
Signature-Based Inference-Usability Confinement
for Relational Databases under Functional and

Join Dependencies�

Joachim Biskup1, Sven Hartmann2, Sebastian Link3, Jan-Hendrik Lochner1,
and Torsten Schlotmann1

1 Fakultät für Informatik, Technische Universität Dortmund, Germany
{joachim.biskup,jan-hendrik.lochner,torsten.schlotmann}@cs.tu-dortmund.de

2 Institut für Informatik, Technische Universität Clausthal, Germany
sven.hartmann@tu-clausthal.de

3 Department of Computer Science, The University of Auckland, New Zealand
s.link@auckland.ac.nz

Abstract. Inference control of queries for relational databases confines
the information content and thus the usability of data returned to a
client, aiming to keep some pieces of information confidential as speci-
fied in a policy, in particular for the sake of privacy. In general, there
is a tradeoff between the following factors: on the one hand, the expres-
siveness offered to administrators to declare a schema, a confidential-
ity policy and assumptions about a client’s a priori knowledge; on the
other hand, the computational complexity of a provably confidentiality
preserving enforcement mechanism. We propose and investigate a new
balanced solution for a widely applicable situation: we admit relational
schemas with functional and join dependencies, which are also treated as
a priori knowledge, and select-project sentences for policies and queries;
we design an efficient signature-based enforcement mechanism that we
implement for an Oracle/SQL-system. At declaration time, the inference
signatures are compiled from an analysis of all possible crucial inferences,
and at run time they are employed like in the field of intrusion detection.

Keywords: a priori knowledge, confidentiality policy, functional depen-
dency, inference control, inference-usability confinement, interaction his-
tory, join dependency, refusal, relational database, select-project query,
inference signature, SQL, template dependency.

1 Introduction

Inference control for information systems in general and relational databases in
particular is a mechanism to confine the information content and thus the us-
ability of data made accessible to a client to whom some piece(s) of information
� This work has been partially supported by the Deutsche Forschungsgemeinschaft

under grant BI 311/12-2 and under grant SFB 876/A5 for the Collaborative Research
Center “Providing Information by Resource-Constrained Data Analysis”.

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 56–73, 2012.
c© IFIP International Federation for Information Processing 2012

Signature-Based Inference-Usability Confinement 57

should be kept confidential. Thus inference control aims at protecting infor-
mation rather than just the underlying data, as achieved by traditional access
control or simple encryption. Though protection of information is a crucial re-
quirement for many public and commercial applications, the actual enforcement
is facing great challenges arising from conceptual and computational problems.

On the conceptual side, among others the following main factors have to
be considered: a client-specific and declaratively expressed confidentiality policy
which might be balanced with availability demands; an assumption about the
client’s a priori knowledge regarding the information managed by the informa-
tion system, which will include schema information in many cases; the client’s
postulated system awareness regarding the semantics of both the underlying
information system and the monitoring control mechanism.

On the computational side, the high runtime complexity is a major concern.
In fact, the fundamental semantics of a well-designed information system can
be defined in terms of an appropriate logic. In particular, a relational database
comes along with the relational calculus for querying and some class of depen-
dencies (semantic constraints) for declaring schemas [1]. Thus, data managed
by such a system can be interpreted as sentences in the underlying first-order
logic. Accordingly, confining the usability of data comprises the task of moni-
toring all options for inferring implied (entailed) sentences from the sentences
available to a client, at any point in time while the client is interacting with
the system. Unfortunately, as well-known from the discipline of theorem prov-
ing, the computational treatment of entailment problems might be inherently
complex.

Consequently, a major research task regarding information protection is to
identify practically relevant situations that still enable a reasonably efficient en-
forcement of suitably restricted conceptual requirements. In our previous work [8]
we already introduced and theoretically analyzed the following situation as
highly promising: Using the refusal approach, where harmful correct answers
are replaced by a refusal notification denoted by mum, we protect select-project
sentences under closed (yes/no-)select-project queries evaluated for relational
database instances of a schema with functional and join dependencies. In the
present article, we present a successful elaboration of the proposed approach:

– Based on the theoretical analysis, we have designed, implemented and inves-
tigated a practical, SQL-conforming signature-based enforcement method.

– The inference signatures are compiled from an analysis of all crucial infer-
ences that are possible for the given situation, and later on monitored like
in the field of intrusion detection.

To set up a larger perspective, we observe that the conceptual requirements of
inference-usability confinement can be captured by an invariant that a control
mechanism has to guarantee for all sequences of query-response interactions.
Such an invariant might have several forms, which are equivalent under careful
formalizations [13,10]. E.g., the invariant might require that for any sentence in

58 J. Biskup et al.

the confidentiality policy, based on his current knowledge, which results from
the a priori knowledge and previous interactions, and his system awareness,

– the client cannot exclude that this sentence is not valid in the instance;
– the client does not know that this sentence is valid in the instance.

To enforce such an invariant, a control mechanism has to inspect each query
considered as an interaction request and the answer to be returned whether or
not they satisfy an adequate control condition. Clearly, a necessary control con-
dition is that the current knowledge updated with the answer will not entail any
sentence in the confidentiality policy. Unfortunately, however, this condition is
not sufficient in general, since it neglects the impact of a client’s system aware-
ness, which might enable so-called meta-inferences. Thus, in general, we have to
strengthen this condition to become sufficient, while preferably remaining to be
necessary for the sake of availability. Moreover, as far as achievable, checking a
sufficient (and necessary) control condition should be computationally feasible.

Several sufficient and “reasonably necessary” control conditions for compre-
hensive and general situations have been proposed in the past [3], which, however,
inevitably tend to be infeasible in the worst case. Moreover, dedicated narrower
situations have been investigated to find effective control conditions that are
also efficiently testable. The contribution of the present article is particularly
related to the following situations, all of which consider the refusal approach for
relational databases, assuming that the client knows the confidentiality policy.

– Situation 1. As long as decidability is achieved, any a priori knowledge,
confidentiality policy and closed (yes/no-)queries (of the relational calculus)
are admitted. For the confinement, while maintaining and employing a log file
that represents the a priori knowledge and the answers to previous queries,
we have to ensure that adding neither the correct answer to the current
query nor the negation of the correct answer will be harmful; additional
refusals for harmful negations of correct answers guarantee that an observed
“refused” answer mum cannot be traced back to its actual cause by exploiting
the system awareness [4].

– Situation 2. The a priori knowledge may only comprise a schema declaration
with functional dependencies that lead to Boyce-Codd normal form with a
unique minimal key. Confidentiality policies are restricted to select-project
sentences of a special kind referring to “facts”, and queries are restricted to
arbitrary select-project sentences. For the confinement, it suffices to ensure
that the query sentence does not “cover” any policy element [6].

– Situation 3. The a priori knowledge may only comprise a schema declaration
with functional dependencies. Confidentiality policies are restricted to select-
project sentences, whereas queries must be closed select-queries. For the
confinement, it suffices to ensure that the query sentence does not “cover”
any policy element [9].

– Situation 4. The a priori knowledge may only comprise a schema declara-
tion with functional dependencies and full join dependencies (without any
further restrictions). Confidentiality policies and queries are restricted to

Signature-Based Inference-Usability Confinement 59

select-project sentences. For the confinement, we have to ensure two condi-
tions: (1) The query sentence does not “cover” any policy element. (2) Pre-
vious positive answers together with a positive answer to the current query
do not “instantiate” any template dependency implied by the schema depen-
dencies and “covering” an element of the confidentiality policy [8]. In the
present article, we will show how this requirement can be converted into an
efficient enforcement mechanism.

Notably, Situations 2 to 4 postulate that the client’s a priori knowledge only
comprises schema declarations. Accordingly, if additional a priori knowledge was
assumed, further potential sources of inferences should be considered, and thus
the respective confinement method would have to be appropriately enhanced.

The control conditions sketched so far are devised to be used dynamically at
run time to detect current options for crucial entailments. To avoid the run-
time overhead, one might prefer a static approach [11]: We then interpret the
confidentiality policy and the a priori knowledge as constraints to be satisfied
by an alternative instance that minimally distorts the actual instance, precom-
pute a solution to such a constrained optimization problem, and let the solution
instance be queried by the client without any further control.

We might also follow a mixed approach that suitably splits the workload
among (1) some precomputations before the client is involved at all, (2) appro-
priate dynamic control operations after receiving a specific client request and
before returning an answer, and (3) some follow-up adaptation actions between
two requests [2]. The present article follows a mixed approach for the specific
relational framework of [8] described as Situation 4 above; roughly outlined, our
new signature-based enforcement mechanism consists of a two-phase protocol:

– At declaration time, we compile inference signatures as representatives of
“forbidden structures” in the sense of [8]: “instantiations” of template depen-
dencies implied by the schema dependencies and “covering” a policy element.

– At run time, we monitor these inference signatures for the actual queries.

2 Formal Framework

In this section we summarize our formal framework and restate the theorem
that justifies our signature-based enforcement mechanism, referring the reader
to [1,8] for more details. Examples can be found in the next section.

A relation schema RS = 〈R,U , Σ〉 consists of a relation symbol R, a finite
set U of attributes, and a finite set Σ of dependencies (semantic constraints).
Σ comprises either functional dependencies, assumed to be a minimal cover, or
full join dependencies, or both kinds of dependencies. An instance r is a finite
dependency-satisfying Herbrand interpretation of the schema, considering the
relation symbol as a predicate. A tuple is denoted by μ = R(a1, . . . , an) where
n = |U| and ai ∈ Const , an infinite set of constants. If μ is an element of r, we
write r |=M μ. More generally, |=M denotes the satisfaction relation between an

60 J. Biskup et al.

interpretation and a sentence. The corresponding notion of logical implication
(entailment) between sentences is denoted by |=.

Let A,B ⊆ U be attribute sets. A relation r over U satisfies the functional
dependency A → B if any two tuples that agree on the values of attributes in A
also agree on the values of the attributes in B.

Let C1, . . . , Cl ⊆ U be attribute sets such that C1 ∪ . . . ∪ Cl = U . A relation
r over U satisfies the (full) join dependency ��[C1, . . . , Cl] if whenever there are
tuples μ1, . . . , μl in r with μi[Ci ∩ Cj] = μj [Ci ∩ Cj] for 1 ≤ i, j ≤ l, there is also
a tuple μl+1 in r with μl+1[Ci] = μi[Ci] for 1 ≤ i ≤ l.

Join dependencies are a special case of template dependencies. A template
dependency TD [h1, . . . , hl|c] over U has one or more hypothesis rows h1, . . . , hl

and a conclusion row c. Each row consists of abstract symbols (best seen as
variables), one symbol per attribute in U . A symbol may appear more than once
but only for one attribute, i.e., in a typed way. For t and t′ denoting tuples or rows,
respectively, over U , ag(t, t′) := {A | A ∈ U and t(A) = t′(A)} is the agree set
of these tuples or rows, respectively. The aggregated agree sets of the conclusion
∪l

j=1ag(c, hj) form the scheme of the template dependency. A symbol occurring
in the conclusion for an attribute A in the scheme is often called “distinguished”
(free variable) and denoted by aA. Any other symbol in the template dependency
is often called “nondistinguished” (existentially quantified variable) and denoted
by bi, where each such symbol gets a different index i.

A relation r over U satisfies the template dependency TD [h1, . . . , hl|c] if
whenever there are tuples t1, . . . , tl in r with ag(hi, hj) ⊆ ag(ti, tj) for all
i, j ∈ {1, . . . , l} there is also a tuple t in r with ag(c, hi) ⊆ ag(t, ti) for i = 1, . . . , l.

A template dependency TD [h1, . . . , hl|c] is called (hypothesis-)minimal with
respect to Σ if dropping a full hypothesis row hi or replacing any symbol in a
hypothesis by a new symbol, different from all others – thus (potentially) deleting
an equality condition – would result in a template dependency that is not implied
by Σ. Moreover, a minimal template dependency is called (conclusion-)maximal
with respect to Σ if the following additionally holds: if we replace a symbol in the
conclusion row c that so far is not involved in any agree set with a hypothesis by
another symbol that already occurs in some hypothesis, then we would obtain a
template dependency that is not implied by Σ. Finally, a template dependency
enjoying both optimization properties is called a basic implication of Σ.

Queries and elements of a confidentiality policy psec, called potential se-
crets, are expressed in a fragment of the relational calculus, using a set of vari-
ables Var . This fragment is given by the language L of existential-R-sentences,
or select-project sentences which are sentences (closed formulas) of the form
(∃X1) . . . (∃Xl)R(v1, . . . , vn) with 0 ≤ l ≤ n, Xi ∈ Var , vi ∈ Const ∪ Var ,
{X1, . . . , Xl} ⊆ {v1, . . . , vn}, and vi �= vj if vi, vj ∈ Var and i �= j; these proper-
ties and the closedness imply that {X1, . . . , Xl} = {v1, . . . , vn}∩Var . For Φ ∈ L ,
we define the scheme P of Φ as the set of attributes for which a constant ap-
pears. For a sentence in L let its corresponding “generalized tuple” denote the
sentence without its prefix of existential quantifiers. In this case we think of the
variables in the generalized tuple as the null value “exists but unknown”.

Signature-Based Inference-Usability Confinement 61

A sentence (generalized tuple) Φ is defined to cover a sentence (generalized
tuple) Ψ if every constant c that appears in Ψ appears in Φ at the same position.
The following equivalence can be easily verified: Φ covers Ψ if and only if Φ |= Ψ .

Restating Theorem 2 of [8] below, we specify a “forbidden structure” an instan-
tiation of which is necessary for any violation of a policy element by exploiting
the a priori knowledge about the dependencies. Additionally, Theorem 1 of [8]
indicates that an occurrence of such a structure is also sufficient for exploiting
the dependencies. Accordingly, we obtain a necessary and “reasonably sufficient”
control condition by avoiding both an immediate violation by “covering” a po-
tential secret and an instantiated “forbidden structure”; the latter consists of an
implied template dependency whose scheme comprises the scheme of a potential
secret, while the schemes of the query answers “uniformly cover” the hypotheses.
Our mechanism will be based on that control condition.

Theorem 1 (forbidden structures, necessary for a violation by exploit-
ing the dependencies). Let RS = 〈R,U , Σ〉 be a relation schema where the
dependency set Σ consists of functional and full join dependencies, and r an
instance of RS. Let Ψ ∈ L be a potential secret with scheme P ⊆ U , and
Φ1, . . . , Φl ∈ L queries with schemes F1, . . . ,Fl such that:

1. Φi �|= Ψ , for i = 1, . . . , l, i.e., all queries do not cover the potential secret;
2. r |=M Φi, for i = 1, . . . , l, i.e., all queries are true in the instance r;
3. Σ ∪ {Φ1, . . . , Φl} |= Ψ , i.e., the answers violate the confidentiality policy.

Then there exists a nontrivial template dependency TD [h1, . . . , hl|c] implied by Σ
such that P = ∪l

j=1ag(c, hj) and ∪j∈{1,...,l}�{i}ag(hi, hj) ⊆ Fi, for i = 1, . . . , l.

3 Examples

We will outline the fundamental features of the signature-based enforcement
mechanism by means of two examples. Though only dealing with functional
dependencies specifying a key, the first example is beyond the scope of the Sit-
uations 2 and 3 sketched before and thus cannot be treated by the mechanisms
of [6,9]. The second example introduces join dependencies as a priori knowledge.

Example 1. At declaration time, we consider the following items: a relation
schema RS = 〈R,U , Σ〉 with attribute set U = {K, A, B} and dependencies
Σ = {K → A, K → B}, i.e., attribute K is the unique minimal key; an instance
r = {R(cK , cA, cB), R(c̃K , cA, cB)}, where cK , c̃K , cA and cB are constants in
Const ; and a single potential secret Ψ = (∃XK)R(XK , cA, cB). We will compile
inference signatures in four steps.
In step 1, we see that Σ entails the template dependency

td := TD [aK aA b1 , aK b2 aB | aK aA aB]
as a “forbidden structure” that must not be instantiated by the potential secret
and query answers according to the instance.
In step 2, first treating the potential secret, we find that the scheme KAB of
the template dependency td covers the scheme AB of the potential secret Ψ .

62 J. Biskup et al.

In step 3, we specialize the conclusion (aK aA aB) of td with the constants
appearing in the potential secret Ψ , yielding (aK cA cB). Then we propagate
this specialization to the hypotheses on common attributes, i.e., according to
agree sets, getting (aK cA b1) for the first hypothesis, and (aK b2 cB) for the
second hypothesis. In this way we get the instantiated template dependency

td[Ψ] := TD [aK cA b1 , aK b2 cB | aK cA cB].
In step 4, finally considering the instance r, we further uniformly instantiate the
hypotheses on the distinguished symbol aK for the further agree set ag(h1, h2) =
{K} with h1 = (aK cA b1) and h2 = (aK b2 cB) according to tuples in the
instance r. For the single tuple R(cK , cA, cB) ∈ r used twice, we get

Sig1 := TD [cK cA b1 , cK b2 cB | cK cA cB]
as an inference signature; similarly, for the tuple R(c̃K , cA, cB) ∈ r we get

Sig2 := TD [c̃K cA b1 , c̃K b2 cB | c̃K cA cB]
as another inference signature. Each of them indicates that the user must not
learn all of its hypotheses, and thus later on we can ignore its conclusion.

Once the inference signatures have been compiled at declaration time, they
have to be monitored at run time according to the queries requested by the
pertinent client. Suppose the client issues

Φ1 := R(cK , cA, cB),
Φ2 := (∃XB)R(cK , cA, XB), and
Φ3 := (∃XA)R(cK , XA, cB).

Covering the potential secret Ψ , the first query Φ1 is immediately refused.
Though the second query Φ2 does not cover Ψ , it nevertheless might contribute
to a forbidden structure together with other queries. So we consider the inference
signatures: Φ2 only covers the first hypothesis (cK cA b1) of Sig1. Observing
that Sig1 has another hypothesis still uncovered, we can determine the correct
query evaluation, yielding a positive answer (∃XB)R(cK , cA, XB) to be returned
to the client. Moreover, we have to mark the covered hypothesis as already hit.

The third query Φ3 again does not cover Ψ , but the second hypothesis
(cK b2 cB) of Sig1: independently of the correct query evaluation we have to
refuse the answer for the following reasons. If the correct answer is positive,
the knowledge about all hypotheses of the inference signature would enable the
client to directly infer the validity of the conclusion and thus of the potential
secret Ψ . If the correct answer is negative, this additional knowledge does not
directly lead to the crucial inference; however, only refusing a positive answer
would enable a meta-inference of the following kind: “the only reason for the
refusal is a positive answer, which thus is valid”.

Example 2. To further exemplify the compiling phase in some more de-
tail, we now consider the relation schema RS = 〈R,U , Σ〉 with attribute
set U = {S(ymptom), D(iagnosis), P (atient)} and two join dependencies in
Σ = {��[SD, SP],��[DS, DP]}, the instance r comprising the four tuples
R(Fever ,Cancer ,Smith), R(Fever ,Fraction ,Smith), R(Fever ,Cancer ,Miller),
and R(Fever ,Fraction ,Miller), and the confidentiality policy psec = {Ψ} con-
taining the single potential secret Ψ = (∃XS)R(XS ,Cancer ,Smith).

Signature-Based Inference-Usability Confinement 63

S D P
aS aD b1

aS b2 aP

aS aD aP

S D P
aS aD b′1
b′2 aD aP

aS aD aP

S D P
(aS, aS) (aD, aD) (b1, b

′
1)

(aS,b′
2) (aD, aD) (b1, aP)

(aS, aS) (b2,aD) (aP , b′1)

(aS,b′
2) (b2,aD) (aP , aP)

(aS, aS) (aD, aD) (aP , aP)

S D P
aS aD b1

b2 aD b3

aS b4 b5

b2 b4 aP

aS aD aP

Fig. 1. ��[SD, SP], ��[DS, DP], and their direct product as tableaus

The upper part of Figure 1 shows the dependencies as template dependencies in
graphical notation known as tableau. Intuitively, the first dependency expresses
the following: a symptom aS that both contributes to a diagnosis aD for some
patient b1, whose identity does not matter, and applies for the patient aP con-
tributes to the diagnosis aD for the patient aP as well. The meaning of the second
dependency has a similar flavor. As proved in [12], the two join dependencies
together are equivalent to their direct product exhibited in the lower part of Fig-
ure 1, both as constructed by definition and rewritten by substituting each pair
of variables by a single variable.

By Theorem 1, we have to consider all template dependencies that are implied
by Σ. However, it suffices to finally employ only the basic implications. Unfortu-
nately, so far we do not know an efficient algorithm to compute the set Σ+basic

of all basic implications, which even might be infinite. But, we can somehow suc-
cessively generate all candidates, in turn check each candidate whether it is an
implication by applying the chase procedure, see [16,12,1], and finally minimize
the hypotheses and maximize the conclusion of the implied candidates.

Figure 2 shows those elements of Σ+basic that have at most three hypotheses:
we get the two declared dependencies and two basic versions of their direct
product, obtained by deleting the third or the second hypothesis, respectively.
In step 2 of the compiling phase, we identify those dependencies in Σ+basic such
that the scheme {D(iagnosis),P(atient)} of the potential secret Ψ is contained
in the scheme of the dependency; in this example, so far the condition is always

S D P
aS aD b1

aS b2 aP

aS aD aP

S D P
aS aD b1

b2 aD aP

aS aD aP

S D P
aS aD b1

b2 aD b3

b2 b4 aP

aS aD aP

S D P
aS aD b1

aS b4 b5

b2 b4 aP

aS aD aP

Fig. 2. All basic implications of Σ having two or three hypotheses

64 J. Biskup et al.

S D P
Fever Cancer b1

Fever b2 Smith

Fever Cancer Smith

S D P
Fever Cancer b1

Fever Fraction b5

b2 Fraction Smith

Fever Cancer Smith

Fig. 3. Instantiated signatures

satisfied. Accordingly, for each element of Σ+basic determined so far, attributes
D and P in the conclusion are instantiated with the constants Cancer and Smith
occurring in Ψ . These instantiations are then propagated to the hypotheses. In
the next step 3, the hypotheses must be further instantiated according to the
instance r. We have to determine minimal sets of tuples such that all equalities
expressed in the respective template dependency are satisfied and their values
equal the values of already instantiated entries. Finally, all remaining agree sets
not considered so far are instantiated with the values of those tuples.

The instantiated template dependencies obtained so far are candidates to be-
come inference signatures. However, we do not have to retain all them. Firstly,
if an instantiated hypothesis of a candidate covers a potential secret, we can dis-
card the candidate, since in the monitoring phase a query whose answer would
reveal such a hypothesis would be refused anyway. So, in the example the instan-
tiation of the second basic implication is discarded. Secondly, if the hypotheses
of a candidate constitute a superset of the hypotheses of another candidate,
then the former candidate is redundant and can be discarded as well. So, in the
example the instantiation of the third basic implication is discarded as well.

For the given simple instance r, we do not have to consider basic implica-
tions with more than three hypotheses, and thus we finally keep the inference
signatures shown in Figure 3. However, due to the cyclic structure of the de-
pendencies in the example, there are basic implications with arbitrarily many
hypotheses. So we can extend the basic implications having three hypotheses
by a suitable fourth hypothesis, as shown in Figure 4. In fact, e.g., we can

S D P
aS aD b1

b2 aD b3

b2 b4 b5

b6 b4 aP

aS aD aP

S D P
aS aD b1

aS b4 b5

b2 b4 b6

b2 b7 aP

aS aD aP

S D P
aS aD b1

aS b4 b5

b2 b4 b6

b2 b7 b9

b8 b7 b11

b8 b10 b13

b12 b10 aP

aS aD aP

Fig. 4. Basic implications of Σ having four hypotheses and an example of a basic
implication of Σ having “many” hypotheses

Signature-Based Inference-Usability Confinement 65

generalize the structure of the fourth dependency shown in Figure 3 by extend-
ing the present “path” aS ,aS ,b4,b4 by b2,b2,b7,b7,b8,b8,b10,b10 , as exhibited by
the rightmost dependency shown in Figure 4. However, the instance r lacks suf-
ficient diversity to instantiate such a long path with different constants. But we
could employ a single element of the instance for instantiating several hypotheses
and would then obtain instantiated signatures that we already got before.

4 Compiling and Monitoring Signatures

Generalizing the example, we now present the new signature-based enforcement
mechanism as a two phase protocol.

The compiling phase takes the dependencies Σ declared in the schema, the
confidentiality policy psec, and the instance r as inputs, and proceeds as follows
to generate the set psig of all inference signatures:

1. It successively, with an increasing number of hypotheses, generates all basic
template dependencies implied by Σ, i.e.,
Σ+basic := {td | Σ |= td, td is hypothesis-minimal and conclusion-maximal},
until no further ones can exist or further ones would not lead to nonredun-
dant instantiations for the given instance r.

2. It determines all pairs (Ψ, td) with Ψ ∈ psec and td ∈ Σ+basic as generated so
far, whose components match in the sense that the scheme of Ψ is a subset of
the scheme of td, i.e., of the conclusion’s aggregated agree set ∪l

j=1ag(c, hj),
where td = TD [h1, . . . , hl|c].

3. For each such pair, the (distinguished) symbols (seen as free variables) in the
scheme of td are instantiated with the respective constants appearing in Ψ .
Then the instantiation is propagated from the conclusion to the hypotheses.
The result is denoted by td[Ψ].

4. For each td[Ψ] obtained so far, the instance r is searched for a minimal set
of tuples rtd[Ψ] that “uniformly covers” all hypotheses: (i) all equalities re-
quired by td[Ψ] are satisfied and, (ii) the tuple values equal the respective
already propagated instantiations. For each such set, the hypotheses are fur-
ther instantiated on agree sets not captured before with the respective values
found in the uniform covering. The remaining symbols are left unchanged. If
none of the hypotheses covers any of the potential secrets in psec, then the
resulting inference signature Sig(Ψ, td, rtd[Ψ]) is inserted into psig .

5. If the hypotheses of a result of step 3 or 4 constitute a superset of the
hypotheses of another result of step 3 or 4, respectively, then the former
element is discarded, since it is redundant.

Given the fullness of the join dependencies in Σ, step 1 can be based on the
chase algorithm [16] together with bounded searching for minimization and sub-
sequent maximization. Though being complex in general, the computation is
expected to be feasible in practice, since we only deal with schema items. More-
over, in practice, a database administrator will only admit “minor” deviations

66 J. Biskup et al.

from Boyce-Codd normal form having a unique key, for example, to ensure faith-
ful representation of all dependencies by relaxing Boyce-Codd normal form to
3NF or to provide support of expected queries by a dedicated denormalization.

Similarly, seeing the elements of the confidentiality policy as a declaration of
exceptions from the general default rule of permission, we expect that in many
applications steps 2 and 3 will produce only a manageable number of templates
for inference signatures. Moreover, as far as the constants occurring in these
templates achieve a high selectivity regarding the instance considered, step 4
will not substantially increase the number of final inference signature.

The monitoring phase takes a query Φ, the confidentiality policy psec, the
set psig of all inference signatures determined in the compiling phase, and the
instance r as inputs, and proceeds as follows:

1. It checks whether some Ψ ∈ psec is covered by Φ (equivalently, Ψ is entailed
by Φ, see Section 2), and if this is the case, the answer is immediately refused.

2. Otherwise, it determines all hypotheses Π occurring in psig and not marked
before such that Π is covered by Φ, and it tentatively marks them. If now for
some signature in psig all hypotheses are marked, then the answer is refused
and the tentative marking is aborted. Otherwise, the correct answer is de-
termined from r and then returned, and the tentative marking is committed
if a positive answer Φ is returned; otherwise, if ¬Φ is returned, the tentative
marking is aborted.

A straightforward implementation of the monitoring phase keeps the potential
secrets and the suitably tagged hypotheses of inference signatures in two ded-
icated relations. Given a query, these relations are searched for covered tuples
and inspected for an inference signature becoming fully marked. Approximat-
ing the computational costs of these actions for one instantiated hypothesis by a
constant, the overall runtime complexity of an execution of the monitoring phase
is at most linear in the size of the dedicated relations. In the next section we will
present how this rough design has been converted into an SQL-based prototype.

Theorem 2. Assume the Situation 4 sketched in Section 1 and analyzed in [8]:
the a priori knowledge is restricted to comprise only a schema declaration with
functional dependencies and join dependencies, and confidentiality policies and
queries are restricted to select-project sentences. Then the signature-based en-
forcement mechanism preserves confidentiality (in the sense of Section 1).

Sketch of Proof. “Negative” answers of the form ¬Φi do not contribute to a
harmful inference of a potential secret Ψ : on the one hand, the confidentiality
policy contains only positive sentences and, on the other hand, the dependencies
only generate positive conclusions from positive assumptions.

So let us assume indirectly that there is a harmful inference based on some
minimal set of positive answers {Φ1, . . . , Φm} to derive Ψ . Then, by Theorem 1
(Theorem 2 of [8]), there exists a corresponding nontrivial template depen-
dency that witnesses such an inference. In step 1 of the compiling phase, a
hypothesis-minimal and conclusion-maximal version td of this dependency is

Signature-Based Inference-Usability Confinement 67

added to Σ+basic; this version then witnesses the inference considered as well.
In the subsequent steps 2 and 3 of the compiling phase, td together with Ψ is
further processed to set up a generic signature of the form td[Ψ]. Furthermore, in
step 4 of the compiling phase, the tuples in the instance r leading to the harmful
positive answers Φ1, . . . , Φm or these answers themselves, respectively, contribute
to generate an (instantiated) inference signature of the form Sig(Ψ, td, rtd[Ψ]).

Finally, in the monitoring phase, when the last of these positive answers is
controlled, the tentative marking of this inference signature results in a marking
of all its hypotheses, and thus the answer is refused. This contradicts the as-
sumption that the positive answers Φ1, . . . , Φm are all returned to the client. �

5 A Prototype for Oracle/SQL

We implemented1 the signature-based enforcement mechanism as part of a larger
project to realize a general prototype for inference-usability confinement of reac-
tions generated by the server of a relational database management system (see
Section 9 of [3]).

This prototype has been designed as a frontend to an Oracle/(SQL)-system:
the administration interface enables officers to declare and manage client-specific
data like the postulated a priori knowledge, a required confidentiality policy, a
permitted interaction language, and the kind of distortion; the interaction inter-
face enables registered clients to send requests like queries and receive reactions.
The interaction language is uniformly based on the relational calculus as a spe-
cific version of first-order logic, which provides the foundation of the semantics
of relational databases.

Accordingly, if a client should be permitted to issue queries under a schema
RS = 〈R,U , Σ〉 but be confined by the signature-based enforcement mechanism,
then the following has to happen: the client is granted a permission to query the
current instance r; the dependencies in Σ are added to that client’s a priori
knowledge; the language L is made available to the client to submit queries; a
confidentiality policy is declared to confine the client’s permission; and refusals
are specified as the wanted kind of distortion. Additionally, a compatible enforce-
ment mechanism is selected, either automatically by an optimizer or explicitly
by an administrator. In the remainder of this section, we assume that inference
signatures are both applicable and necessary as described in Section 1.

In a first attempt, considering the general prototype to mediate access to
the underlying Oracle-system would suggest to let a wrapper translate a query
Φ ∈ L into an SQL-query during the monitoring phase. In our case, for instance,
assuming that R denotes the Oracle-table for the instance r, a closed (yes/no)-
query (∃X1) . . . (∃Xl)R(X1, . . . , Xl, cl+1, . . . , cn) would be converted into

Select Al+1, . . . , An From R Where Al+1 = cl+1 And . . . And An = cn,
1 The following exposition only outlines the implementation and slightly differs from

the presently employed version of the code, which is under ongoing development for
both improved usability and further optimization.

68 J. Biskup et al.

R Sym Dia Pat
Fever Cancer Smith
Fever Fraction Smith
Fever Cancer Miller
Fever Fraction Miller

SEC Sym Dia Pat
∗ Cancer Smith

QUE Sym Dia Pat Rea
Fever Cancer X

SIG Sym Dia Pat Id Imp Old
Fever Cancer b1 1
Fever b2 Smith 1
Fever Cancer b1 2
Fever Fraction b5 2

b2 Fraction Smith 2

Fig. 5. Oracle-tables for signature-based enforcement applied to hospital database

which returns either the empty set or a singleton with a tuple μ of the form
(Al+1 : cl+1, . . . , An : cn) over the attribute set {Al+1, . . . , An}.

However, while forwarding this query to the Oracle-system, we want the server
not only to evaluate the query but to perform the further actions on the inference
signatures described in Section 4 as well. In principle, this goal can be accom-
plished by the features of Oracle for active databases, i.e., by triggers. Since
Oracle does not provide means to define a trigger on a query directly, we instead
employ a suitable update command to an auxiliary Oracle-table QUE(RY), which
together with two further tables (which will be described below) has already been
created during the compiling phase.

– Basically, the table QUE(RY) has the attributes in U specified in the schema
for the table R and a further attribute Rea(ction), which has a three-
valued type {ref(used), pos(itive), neg(ative)}: a tuple of QUE(RY) denotes
a query as a generalized tuple combined with an indicator how to react.

Regarding Oracle-privileges, any access right the client might have before on
the Oracle-table R must be revoked, and instead the client is only granted the
Insert-right on the auxiliary table QUE(RY). The needed trigger CQE is de-
clared for insertions into the table QUE(RY), and this trigger is executed with
the access rights of the owner (administrator) of the table R. Accordingly, we
employ some kind of “right amplification”, as for example offered by the oper-
ating system UNIX by means of setting the suid-flag for an executable file: the
client only receives a privilege to initiate the query-and-control activities, as
predefined by the trigger, without being permitted to perform such activities at
his own discretion.

The trigger CQE operates on the auxiliary Oracle-table QUE(RY) and the
two further Oracle-tables (POT)SEC and SIG(NATURE) that already have
been created separated from the Oracle-table R during the compiling phase.

– The table (POT)SEC has the same attribute set U as R such that a declared
potential secret Ψ ∈ L can be represented as a generalized tuple; however,
each (originally existentially quantified) variable is uniformly replaced by a
special placeholder “ * ”.

– The table SIG(NATURE) has the attributes in U as well such that a hy-
pothesis of an inference signature can again be represented as a generalized

Signature-Based Inference-Usability Confinement 69

tuple, and three further attributes to be used as follows: the attribute Id
specifies an inference signature the represented hypothesis belongs to; the
Boolean attribute (Flag)Imp refers to a tentative marking during a current
monitoring phase; and the Boolean attribute (Flag)Old refers to a marking
already committed while controlling a preceding query.

Unfortunately, it turned out that we need the two flags, since we could not em-
ploy standard transaction functionality to freshly mark hypotheses tentatively
and finally either commit the fresh markings or abort them by a rollback in-
struction: Oracle does not offer to direct the needed transaction functionality
within trigger executions.

Figure 5 shows the Oracle-tables for the small hospital database introduced
as Example 2 in Section 3 with the instance inserted into table R, after filling
the table (POT)SEC with the declared confidentiality policy, populating the
table SIG(NATURE) with the compiled inference signatures, and forwarding
the query (∃X)R(Fever ,Cancer , X) to the table QUE(RY).

Activated by the insertion of the query into the Oracle-table QUE(RY), the
trigger CQE basically proceeds as follows:

1. The trigger extracts the query submitted by the client from QUE, constructs
an SQL-query to determine whether or not the extracted query covers an
element in SEC, executes the constructed SQL-query, and then checks the
result for emptiness: if the result is nonempty, i.e., a covering has been de-
tected, the trigger modifies the attribute Rea(ction) of the single tuple in
QUE into ref(used) (which the frontend retrieves subsequently), and the
trigger exits. The following SQL-query is constructed for the example:

Select Sym,Dia,Pat From SEC Where (Sym = Fever Or Sym = ∗)
And (Dia = Cancer Or Sym = ∗) And Pat = ∗

2. Otherwise, the trigger continues to perform the actions already described in
Section 4 by suitably employing the Oracle-tables in a similar way as in the
first step; see Figure 6 for the rough design.

6 Experimental Evaluation

To determine the runtime overhead inherently caused by the signature-based
enforcement mechanism, we measured the query processing times of the imple-
mentation described in Section 5. We started with the following observation.
Given the dependencies declared in the schema and the confidentiality policy, a
generic inference signature signifies a typical “forbidden structure”, and thus all
of them together represent all possibilities for harmfulness. Thus, we aimed at
constructing the instances to be used for runtime evaluations by varying the fol-
lowing parameters: (1) the included forbidden structures; (2) the instantiations
of included forbidden structures; and (3) the fraction of confined “exceptions”.

70 J. Biskup et al.

frontend Oracle server

 QUE

 SEC

 SIG

 R

 forward query extract query

check covering of a
 potential secret

 tentatively mark
 covered hypotheses

 check completeness
 of some signature

no

yes

no (corrrect)

yes

 retrieve
 correct answer

activate trigger

positive

 negative

 abort
markings

 commit
markings

 abort
markings

 encode and deposit
 control result

check control result;
 prepare reaction

 exit

trigger

 (refusal)

(refusal)

Fig. 6. Design of the trigger CQE to control a submitted query

Moreover, we expected an impact of the length of query sequences, since with
increasing length more markings of hypotheses will be found.

Accordingly, we measured the following query processing times: the maximum
time that occurred up to the last query of a sequence for the whole frontend and
the trigger alone, respectively; and the average time over a sequence for the
whole frontend and the trigger alone, respectively.

Discarding exceptional measurements caused by external factors and applying
suitable roundings, we depict the results for Example 2 in Table 1: We restricted
to the forbidden structures shown in Figure 2 and 4; varied the number of in-
stantiations from 1 over 10 and 100 up to 1000, in this way getting instances (by
applying the chase algorithm to satisfy the dependencies) of size from 79 tuples
up to 79000 tuples; declared for each instantiated forbidden structure just one
potential secret (as an “exception”); and formed query sequences of length from
100 up to 100000, suitably covering all relevant cases in a random way.

Signature-Based Inference-Usability Confinement 71

Table 1. Maximum and average query processing times experienced for Example 2

Processing time pro query in msec
Instantiations Instance Queries whole frontend trigger alone

size maximum average maximum average
1 79 100 22 15 10 2
10 790 1000 54 17 10 3
100 7900 10000 421 23 150 7
1000 79000 100000 711 78 580 61

The results for the particular example suggest the practical feasibility of our
approach, including scalability: a human user acting as a client will basically
not realize a query processing time in the range of a few milliseconds up to
around half a second. Of course, general practicality still has to be justified by
statistically evaluating more advanced experiments for “real-world” applications
using a more mature implementation with enhanced functionality and further
optimizations.

7 Conclusions

Summarizing and concluding, we presented a signature-based enforcement mech-
anism that satisfies confidentiality requirements that are very general and have
been considered in many contexts before, as summarized and further inves-
tigated by Halpern/O’Neill [13] and suitably extended to include policies by
Biskup/Tadros [10]. The mechanism can be seen as a variation of a security
automaton for the run time enforcement of security properties in the sense of
Ligatti/Reddy [15] and others. We demonstrated the effectiveness of the mecha-
nism for relational databases that are constrained by the large class of functional
dependencies and join dependencies, which capture a wide range of applications,
see, e.g., Abiteboul/Hull/Vianu [1].

Our mechanism differs from previously considered monitoring systems by tak-
ing advantage of the particular properties of functional dependencies and join de-
pendencies, without imposing any further restrictions on these dependencies. We
provide a proactive control functionality avoiding any confidentiality breach, in
contrast to auditing approaches as described by, e.g., Kaushik/Ramamurthy [14],
which can only detect violations after the fact.

There are several lines of further research and development, dealing with the
following issues: tools for the compiling phase, the distribution of functionality
between the two phases, the complete integration into a database management
system like Oracle, more advanced interactions like open queries, updates and
transactions, and experimental evaluations with “real-world” applications.

Regarding tools for the compiling phase, a major open problem is to design
a generally applicable algorithm to effectively and efficiently determine all ba-
sic implications up to a suitably chosen number of hypotheses for any set of
functional dependencies and join dependencies. We conjecture that properties
regarding the occurrence of cyclic structures in the hypergraph of the dependen-
cies has a major impact. The computational complexity of the compiling phase
should also be investigated.

72 J. Biskup et al.

Regarding distribution of functionality, we already designed a more dynamic
version of the signature-based enforcement mechanism. In this version, we ini-
tially keep the inference signatures generic, without instantiating them with spe-
cific values from the instance already at compile time. Rather, instantiations are
dynamically generated at run time only employing instance tuples actually re-
turned as responses to the client. This more dynamic version can be derived from
the static version detailed in this article but some subtle optimization problems
still have to be solved in a satisfactory way.

Regarding a complete integration, we first of all face problems of modifying
proprietary software, but we would also be challenged to make the added func-
tionality fully compatible with all the many services already offered. Of course,
from the point of view of both administrators and clients, in general a full inte-
gration would be advantageous: conceptually for employing uniform interfaces,
and algorithmically for avoiding the overhead raised by the communication of a
separate frontend with a server and for including the security functionality into
the scope of the server’s optimizer.

Regarding advanced interactions, on the one hand we have to suitably adapt
previous theoretical results [5,7] and, again, to exploit the features of the un-
derlying database management system as far possible. On the other hand, in
general an update of the database instance will require to update the (instanti-
ated) inference signatures as well. Clearly, both aspects would have to be suitably
combined, while also considering the optimization problems mentioned above.

Finally, regarding “real-world” applications, we would have to identify suitable
classes of applications, clarify in detail how far the assumptions underlying the
signature-based approach are actually satisfied by such applications, and then
overcome essential mismatches by additional mechanisms. However, as pointed
out in the introduction, there is an inevitable tradeoff between conceptual ex-
pressiveness and computational complexity: any extension of the work presented
in this article will be challenged to maintain an appropriate balance between the
conflicting goals.

Acknowledgments. We would like to sincerely thank Martin Bring and Jaouad
Zarouali for improving the implementation and conducting the experiments.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Biskup, J.: History-Dependent Inference Control of Queries by Dynamic Policy
Adaption. In: Li, Y. (ed.) DBSec 2011. LNCS, vol. 6818, pp. 106–121. Springer,
Heidelberg (2011)

3. Biskup, J.: Inference-usability confinement by maintaining inference-proof views
of an information system. International Journal of Computational Science and
Engineering 7(1), 17–37 (2012)

4. Biskup, J., Bonatti, P.A.: Lying versus refusal for known potential secrets. Data
Knowl. Eng. 38(2), 199–222 (2001)

Signature-Based Inference-Usability Confinement 73

5. Biskup, J., Bonatti, P.A.: Controlled query evaluation with open queries for a
decidable relational submodel. Ann. Math. Artif. Intell. 50(1-2), 39–77 (2007)

6. Biskup, J., Embley, D.W., Lochner, J.-H.: Reducing inference control to access
control for normalized database schemas. Inf. Process. Lett. 106(1), 8–12 (2008)

7. Biskup, J., Gogolin, C., Seiler, J., Weibert, T.: Inference-proof view update trans-
actions with forwarded refreshments. Journal of Computer Security 19, 487–529
(2011)

8. Biskup, J., Hartmann, S., Link, S., Lochner, J.-H.: Chasing after secrets in rela-
tional databases. In: Laender, A.H.F., Lakshmanan, L.V.S. (eds.) Alberto Mendel-
zon International Workshop on Foundations of Data Management, AMW 2010.
CEUR, vol. 619, pp. 13.1–13.12 (2010)

9. Biskup, J., Lochner, J.-H., Sonntag, S.: Optimization of the Controlled Evaluation
of Closed Relational Queries. In: Gritzalis, D., Lopez, J. (eds.) SEC 2009. IFIP
AICT, vol. 297, pp. 214–225. Springer, Heidelberg (2009)

10. Biskup, J., Tadros, C.: Policy-based secrecy in the Runs & Systems Framework
and controlled query evaluation. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds.)
Advances in Information and Computer Security – International Workshop on Se-
curity, IWSEC 2010, Short Papers, pp. 60–77. Information Processing Society of
Japan (2010)

11. Biskup, J., Wiese, L.: A sound and complete model-generation procedure for consis-
tent and confidentiality-preserving databases. Theoretical Computer Science 412,
4044–4072 (2011)

12. Fagin, R., Maier, D., Ullman, J.D., Yannakakis, M.: Tools for template dependen-
cies. SIAM J. Comput. 12(1), 36–59 (1983)

13. Halpern, J.Y., O’Neill, K.R.: Secrecy in multiagent systems. ACM Trans. Inf. Syst.
Secur. 12(1), 5.1–5.47 (2008)

14. Kaushik, R., Ramamurthy, R.: Efficient auditing for complex SQL queries. In:
Sellis, T.K., Miller, R.J., Kementsietsidis, A., Velegrakis, Y. (eds.) ACM SIGMOD
International Conference on Management of Data, SIGMOD 2011, pp. 697–708.
ACM (2011)

15. Ligatti, J., Reddy, S.: A Theory of Runtime Enforcement, with Results. In: Gritza-
lis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp.
87–100. Springer, Heidelberg (2010)

16. Sadri, F., Ullman, J.D.: Template dependencies: A large class of dependencies
in relational databases and its complete axiomatization. J. ACM 29(2), 363–372
(1982)

	Signature-Based Inference-Usability Confinement for Relational Databases under Functional andJ oin Dependencies

	Introduction
	Formal Framework
	Examples
	Compiling and Monitoring Signatures
	A Prototype for Oracle/SQL
	Experimental Evaluation
	Conclusions
	References

