was the same
regardless of the order in which the treatments were to be applied.

— Jira Time Reporting Booklet: a document explaining the time reporting
conventions that were to be used during the experiment

— Subject Instruction sheet: a set of instructions to the students to correctly
perform the experiment.

These instruments are included in the replication package available at
http://www.dlsi.ua.es/ ccachero/labPackages/Productivity.vl.rar.
The experiment had the following structure:

Subject instruction sheet.

. Pre-experiment questionnaire: it included demographic questions as well as
questions about subjects’ previous experience with Web application devel-
opment, Web programming and application modeling, etc.

3. Project work: For each treatment, the students spent two weeks working on

the corresponding module with the assigned methodology.

4. Post-experiment questionnaire: it included a semantic-differential scale that

required developers to judge each method on 11 pairs of adjectives describing

the developer’s overall satisfaction with such method.

[N

At the end of each module, the students delivered both the Domain Models and
the Source Code (BO, DAO, DTO and DB files).

3.4 Data Analysis and Interpretation of Results

The statistical analysis was carried out with PASW (Predictive Analytics Soft-
Ware) Statistics [31].

Prior to the assessment of the hypotheses, we checked the reliability of the
Satisfaction scale in the context of our experimental settings. For the satisfac-
tion scale, all the items showed a correlation higher than 0.3, while the global
Cronbach alpha was 0.892, giving proof of a high internal consistency among the
scale items. This high correlation has led us to calculate the scale mean for each
method, and consider this mean as a global rating of satisfaction with each one
of the three treatments (code-centric, MBD, MDD).

http://www.dlsi.ua.es/~ccachero/labPackages/Productivity.v1.rar

232 Y. Martinez, C. Cachero, and S. Melia

RQ1: Impact of Method on Team Productivity. The data gathered to
accept/reject the PH and PMIH hypotheses (see section [B.2]) are graphically
presented in Fig. 11

Module being

6,007 developed

= Groups

——Events

5,00 Organization

e
=
2

3,007

Estimated means

2,00

1,00

0,00

T T T
AdHoc RSM OCH4Rla

Method

Fig. 1. Productivity: SLOC/Hours

To test the PH and PMIH hypotheses, we applied a 3*5 Mixed Design
ANOVA | in which the module (Groups, Events, Organization) was the between-
subjects variable, and the calculated P ratings for each method were the within-
subjects variables. In order to assure that applying this statistical method made
sense, we verified that the principle of spherity was not violated by applying the
W Mauchly’s test (W=0,005, p>0,05) [32]. The results showed that MDD pro-
duced the highest P (M = 4,60, SD=1,17), followed by MBD (M=2,30, SD=1,10)
and then Code-centric (M=0,80, SD=0,29), and that these differences were sig-
nificant (F=25,395, p=0,001).

The results also showed that the interaction Mod*Meth was not significant
(F= 3,009, p>0.05). We can then safely examine the main effects of the two in-
dependent variables (Mod and Meth) on these means without needing to qualify
the results by the existence of a significant interaction. The main effect of module
did not attain significance (F=0,538, p>0.05), while the main effect of method
did reach significance, (F=25,39, p<0,01), that is, the differences in P are signifi-
cantly affected by the method used, regardless of the particular module being de-
veloped. The last step of the analysis consisted on studying the pairwise differences
among methods through a one-way RM Anova with pairwise comparisons. In or-
der not to augment the risk of a type-1 error, a Bonferroni adjustment was applied.
This means reducing the significance threshold to 0.0167 (p = 0.05 / 3 = 0,0167).

Evaluating the Impact of a Model-Driven Web Engineering Approach 233

With this adjustment, the differences in productivity between the Code-centric
and the MBD method did not attain significance (t=-2,69, p=0,054) but the differ-
ences between Code-centric and MDD (t=-6,029, p=0,004) and MBD and MDD
(t=-6,031, p=0,004) did.

RQ2: Impact of Method on Developer’s Satisfaction. The data gathered
to accept/reject the SH and SMIH hypotheses (see section B.2]) are graphically
presented in Fig.

Madule being

5507 developed

= Groups
— Events

Qrganization
5,001

4,504

4,00

Estimated means

3,50

3,00

2,50

T T T
AdHoc R3m OOH4RIa

Method

Fig. 2. Satisfaction: Likert Scale

To test the SH and SMIH hypotheses we applied a 3*5 Mixed Design ANOVA |
in which the module (Groups, Events, Organization) was the between-subjects
variable, and the S ratings for each method were the within-subjects variables. In
order to assure that applying this statistical method made sense, we first checked
that the principle of spherity was not violated by applying the W Mauchly’s test
(W=0,838, p=0,142) [32]. The results showed that MDD produced the high-
est S (M = 4,76, SD=0,73), followed by code-centric (M=4,17, SD=0,72) and
then MBD (M=3,48, SD=0,96). The results also showed that the interaction
Mod*Meth is not significant (F = 1,768, p>0.05). If we examine the effects
of the two independent variables (module and method) we can observe how
the Mod inter-subject influence did not attain significance (F=0,167, p>0,05),
while the main effect of method did reach significance, (F=18,04, p<0,01), that
is, the differences in S are significantly affected by the method used, regardless
of the particular module being developed. The last step of the analysis consisted
on studying the pairwise differences among methodologies through a one-way

234 Y. Martinez, C. Cachero, and S. Melia

Anova with pairwise comparisons. In order not to augment the risk of a type-1
error, a Bonferroni adjustment was applied. This means reducing the significance
threshold to 0.0167 (p = 0.05 / 3 = 0,0167). Even with this conservative adjust-
ment, all the pairwise S differences were significant (p<0,05), which means that,
in our experiment, subjects rated significantly differently the three approaches,
being MDD the best method rated and MBD the worst.

3.5 Threats to Validity

The analysis of the threats to validity evaluates under which conditions our
experiment is applicable and offers benefits, and under which circumstances it
might fail. For the classification of these threats, we have followed the classifi-
cation proposed by Cook and Cambell [33]: internal, external, construction and
conclusion.

Threats to conclusion validity refer to the relationship between the treatment
and the outcome. In order to minimize the threats, we have strived to automati-
cally capture as many measures as possible, with the help of well-known tracking
systems such as JIRA or SVN. Additionally, statistical tests have been chosen
conservatively, without making any kind of assumption on variable distributions.
However, the fact that the students self-reported the measures, together with the
duration of the experiment (six weeks) and the low number of subjects hamper
the conclusion validity.

Threats to internal validity are concerned with the possibility of hidden fac-
tors that may compromise the conclusion that it is indeed the treatment what
causes the differences in outcome. All groups applied all the treatments to dif-
ferent modules at different times, what minimizes many internal threats such
as selection, history, maturation or social threads such as compensatory rivalry
or resentful demoralization. However, being an intra-subject design, carry-over
effects may have occurred.

Threats to construct validity refer to the relationship between theory and
observation. In this sense, both the treatments and the measures used to as-
sess productivity and satisfaction have been previously widely used in literature.
This notwithstanding, there remains the possibility of an interaction of testing
and treatments: the need to self-report certain measures may have changed the
behavior of the students. We believe that the fact that the experiment took over
six weeks minimizes this risk, since it is very difficult to maintain a ’potentially
abnormal’ behavior over such a long period of time without it being detected.
Also, the hypothesis of the experiment (that is, a higher productivity of MDD
environments) was quite easy to guess, so students may have felt bound to re-
port less time when using MBD or MDD. Anyway, the experiment observers
took special care not to disclose this hypothesis to the students. Additionally,
the experiment suffers from a restricted generalizability across constructs: we
have checked a positive outcome between productivity and MDD, but we can-
not assure that this does not come at the expense of other characteristic of
the developed software, such as modularity, reusability, or any other quality
attribute.

Evaluating the Impact of a Model-Driven Web Engineering Approach 235

Last but not least, external validity is concerned with generalization of the
results. In this group of threats we have identified a lack of sample represen-
tativeness (M.Sc. students), academic environment, a strict architecture and a
restricted domain and complexity. Also, we are conscious of the existing cou-
pling between method and tool: all the methods were accompanied by tools.
Although we tried to choose well-known development environment and -when
possible- use standards (e.g. UML for the modeling activity in MBD and MDD),
we are conscious that the different tools add a different 'flavor’ to the methods.
Therefore, this experiment needs to be replicated in order to make sure that it
is the method used and not the tool what causes the observed differences.

4 Conclusions

During the last years the Web Engineering community has claimed how the use
of modeling practices in MDD and MDB approaches significantly improves the
productivity and satisfaction of Web applications with respect to code-centric
development approaches. However, up to now, the quality and quantity of the
empirical analyses that demonstrate the true impact of these modeling tech-
niques over the final developer’s productivity or satisfaction are still very low. In
this paper, we have presented a rigorous analysis of a quasi-experiment carried
out in a controlled environment. The data gathered shows that the productivity
and the satisfaction of junior Web developers are significantly affected by the
development method but they are independent from the particular module being
developed. The main conclusions of our study (that still need to be corroborated
with further replications) are:

— The MDD approach seems to significantly increase the productivity of de-
velopers with respect to both the MDB and the code-centric approach.

— The MDD approach satisfies the most the expectations of juniors developers,
followed by code-centric and, in third position, the MDB approach.

These results are well aligned with with the assumption that model-driven tech-
niques improve the productivity and also the satisfaction among developers when
they are accompanied by a generation environment. However, the productivity
and the satisfaction can decrease even below code-centric practices when the
modeling activities are used exclusively as blueprints to improve the understand-
ing, and the developers must implement manually almost all the final code.

Our study of the impact of MDD on the productivity and satisfaction is just
the beginning of a family of experiments in which we want to replicate the
same analysis with practitioners in industry and also with more complex Web
application client-side models. Moreover, further experimentation is needed to
separate the effect of methods from the effect of their accompanying development
environments (Visual Studio 2010, RSM or the OOH4RIA tool) and to be able to
generalize the results to a different population, different methods and languages,
different application types or different application sizes.

236 Y. Martinez, C. Cachero, and S. Melia

Acknowledgements. This paper has been co-supported by the DLSI, the
Spanish Ministry of Education, and the University of Alicante under contracts
TIN2010-15789 (SONRIA) and GRE10-23 (DISEMRIA). The authors also wish
to thank their students to take the time to participate in this empirical study.
Besides we would like to thank to Jose Javier Martinez and Juan Antonio Osuna,
who contributed to the development of the OOH4RIA Tool.

References

1. CMU/SEIL: CMMI Product Development Team, CMMI for Development verion 1.2
(2006)

2. Moore, G.C., Benbasat, I.: Development of an instrument to measure the per-
ceptions of adopting an information technology innovation. Information Systems
Research 2(3), 192-222 (1991)

3. Fowler, M.: UML distilled: a brief guide to the standard object modeling language,
3rd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2004)

4. Kleppe, A.G., Warmer, J., Bast, W.: MDA explained: the model driven architec-
ture: practice and promise. Addison-Wesley Longman Publishing Co., Inc., Boston
(2003)

5. Bruckhaus, T., Madhavii, N.H., Janssen, 1., Henshaw, J.: The impact of tools on
software productivity. IEEE Software 13(5), 29-38 (2002)

6. Genero, M., Manso, M.E., Visaggio, A., Canfora, G., Piattini, M.: Building
measure-based prediction models for UML class diagram maintainability. Empirical
Software Engineering 12(5), 517-549 (2007)

7. Abrahdo, S., Iborra, E., Vanderdonckt, J.: Usability evaluation of user interfaces
generated with a model-driven architecture tool. Maturing Usability, 3-32 (2008)

8. Mellor, S.J., Clark, T., Futagami, T.: Model-driven development: guest editors’
introduction. IEEE Software 20(5), 14-18 (2003)

9. Heijstek, W., Chaudron, M.R.V.: Empirical investigations of model size, complexity
and effort in a large scale, distributed model driven development process. In: 35th
Euromicro Conference on Software Engineering and Advanced Applications, SEAA
2009, pp. 113-120. IEEE (2009)

10. Mohagheghi, P.: An Approach for Empirical Evaluation of Model-Driven Engineer-
ing in Multiple Dimensions. In: C2M:EEMDD 2010 Workshop- from Code Centric
to Model Centric: Evaluating the Effectiveness of MDD, pp. 6-17. CEA LIST Pub-
lication (2010)

11. Kitchenham, B., Budgen, D., Brereton, P., Turner, M., Charters, S., Linkman, S.:
Large-scale software engineering questions-expert opinion or empirical evidence?
IET Software 1(5), 161-171 (2007)

12. Wohlin, C., Runeson, P.;, Hést, M.: Experimentation in software engineering: an
introduction. Springer, Netherlands (2000)

13. Zelkowitz, M.V.: An update to experimental models for validating computer tech-
nology. Journal of Systems and Software 82(3), 373-376 (2009)

14. Mohagheghi, P., Dehlen, V.: Where Is the Proof? - A Review of Experiences from
Applying MDE in Industry. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA
2008. LNCS, vol. 5095, pp. 432-443. Springer, Heidelberg (2008)

15. Abrahdao, S., Poels, G.: A family of experiments to evaluate a functional size mea-
surement procedure for Web applications. Journal of Systems and Software 82(2),
253-269 (2009)

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.
31.

32.

33.

Evaluating the Impact of a Model-Driven Web Engineering Approach 237

Afonso, M., Vogel, R., Teixeira, J.: From code centric to model centric software
engineering: practical case study of MDD infusion in a systems integration company
(2006)

Krogmann, K., Becker, S.: A Case Study on Model-Driven and Conventional Soft-
ware Development: The Palladio Editor. Software Engineering, 169-176 (2007)
Staron, M.: Transitioning from code-centric to model-driven industrial projects—
empirical studies in industry and academia. Model Driven Software Development:
Integrating Quality Assurance (2008)

Kapteijns, T., Jansen, S., Brinkkemper, S., Houét, H., Barendse, R.: A Compar-
ative Case Study of Model Driven Development vs Traditional Development: The
Tortoise or the Hare. From code centric to model centric software engineering:
Practices, Implications and ROI, 22 (2009)

Mellegard, N., Staron, M.: Distribution of Effort among Software Development
Artefacts: An Initial Case Study. In: Bider, I., Halpin, T., Krogstie, J., Nurcan,
S., Proper, E., Schmidt, R., Ukor, R. (eds.) BPMDS 2010 and EMMSAD 2010.
LNBIP, vol. 50, pp. 234-246. Springer, Heidelberg (2010)

Panach, J.: Incorporacién de mecanismos de usabilidad en un entorno de produc-
cion de software dirigido por modelos. Tesis doctotal, Universidad Politécnica de
Valencia (2010)

Kampenes, V., Dyba, T., Hannay, J., Ksjoberg, D.: A systematic review of quasi-
experiments in software engineering. Information and Software Technology 51(1),
71-82 (2009)

Perry, D.E., Porter, A.A., Votta, L.G.: Empirical studies of software engineering: a
roadmap. In: Proceedings of the Conference on the Future of Software Engineering,
pp. 345-355. ACM (2000)

Ambler, S.: Agile Modeling: Effective Practices for eXtreme Programming and the
Unified Process. Wiley (2002)

Kruchten, P.: The rational unified process: an introduction. Addison-Wesley Pro-
fessional (2004)

Melia, S., Gémez, J., Pérez, S., Diaz, O.: Architectural and technological variability
in rich internet applications. IEEE Internet Computing 14(3), 24-32 (2010)
Montgomery, D.C.: Design and analysis of experiments. John Wiley & Sons Inc.
(2008)

Plonsky, M.: Psychological Statistics (2009)

Gollapudi, K.: Function points or lines of code?—an insight. Global Microsoft Busi-
ness Unit, Wipro Technologies (2004)

Seato: Counting Lines of Code in C# (2004)

SPSS Inc. an IBM CompanyHeadquarters: PASW Statistics 18 - Content Guide
(2009)

Mauchly, J.W.: Significance test for sphericity of a normal n-variate distribution.
The Annals of Mathematical Statistics 11(2), 204-209 (1940)

Cook, T.D., Campbell, D.T., Day, A.: Quasi-experimentation: Design & analysis
issues for field settings. Houghton Mifflin, Boston (1979)

	Evaluating the Impact of a Model-Driven Web
Engineering Approach on the Productivity and the Satisfaction of Software Development Teams
	Introduction
	Background
	Description of the Experiment
	Goals and Context Definition
	Experiment Planning
	Instrumentation
	Data Analysis and Interpretation of Results
	Threats to Validity

	Conclusions
	References

