
A Unified Attribute-Based Access Control

Model Covering DAC, MAC and RBAC

Xin Jin1, Ram Krishnan2, and Ravi Sandhu1

1 Institute for Cyber Security & Department of Computer Science
2 Institute for Cyber Security & Dept. of Elect. and Computer Engg.

xjin@cs.utsa.edu, {ram.krishnan,ravi.sandhu}@utsa.edu

Abstract. Recently, there has been considerable interest in attribute
based access control (ABAC) to overcome the limitations of the dominant
access control models (i.e, discretionary-DAC, mandatory-MAC and role
based-RBAC) while unifying their advantages. Although some proposals
for ABAC have been published, and even implemented and standardized,
there is no consensus on precisely what is meant by ABAC or the required
features of ABAC. There is no widely accepted ABAC model as there
are for DAC, MAC and RBAC. This paper takes a step towards this
end by constructing an ABAC model that has “just sufficient” features
to be “easily and naturally” configured to do DAC, MAC and RBAC.
For this purpose we understand DAC to mean owner-controlled access
control lists, MAC to mean lattice-based access control with tranquility
and RBAC to mean flat and hierarchical RBAC. Our central contribution
is to take a first cut at establishing formal connections between the three
successful classical models and desired ABAC models.

Keywords: Attribute, XACML, DAC, MAC, RBAC, ABAC.

1 Introduction

Starting with Lampson’s access matrix in the late 1960’s, dozens of access control
models have been proposed. Only three have achieved success in practice: discre-
tionary access control (DAC) [24], mandatory access control (MAC, also known
as lattice based access control or multilevel security) [22] and role-based access
control (RBAC) [11,23]. While DAC and MAC emerged in the early 1970’s it
took another quarter century for RBAC to develop robust foundations and flour-
ish. RBAC emerged due to increasing practitioner dissatisfaction with the then
dominant DAC and MAC paradigms, inspiring academic research on RBAC.
Since then RBAC has become the dominant form of access control in practice.

Recently there has been growing practitioner concern with the limitations of
RBAC, which has been met by researchers in two different ways. On one hand re-
searchers have diligently and creatively extended RBAC in numerous directions.
Conversely there is growing appreciation that a more general model, specifically
attribute-based access control (ABAC), could encompass the demonstrated ben-
efits of DAC, MAC and RBAC while transcending their limitations. Identities,

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 41–55, 2012.
c© IFIP International Federation for Information Processing 2012

42 X. Jin, R. Krishnan, and R. Sandhu

clearances, sensitivity, roles and other properties of users, subjects and objects
can all be expressed as attributes. Languages for specifying permitted accesses
based on the values and relationships among these attributes provide policy
flexibility and customization. However, the proliferation and flexibility of pol-
icy configuration points in ABAC leads to greater difficulty in policy expression
and comprehension relative to the simplicity of DAC, MAC and RBAC. It will
require strong and comprehensive foundations for ABAC to flourish.

Intuitively, an attribute is a property expressed as a name:value pair associ-
ated with any entity in the system, including users, subjects and objects. Appro-
priate attributes can capture identities and access control lists (DAC), security
labels, clearances and classifications (MAC) and roles (RBAC). As such ABAC
supplements and subsumes rather than supplants these currently dominant mod-
els. Moreover any number of additional attributes such as location, time of day,
strength of authentication, departmental affiliation, qualification, and frequent
flyer status, can be brought into consideration within the same extensible frame-
work of attributes. Thus the proliferation of RBAC extensions might be unified
by adding appropriate attributes within a uniform framework, solving many of
these shortcomings of core RBAC. At the same time we should recognize that
ABAC with its flexibility may further confound the problem of role design and
engineering. Attribute engineering is likely to be a more complex activity, and a
price we may need to pay for added flexibility.

Much as RBAC concepts were around for decades before their formaliza-
tion [13], nascent ABAC notions have been around for a while (see related work).
The ABAC situation today is analogous to RBAC in its pre-1992 pre-RBAC and
1992-1996 early-RBAC periods [13]. Although considerable literature has been
published, there is no agreement on what ABAC means. Fundamental questions
such as components of core models lack authoritative answers, let alone a widely
accepted ABAC model.

In this paper, we take a first step towards our eventual goal of developing an
authoritative family of foundational models for attribute based access control.
We believe this goal can be achieved only by means of incremental steps that
advance our understanding. ABAC is a rich platform. Addressing it in its full
scope from the beginning is infeasible. There are simply too mnay moving parts.
A reasonable first step is to develop a formal ABAC model that is just sufficiently
expressive to capture DAC, MAC and RBAC. This provides us a well-defined
scope while ensuring that the resulting model has practical relevance. There
have been informal demonstrations, such as [8,21], of the classical models using
attributes. Our goal is to develop more complete and formal constructions.

The paper is organized as follows. We review previous work in section 2. In
section 3, we characterize the three classical models from an ABAC perspective
and informally identify the minimal features of an unifying ABAC model. In
section 4, we give an overview of the ABACα model. In section 5, we present
the formal definition of the model as well as functional specifications. In section
6, we show the configurations for DAC, MAC and RBAC in ABACα. Section 7
concludes the paper.

A Unified ABAC Model Covering DAC, MAC and RBAC 43

2 Related Work

Extensions to RBAC by combining attributes and roles have been widely studied.
[15] defines parameterized privileges to restrict access to a subset of objects.
Similar literature such as parameterized role [3,10,14], object sensitive role [12]
and attributed role [27] are also proposed. RB-RBAC model [4] use attributes
to assist automatic user-role assignment.

Several attribute based access control systems and models have been pro-
posed. The UCON model [21] focuses on usage control where authorizations are
based on the attributes of the involved components. It is attribute-based but,
rather than dealing with core ABAC concepts, it focuses on advanced access
control features such as mutable attributes, continuous enforcement, obligations
and conditions. UCON more or less assumes that an ABAC model is in place
on top of which the UCON model is constructed. [21] sketches out instantiation
of DAC, MAC and RBAC in UCON but the constructions are informal and not
complete. Informal mappings of an ABAC system into DAC, MAC and RBAC
are also described in [8]. Damiani et al [9] describe an informal framework for
attribute based access control in open environments. Bonatti et al [6,7] present
a uniform structure to logically formulate and reason about both service access
and information disclosure constraints according to related entity attributes.
Similarly, [28,29,30] develop a service negotiation framework for requesters and
providers to gradually expose their attributes. However, none of these investi-
gates their connections with DAC, MAC and RBAC. Wang et al [26] proposes
a framework that models an attribute-based access control system using logic
programming with set constraints of a computable set theory. This work mainly
focus on how set theory helps define the policy, rather than the model itself.
Flexible access control system [16,5] can specify some features of attribute based
access policies. Yuan and Tong [31] describe ABAC in the aspects of authoriza-
tion architecture and policy formulation. This work focus on enforcement level
rather than policy level of the model. Bo et al [19] mention that DAC, MAC
and RBAC is configurable through ABAC. However, neither formal model nor
details of the configurations are provided. Role-based trust management [20] is
a flexible approach for access control in distributed systems where access control
decisions are based on tracking chaining credentials. However, its core idea is
extensions to role based access control. XACML [1] and SAML [2] are access
control-related web services standards that both support attribute-based access
control. These standard languages are designed without a formal ABAC model.

3 ABACα: Covering DAC, MAC and RBAC

Our goal is to develop an ABAC model that has “just sufficient” features to be
“easily and naturally” configured to do DAC, MAC and RBAC. We recognize
these terms are qualitative, hence the quotation marks. For clarity of reference
we designate this model as ABACα and understand ABAC to denote the larger
concept. Our goal is to eventually develop a family of ABAC models, analogous

44 X. Jin, R. Krishnan, and R. Sandhu

to RBAC96 [23], which will become the de facto standard for defining, refining
and evolving ABAC. The contributions of this paper are one step towards this
goal.

We very much expect ABAC to include advanced features that go significantly
beyond ABACα, e.g., mutable attributes [21], environment attributes [31] and
connection attributes [18]. At this point it is premature to consider whether
ABACα might be the core ABAC model, an advanced model or a special case
of some model in a prospective ABAC family. Which features belong in a core
ABAC model, which belong in advanced models and which are outside the scope
of ABAC are crucial questions that researchers must eventually resolve. However,
for the moment, we deliberately limit our scope to developing ABACα.

ABACα is motivated by the fact that the three classical models have been
widely deployed and remain in active widespread use. The value of ABAC has
been perceived in benefits it provides beyond DAC, MAC and RBAC, such as
dynamic access control [25]. Nonetheless, it is of interest to develop ABACα that
captures these three without incorporating “extraneous” features. We anticipate
that ABACα will eventually fit somewhere within the yet-to-be-developed au-
thoritative family of ABAC models.

For purpose of ABACα we understand DAC to mean owner-controlled access
control lists [24], MAC to mean lattice-based access control with tranquility [22]
(i.e.,subject and object label do not change)and RBAC to mean core or flat
RBAC (RBAC0), and hierarchical RBAC (RBAC1) [11,23]. Extensions beyond
these interpretations of DAC, MAC and RBAC may or may not require ex-
tensions to ABACα, comprehensive study of which is outside the scope of this
paper.

Table 1. ABACα intrinsic requirements

Subject Object
attribute attribute Subject
values values Attribute attribute

constrained constrained Attribute functions Object modification
by creating by creating range return attributes by creating

user? subject? ordered? set value? modification? user?

DAC YES YES NO YES YES NO
MAC YES YES YES NO NO NO
RBAC0 YES NA NO YES NA YES
RBAC1 YES NA YES YES NA YES

ABACα YES YES YES YES YES YES

The intrinsic features of ABACα that follow from the above interpretation of
DAC, MAC and RBAC are highlighted in Table 1. This table recognizes three
kinds of familiar entities: users, subjects (or sessions in RBAC) and objects.
Each user, subject and object has attributes associated with it. The range of
each attribute is either atomic valued or set valued, with atomic values partially

A Unified ABAC Model Covering DAC, MAC and RBAC 45

ordered or unordered and set values ordered by subset. Let us consider each
column in turn.

Column 1. In all cases subject attribute values are constrained by attributes
of the creating user. In MAC, users can only create subjects whose clearance is
dominated by that of the user. In RBAC, subjects can only be assigned roles
assigned to or inherited by the creating user. In DAC, MAC and RBAC, the
subject’s creator is set to be the creating user. Interestingly this is the only
column with YES values for all rows.

Column 2. For object attributes in MAC a subject can only create objects with
the same or higher classification as the subject’s clearance. In DAC there is no
constraint on the access control list associated with a newly created object. It is
up to the creator’s discretion. However, we recognize that DAC has a constraint
on newly created objects in that root user usually has all access rights to ev-
ery object and the owner can not forbid this. RBAC does not speak to object
creation.

Column 3. In MAC clearances are values from a lattice of security labels. In
RBAC1 roles are partially ordered by permission inheritance. DAC and RBAC0

do not require ordered attribute values.

Column 4. In MAC the clearance attribute is atomic valued as a single label
from a lattice. In RBAC0 and RBAC1 attributes are sets of roles, and in DAC
each access control list is a set of user identities.

Column 5. In DAC the user who created an object can modify its access con-
trol lists. MAC (with tranquility) does not permit modification of an object’s
classification. RBAC0 and RBAC1 do not speak to this issue.

Column 6. Modification of subject attributes by the creating user is explicitly
permitted in RBAC0 and RBAC1 to allow dynamic activation and deactivation
of roles. DAC and MAC do not require this feature.

Each column imposes requirements on ABACα so we have YES across the
entire row. Table 1 is, of course, not a complete list of all required features to
configure the classical models, but rather highlights the salient requirements that
stem from each classical model.

4 ABACα Components

Based on the above analysis, we present a unified ABACα model informally in
this section followed by its formalization in the next section. The structure of
ABACα model is shown in Figure 1. The core components of this model are: users
(U), subjects (S), objects (O), user attributes (UA), subject attributes (SA),
object attributes (OA), permissions (P), authorization policies, and constraint
checking policies for creating and modifying subject and object attributes.

An attribute is a function which takes an entity such as a user and returns a
specific value from its range. An attribute range is given by a finite set of atomic

46 X. Jin, R. Krishnan, and R. Sandhu

Fig. 1. Unified ABAC model structure

values. An atomic valued attribute will return one value from the range, while
a set valued attribute will return a subset of the range. Each user is associ-
ated with a finite set of user attribute functions whose values are assigned by
security administrators (outside the scope of the model). These attributes rep-
resent the user properties, such as name, clearance, roles and gender. Subjects
are created by users to perform some actions in the system. For the purpose
of this paper, subjects can only be created by a user and are not allowed to
create other subjects. The creating user is the only one who can terminate a
subject. Each subject is associated with a finite set of subject attribute func-
tions which require an initial value at creation time. Subject attributes are set by
the creating user and are constrained by policies established by security archi-
tects (discussed later). For example, a subject attribute value may be inherited
from a corresponding user attribute. This is shown in Figure 1 as an arrow from
user attributes to subject attributes. Objects are resources that need to be pro-
tected. Objects are associated with a finite set of object attribute functions.
Objects may be created by a subject on behalf of its user. At creation, the ob-
ject’s attribute values may be set by the user via the subject. The values may
be constrained by the corresponding subject’s attributes. For example, the new
object may inherit values from corresponding subject attributes. In Figure 1, the
arrow from subject attributes to object attributes indicates this relationship.

Constraints are functions which return true when conditions are satisfied and
false otherwise. Security architects configure constraints via policy languages.
Constraints can apply at subject and object creation time, and subsequently at
subject and object attribute modification time.

Permissions are privileges that a user can hold on objects and exercise via
a subject. Permissions enable access of a subject to an object in a particular
mode, such as read or write. Permissions definition is dependent on specific
systems built using this model.

Authorization policy. Authorization policies are two-valued boolean func-
tions which are evaluated for each access decision. An authorization policy for
a specific permission takes a subject, an object and returns true or false based
on attribute values. More generally, access decision may be three-valued, pos-
sibly returning “don’t know” in addition to true and false. This is appropriate

A Unified ABAC Model Covering DAC, MAC and RBAC 47

Table 2. Basic sets and functions of ABACα

U, S and O represent finite sets of existing users, subjects and objects respectively.

UA, SA and OA represent finite sets of user, subject and object attribute functions
respectively. (Henceforth referred to as simply attributes.)

P represents a finite set of permissions.

For each att in UA ∪ SA ∪ OA, Range(att) represents the attribute’s range, a finite
set of atomic values.

SubCreator: S → U . For each subject SubCreator gives its creator.

attType: UA ∪ SA ∪ OA → {set, atomic}. Specifies attributes as set or atomic valued.

Each attribute function maps elements in U, S and O to atomic or set values.

∀ua ∈ UA. ua : U →
{
Range(ua) if attType(ua) = atomic

2Range(ua) if attType(ua) = set

∀sa ∈ SA. sa : S →
{
Range(sa) if attType(sa) = atomic

2Range(sa) if attType(sa) = set

∀oa ∈ OA. oa : O →
{
Range(oa) if attType(oa) = atomic

2Range(oa) if attType(oa) = set

in multi-policy systems. It suffices for our purpose to consider just two values.
Security architects are able to specify different authorization policies using the
language offered in this model.

5 Formal ABACα Model

The basic sets and functions in ABACα are given in Table 2. U is the set of
existing users and UA is a set of attribute function names for the users in U.
Each attribute function in UA maps a user in U to a specific value. This could
be atomic or set valued as determined by the type of the attribute function
(attType). We specify similar sets and functions for subjects and objects. Sub-
Creator is a distinguished attribute that maps each subject to the user who
creates it (an alternate would be to treat this attribute as a function in SA).
Finally, P is a set of permissions.

Policy Configuration Points. We define four policy configuration points as
shown in Table 3. The first is for authorization policies (item 1 in table 3). The
security architect specifies one authorization policy for each permission. The
authorization function returns true or false based on attributes of the involved
subject and object. The second configuration point is constraints for subject
attribute assignment (item 2 in table 3). The third is constraints for object
attributes assignment at the time of object creation (item 3 in table 3). The
fourth is constraints for object attribute modification after the object has been

48 X. Jin, R. Krishnan, and R. Sandhu

Table 3. Policy configuration points and languages of ABACα

1. Authorization policies.
For each p ∈ P, Authorizationp(s:S,o:O) returns true or false.
Language LAuthorization is used to define the above functions (one per permission),
where s and o are formal parameters.

2. Subject attribute assignment constraints.
Language LConstrSub is used to specify ConstrSub(u:U,s:S,saset:SASET), where u, s
and saset are formal parameters. The variable saset represents proposed attribute name
and value pairs for each subject attribute. Thus SASET is a set defined as follows:

SASET =
⋃

∀sa∈SA OneElement(SASETsa)

For each sa in SA, SASETsa =

{
{sa} × Range(sa) if attType(sa) = atomic

{sa} × 2Range(sa) if attType(sa) = set

We define OneElement to return a singleton subset from its input set.

3. Object attribute assignment constraints at object creation time.
Language LConstrObj is used to specify ConstrObj(s:S,o:O,oaset:OASET), where s,
o and oaset are formal parameters. The variable oaset represents proposed attribute
name and value pairs for each object attribute. Thus OASET is a set defined as follows:

OASET =
⋃

∀oa∈OA OneElement(OASEToa)

For each oa in OA, OASEToa =

{
{oa} × Range(oa) if attType(oa) = atomic

{oa} × 2Range(oa) if attType(oa) = set

4. Object attribute modification constraints.
Language LConstrObjMod is used to specify ConstrObjMod(s:S,o:O,oaset:OASET),
where s, o and oaset are formal parameters.

created (item 4 in table 3). Note that we have not provided a configuration
point for subject attribute modification after it has been created. For the stated
purposes in this paper, the function SubCreator captures necessary information.

Policy Configuration Languages. Each policy configuration point is ex-
pressed using a specific language. The languages specify what information is
available for the functions that configure the four points discussed above. For
example, in LConstrSub function, only attributes from the user who wants to
create the subject as well as the proposed subject attribute values are allowed.
Since all specification languages share the same format of logical structure while
differing only in the values they can use for comparison, we define a template
called Common Policy Language (CPL). CPL is not a complete language unless
terminals set and atomic are specified. It can be instantiated for specifying each
configuration point. CPL is defined in table 4.

A Unified ABAC Model Covering DAC, MAC and RBAC 49

Table 4. Definition of CPL

ϕ ::= ϕ ∧ ϕ | ϕ ∨ ϕ | (ϕ) | ¬ ϕ | ∃ x ∈ set.ϕ | ∀ x ∈ set. ϕ | set setcompare set |
atomic ∈ set | atomic atomiccompare atomic

setcompare ::= ⊂ | ⊆ | �
atomiccompare ::= < | = | ≤

LAuthorization is a CPL instantiation for specifying authorization policies in
which set and atomic are specified as follows:

set::= setsa(s) | setoa(o)
atomic::= atomicsa(s) | atomicoa(o)
setsa ∈ {sa | sa ∈ SA ∧ attType(sa) = set }
setoa ∈ {oa | oa ∈ OA ∧ attType(oa) = set }
atomicoa ∈ {oa | oa ∈ OA ∧ attType(oa) = atomic }
atomicsa ∈ {sa | sa ∈ SA ∧ attType(sa) = atomic }

LAuthorization allows one to specify policies based only on the value of involved
subject and object. Parameters such as s and o in this and following languages
are formal parameters as introduced in table 3.

LConstrSub is a CPL instantiation for specifying ConstrSub where:
set::= setua(u) | value
atomic::= atomicua(u) | value
setua ∈ {ua | ua ∈ UA ∧ attType(ua) = set }
atomicua ∈ {ua | ua ∈ UA ∧ attType(ua)= atomic }
value ∈ {val | (sa, val) ∈ saset ∧ sa ∈ SA}

This instance is different from above because in the constraint function for sub-
ject attributes, only the attribute of user who wants to create the subject and
the proposed values for subject attributes are allowed.

LConstrObj is a CPL instantiation for specifying ConstrObj where:

set::= setsa(s) | value
atomic::= atomicsa(s) | value
setsa ∈ {sa | sa ∈ SA ∧ attType(sa) = set }
atomicsa ∈ {sa | sa ∈ SA ∧ attType(sa)= atomic }
value ∈ {val | (oa, val) ∈ oaset ∧ oa ∈ OA}

Here we use subject attributes instead of user attributes.
LConstrObjMod, used to specify ConstrObjMod, is the same as above except:

set::= setsa(s) | setoa(o) | value and atomic::= atomicsa(s) | atomicoa(o) | value.
Note that this language allows one to compare proposed new attribute values
with current attribute values of an object unlike LConstrObj.

Functional Specifications. The ABACα functional specification, as shown in
Table 5, outlines the semantics of various functions that are required for creation
and maintenance of the ABACα model components. Our intention here is to only
provide a sample set of key functions due to space limitations. The first column

50 X. Jin, R. Krishnan, and R. Sandhu

Table 5. Functional specification

Functions Conditions Updates

Administrative functions: Creation and maintenance of user and their attributes.
UASET is a set containing name and value pairs for each user attribute.

UASET =
⋃

∀ua∈UA OneElement(UASETua)

∀ua ∈ UA. UASETua =

{
{ua} × Range(ua) if attType(ua) = atomic

{ua} × 2Range(ua) if attType(ua) = set

AddUser u/∈U U′=U∪{u}
(u:NAME,uaset:UASET) forall (ua,va)∈uaset do

ua(u)=va

DeleteUser(u:NAME) u∈U S′=S\{s|SubCreator(s)=u}
/*delete all u’s subjects*/ U′=U\{u}
ModifyUserAtt u∈U forall (ua,va)∈uaset do
(u:NAME,uaset:UASET) ua(u)=va
/*delete all u’s subjects*/ S′=S\{s|SubCreator(s)=u}
System functions: User level operations.

CreateSubject u∈U ∧ s/∈S∧ S′=S∪{s};SubCreator(s)=u
(u, s:NAME,saset:SASET) ConstrSub(u, s, saset) forall (sa,va)∈saset do

sa(s)=va

DeleteSubject s∈S ∧ u∈U ∧ S′=S\{s}
(u, s:NAME) SubCreator(s)=u

ModifySubjectAtt s∈S ∧ u∈U ∧ forall (sa,va)∈saset do
(u, s:NAME,saset:SASET) SubCreator(s)=u ∧ sa(s)=va

ConstrSub(u, s, saset)

CreateObject s∈S ∧ o/∈O ∧ O′=O∪{o}
(s, o:NAME,oaset:OASET) ConstrObj(s, o, oaset) forall (oa,va)∈oaset do

oa(o)=va

ModifyObjectAtt s∈S ∧ o∈O ∧ forall (oa,va)∈oaset do
(s, o:NAME,oaset:OASET) ConstrObjMod(s, o, oaset) oa(o)=va

∀ p ∈ P. Authorizationp;
ConstrSub; ConstrObj; /*Left to be specified by security architects*/
ConstrObjMod

lists all the function names as well as required parameters. The second column
represents the conditions which need to be satisfied before the updates, which
are listed in the third column, can be executed. NAME refers to set of all names
for various entities in the system.

The first kind of functions are administrative in nature which are designed to
be invoked only by security administrators. We do not specify the authorization
conditions for administrative functions which are outside the scope of ABACα.
They mainly deal with user and user attribute management. One important is-
sue with the user management is that the subjects created by a user are forced
to be terminated whenever user attributes are modified or the user is deleted.
We understand there are various options here (discussion on this question is out

A Unified ABAC Model Covering DAC, MAC and RBAC 51

Table 6. DAC (Owner-controlled access control lists) configuration

Basic sets and functions
UA={}, SA={}, OA={reader, writer, createdby}
P={read, write}
Range(reader)=Range(writer)=Range(createdby)=U
attType(reader)=attType(writer)=set
attType(createdby)=atomic
Thus, reader: O → 2U,writer: O → 2U, createdby: O → U
The function SubCreator is defined in Table 2.
Configuration points
1. Authorization policy
Authorizationread(s:S, o:O)≡SubCreator(s)∈reader(o)
Authorizationwrite(s:S, o:O)≡SubCreator(s)∈writer(o)
2. Constraint for subject attribute is not required
Note that SubCreator is implicitly captured in function CreateSubject in Table 5.
Function ConstrSub(u:U, s:S, {}:SASET) is defined to return true.
3. Constraint for object attribute at creation time
ConstrObj(s:S, o:O, {(reader,val1), (writer,val2), (createdby,val3)}:OASET)≡
val3=SubCreator(s)
4. Constraint for object attribute at modification time
ConstrObjMod(s:S, o:O, {(reader,val1), (writer,val2), (createdby,val3)}:OASET)≡
createdby(o)=SubCreator(s)

of scope due to lack of space). The second kind of functions are system functions
which can be invoked by subjects and users. By default, the first function param-
eter is the invoker of each function. For example, CreateSubject is invoked by
user u and ModifyObjectAtt is invoked by subject s. The third kind of functions
are authorization policies and subject and object attribute constraint functions
which are left to be configured by security architects.

6 ABACα: Configuring DAC, MAC and RBAC

In this section, we show the capability of ABACα in configuring DAC, MAC and
RBAC. For this illustration, we set P={read, write}.
DAC (Table 6). Each object is associated with the same number of set-valued
attributes as that of permissions and there is a one to one semantic mapping
between them. An object attribute returns the list of users that hold the per-
mission indicated by the object attribute name. Object attribute createdby is
set to be the owner of this object.

MAC (Table 7). Each user is associated with an atomic-valued attribute
uclearance. Each subject is also associated with an atomic-valued attribute
sclearance. Each object is associatedwith an atomic-valued attribute sensitivity.
Similar to MAC, the user and subject attributes represent their clearance in the
system. The sensitivity attribute of the object represents the object’s

52 X. Jin, R. Krishnan, and R. Sandhu

Table 7. MAC configuration

Basic sets and functions
UA={uclearance}, SA={sclearance}, OA={sensitivity}
P={read,write}
Range(uclearance)=Range(sclearance)=Range(sensitivity)=L
L is a lattice defined by system.
attType(uclearance)=attType(sclearance)=attType(sensitivity)= atomic
Thus, uclearance: U → L, sclearance: S → L, sensitivity: O → L.
Configuration points
1. Authorization policies
Authorizationread(s:S, o:O)≡sensitivity(o)≤sclearance(s)
Liberal Star: Authorizationwrite(s:S, o:O)≡sclearance(s)≤sensitivity(o)
Strict Star: Authorizationwrite(s:S, o:O)≡sclearance(s)=sensitivity(o)
2. ConstrSub(u:U, s:S, {(sclearance,value)}:SASET)≡value≤uclearance(u)
3. ConstrObj(s:S, o:O, {(sensitivity, value)}:OASET)≡sclearance(s)≤value
4. ConstrObjMod(s:S, o:O, {(sensitivity, value)}:OASET) returns false.

Table 8. RBAC configurations

RBAC0 configuration
Basic sets and functions
UA={urole}, SA={srole}, OA={rrole,wrole}
P={read,write}
Range(urole)=Range(srole)=Range(rrole)=Range(wrole)=R
R is a set of atomic roles define by the system.
attType(urole)=attType(srole)=attType(rrole)=attType(wrole)=set
Thus, urole: U → 2R, srole: S → 2R, rrole: O → 2R, wrole: O → 2R

Configuration points
1. Authorization policy
Authorizationread(s:S, o:O)≡∃r∈srole(s).r∈rrole(o)
Authorizationwrite(s:S, o:O)≡∃r∈srole(s).r∈wrole(o) (same as above)
2. ConstrSub(u:U, s:S, {(srole,val1)}:SASET)≡val1⊆urole(u)
3. ConstrObj(s:S, o:O, {(rrole,val1),(wrole,val2)}:OASET) returns false.
4. ConstrObjMod(s:S, o:O, {(rrole,val1),(wrole,val2)}:OASET) returns false.

RBAC1 configuration
Basic sets and functions
The basic sets and functions are the same as RBAC0 except:
R is a partially ordered set defined by the system.
Configuration points
1. Authorization policy
Authorizationread(s:S, o:O)≡∃r1∈srole(s). ∃r2∈rrole(o).r2≤r1
Authorizationwrite(s:S, o:O)≡∃r1∈srole(s). ∃r2∈wrole(o).r2≤r1 (same as above)
2. ConstrSub(u:U, s:S, {(srole,val1)}:SASET)≡∀r1∈val1.∃r2∈urole(u).r1≤r2
3. ConstrObj(s:S, o:O, {(rrole,val1),(wrole,val2)}:OASET) returns false.
4. ConstrObjMod(s:S, o:O, {(rrole,val1),(wrole,val2)}:OASET) returns false.

A Unified ABAC Model Covering DAC, MAC and RBAC 53

classification in MAC. The 3 attributes share the same range which is represented
by a system maintained lattice L.

RBAC (Table 8). Each user and subject is associated with set-valued at-
tributes urole and srole respectively. Each object is associated with the same
number of set-valued attributes as that of permissions and there is a one to
one semantic mapping between them. Each attribute returns the role that is
assigned the permission on this specific object. For example, rrole of object obj
returns the role which is assigned the permission of reading obj. The ranges of
all attributes are the same as that of a system defined set of role names R which
are unordered for RBAC0 and partially ordered for RBAC1. Note that subjects
model sessions in RBAC.

7 Conclusion and Future Work

In this paper, we proposed a unified ABACα model and showed that it can
be used to naturally configure the three classical models. We believe the in-
sights gained in this paper will assist understanding the connections between
desired ABAC model and widely-deployed classical models. In addition, we hope
this work will inspire further research in formally designing foundational ABAC
models.

Some extensions of classical models can also be accommodated. In MAC, it is
useful to categorize subjects into different types as read only and read write for
both security and availability. The rule governing their actions can be different in
that read only subjects are allowed to read all levels of objects. While read write
subjects’ action is strictly regulated. Another example is in RBAC, certain level
of automatic permission-role assignment can be achieved by interpreting per-
missions as accessing a group of objects with the same attribute expression.
Organization based access control model (OrBAC)[17] is another example of
abstracting activities, objects and so on.

The first aspect of future work is to extend and consolidate the proposed
model. Examples are to accommodate static/dynamic separation of duty in
RBAC and subjects carrying additional attributes other than the correspond-
ing users to reflect contextual information. Security properties and expressive
power of this model are important questions for further theoretical analysis. On
the other hand, useful instances of this model with various relationships be-
tween user, subject and object attributes can be developed for specific groups
of application. For example, usable ABACα instance in organizations offer bet-
ter guidance than general ABACα. In future work, we plan to develop XACML
profiles for ABAC models as we develop them. By design XACML does not rec-
ognize user-subject mapping but assumes that subject attributes are correctly
produced from user attributes prior to making access decisions. Modeling this
process will therefore require extensions to XACML.

Acknowledgment. The authors are partially supported by grants from AFOSR
MURI and the State of Texas Emerging Technology Fund.

54 X. Jin, R. Krishnan, and R. Sandhu

References

1. OASIS, Extensible access control markup language (XACML), v2.0 (2005)

2. OASIS, Security assertion markup language (SAML), v2.0 (2005)

3. Abdallah, A.E., Khayat, E.J.: A formal model for parameterized role-based access
control. In: Formal Aspects in Security and Trust (2004)

4. Al-Kahtani, M.A., Sandhu, R.S.: A model for attribute-based user-role assignment.
In: ACSAC (2002)

5. Bertino, E., Catania, B., Ferrari, E., Perlasca, P.: A logical framework for reasoning
about access control models. In: SACMAT (2001)

6. Bonatti, P.A., Samarati, P.: Regulating service access and information release on
the web. In: ACM CCS (2000)

7. Bonatti, P.A., Samarati, P.: A uniform framework for regulating service access and
information release on the web. J. Comp. Secur. (2002)

8. Chadwick, D.W., Otenko, A., Ball, E.: Role-based access control with X.509 at-
tribute certificates. IEEE Internet Computing (2003)

9. Damiani, E., di Vimercati, S.D.C., Samarati, P.: New paradigms for access control
in open environments. In: Int. Sym. on Sig. Proc. and Info. Tech. (2005)

10. Evered, M.: Supporting parameterised roles with object-based access control. In:
HICSS (2003)

11. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Richard Kuhn, D., Chandramouli, R.:
Proposed nist standard for role-based access control. ACM Trans. Inf. Syst. Secur.
(2001)

12. Fischer, J., Marino, D., Majumdar, R., Millstein, T.: Fine-Grained Access Con-
trol with Object-Sensitive Roles. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,
vol. 5653, pp. 173–194. Springer, Heidelberg (2009)

13. Fuchs, L., Pernul, G., Sandhu, R.: Roles in information security: A survey and
classification of the research area. Comp. and Secur. (2011)

14. Ge, M., Osborn, S.L.: A design for parameterized roles. In: DBSec (2004)

15. Giuri, L., Iglio, P.: Role templates for content-based access control. In: ACM Work-
shop on RBAC (1997)

16. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.: Flexible support for
multiple access control policies. ACM Trans. Database Syst. (2001)

17. El Kalam, A.A., Benferhat, S., Miège, A., El Baida, R., Cuppens, F., Saurel, C.,
Balbiani, P., Deswarte, Y., Trouessin, G.: Organization based access control. In:
POLICY (2003)

18. Kandala, S., Sandhu, R., Bhamidipati, V.: An attribute based framework for risk-
adaptive access control models. In: ARES (2011)

19. Lang, B., Foster, I.T., Siebenlist, F., Ananthakrishnan, R., Freeman, T.: A flexible
attribute based access control method for grid computing. J. Grid Comput. (2009)

20. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust manage-
ment framework. In: 2002 IEEE S&P (2002)

21. Park, J., Sandhu, R.: The UCONabc usage control model. ACM Trans. Inf. Syst.
Secur. (2004)

22. Sandhu, R.S.: Lattice-based access control models. IEEE Computer (1993)

23. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer (1996)

24. Sandhu, R.S., Samarati, P.: Access control: Principles and practice. IEEE Com.
Mag. (1994)

A Unified ABAC Model Covering DAC, MAC and RBAC 55

25. Schläger, C., Sojer, M., Muschall, B., Pernul, G.: Attribute-Based Authentica-
tion and Authorisation Infrastructures for E-Commerce Providers. In: Bauknecht,
K., Pröll, B., Werthner, H. (eds.) EC-Web 2006. LNCS, vol. 4082, pp. 132–141.
Springer, Heidelberg (2006)

26. Wang, L., Wijesekera, D., Jajodia, S.: A logic-based framework for attribute based
access control. In: 2nd ACM Workshop on FMSE (2004)

27. Yong, J., Bertino, E., Toleman, M., Roberts, D.: Extended RBAC with role at-
tributes. In: 10th Pacific Asia Conf. on Info. Sys. (2006)

28. Yu, T., Ma, X., Winslett, M.: Prunes: an efficient and complete strategy for auto-
mated trust negotiation over the internet. In: ACM CCS (2000)

29. Yu, T., Winslett, M., Seamons, K.E.: Interoperable strategies in automated trust
negotiation. In: ACM CCS (2001)

30. Yu, T., Winslett, M., Seamons, K.E.: Supporting structured credentials and sen-
sitive policies through interoperable strategies for automated trust negotiation.
ACM Trans. Inf. Syst. Secur. (2003)

31. Yuan, E., Tong, J.: Attributed based access control (ABAC) for web services. In:
Intl. ICWS (2005)

	A Unified Attribute-Based Access Control Model Covering DAC, MAC and RBAC

	Introduction
	Related Work
	ABAC: Covering DAC, MAC and RBAC
	ABAC Components
	Formal ABAC Model
	ABAC: Configuring DAC, MAC and RBAC
	Conclusion and Future Work
	References

