
Lock Removal for Concurrent Trace Programs �

Vineet Kahlon1 and Chao Wang2

1 NEC Laboratories America, Princeton, NJ 08540
2 Department of ECE, Virginia Tech, Blacksburg, VA 24061

Abstract. We propose a trace-based concurrent program analysis to soundly re-
move redundant synchronizations such as locks while preserving the behaviors
of the concurrent computation. Our new method is computationally efficient in
that it involves only thread-local computation and therefore avoids interleaving
explosion, which is known as the main hurdle for scalable concurrency analysis.
Our method builds on the partial-order theory and a unified analysis framework;
therefore, it is more generally applicable than existing methods based on simple
syntactic rules and ad hoc heuristics. We have implemented and evaluated the
proposed method in the context of runtime verification of multithreaded Java and
C programs. Our experimental results show that lock removal can significantly
speed up symbolic predictive analysis for detecting concurrency bugs. Besides
runtime verification, our new method will also be useful in applications such as
debugging, performance optimization, program understanding, and maintenance.

1 Introduction

Concurrent programs are notoriously difficult to analyze due to their behavioral com-
plexity resulting from the often extremely large number of thread interleavings. This
renders comprehending all the possible ways in which threads interact a difficult prob-
lem. As a result, programmers often take a defensive stance and label large sections of
code as critical sections. This may result in the addition of redundant locks, both degrad-
ing performance and making program modeling, analysis, and understanding difficult.
The situation is particularly severe in trace-based concurrent program analysis. When
focusing on a concrete execution trace rather than the entire program, we often find
significantly more redundant locks, i.e. locks that are not completely redundant in the
whole program may become redundant when the analysis is restricted to a trace.

Although there exist some methods for identifying redundant synchronizations in
Java and C programs [3,4,6,22,1,30], e.g. as part of the compiler’s performance opti-
mization, they are all based on very simple syntactic rules and ad hoc heuristics. Since
these methods are based on matching patterns rather than analyzing the program seman-
tics, they do not lead to a generally applicable framework. Indeed, most of them handle
only the simple case of effectively thread-local objects, i.e. locks that are declared as
globally visible but are accessed only by one thread throughout the execution. For the
many truly shared but still redundant locks, these existing methods are not effective.

We address this limitation by introducing a new and more generally applicable lock
removal algorithm. Our method is generally applicable since it can remove not only the

� Chao Wang was supported in part by the NSF CAREER award CCF-1149454.

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 227–242, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

228 V. Kahlon and C. Wang

effectively thread-local locks but also the truly shared redundant locks. Our method is
also efficient since it is based on a compositional analysis that involves only thread-local
computation. Our method is sound in that it can guarantee preservation of the behavior
of the original computation.

In formulating our lock removal strategy, we start from the classical notion of a con-
current computation as a happens-before relation on the shared variable accesses or,
equivalently, as a set of partial orders. Two interleavings are equivalent if they induce
the same partial order of shared variable accesses. Since removing locks lifts the corre-
sponding mutual exclusion constraints, some previously infeasible thread interleavings
may become feasible. Thus there is a danger for lock removal to introduce new program
behaviors. To address this problem, we make sure that new interleavings are added by
lock removal only if they do not add new partial orders. This leads to the formulation
of the behavior preservation theorem, which is a main contribution of this paper.

Another main contribution is the set of efficiently checkable conditions under which
the behavior preservation is guaranteed. They reduce the semantic check of behavior
preservation to a simple static check of the feasibility of transitions between global
control states. This is significant because it allows us to avoid enumerating the often
astronomically large number of thread interleavings. Our method is thread-modular in
that it does not require inspecting the interleaved parallel composition of threads. In
addition, our focus on a concrete execution trace is also crucial in keeping the method
scalable. The concrete execution trace provides the exact memory addresses that are
accessed by each thread, thereby giving us the precise points-to information of lock
pointers, together with information about the actual array fields accessed, etc.

Trace-based concurrent program analysis has obvious applications not only in run-
time verification, but also in debugging, just-in-time (JIT) optimization, program un-
derstanding, and maintenance. An important feature of trace-based analysis is that the
trace program has finitely many threads and a fixed set of named locks. Although the
whole program may have pointers, loops, recursion, and dynamic thread creation, in
the trace program, each thread is reduced to a bounded straight-line path. Most of the
complications common to static program analysis are avoided because, during the con-
crete execution, branching decisions at if-else statements have been made, function calls
have been inlined, loops have been unrolled, and recursions have been applied. The only
remaining source of nondeterminism comes from thread interleaving.

We have implemented the proposed method in a runtime verification platform called
Fusion, where the underlying bug detection algorithm uses an SMT-based symbolic
analysis. Since redundant locks can introduce a large set of synchronization constraints
during the modeling and checking phases, their presence often significantly increases
the cost of the symbolic analysis. Our lock removal method has been used to remove
these redundant locks. Our experiments on a set of public Java and C programs showed
a significant reduction in the number of locks, which in turn led to a significant speedup
in the subsequent symbolic analysis.

To sum up, this paper has made the following two contributions: (1) formulating
the general framework of behavioral preservation to soundly remove redundant locks;
and (2) proposing a set of efficiently checkable conditions based on the thread-local
computation of lock access patterns.

Lock Removal for Concurrent Trace Programs 229

The remainder of this paper is organized as follows. In Section 2, we use two ex-
amples to illustrate both the benefit and challenges of lock removal. In Section 3, we
illustrate our main ideas. In Section 4, we present a set of efficiently checkable con-
ditions. In Section 5, we demonstrate the application of our algorithm on the running
example. Our experimental results are presented in Section 6. We review the related
work in Section 7 and give our conclusions in Section 8.

2 Motivation

The main driving application in this paper is runtime predictive analy-
sis [12,25,5,11,23,29,19], which is a promising method for detecting concurrency bugs
by analyzing an execution trace. In other words, even if the given test execution is
not erroneous, but if an alternative interleaving of the events of that trace can trigger
a failure, runtime predictive analysis will be able to detect it. Since a concurrent
program often has a very large number of sequential paths and thread interleavings,
statically analyzing the whole program is often extremely difficult. In such cases,
runtime predictive analysis offers a good compromise between runtime monitoring and
full-fledged model checking.

Runtime predictive analysis typically has three steps: (1) run a test of the concurrent
program to obtain an execution trace; (2) run a sound static analysis of the trace to
compute all the potential violations, e.g. deadlocks and race conditions; (3) for each
potential violation, build a precise predictive model to decide whether the violation is
feasible. The main scalability bottleneck is step 3 wherein the feasibility check needs to
explore all possible interleavings of the trace events. Although the problem in step 3 can
be solved by an efficient symbolic analysis [29,19], redundant locks in the trace program
can unnecessarily increase the cost of this analysis, since they can lead to a large number
of locking constraints that need to be modeled and checked. Our lock removal method
can cut down on the number of unnecessary locking constraints, therefore resulting in
significant performance improvement in the subsequent analysis.

T1() {
0a: —-;
1a: lock(A);
2a: a[1]++;
3a: unlock(A);
4a: a[2]++;
5a: lock(A);
6a: lock(B);
7a: a[3]++;
8a: unlock(B);
9a: unlock(A);
10a: sh++;

}

T2() {
0b: —-;
1b: a[10]++;
2b: a[11]++;
3b: lock(A);
4b: lock(B);
5b: a[12]++;
6b: unlock(B);
7b: unlock(A);
8b: sh++;

}

T ′
1() {

0a: —–;
1a: lock(A);
2a: —-;
3a: unlock(A);
4a: —-;
5a: lock(A);
6a: lock(B);
7a: —-;
8a: unlock(B);
9a: unlock(A);
10a: sh++;

}

T ′
2() {

0b: —-;
1b: —-;
2b: —-;
3b: lock(A);
4b: lock(B);
5b: —-;
6b: unlock(B);
7b: unlock(A);
8b: sh++;

}

T ′′
1 () {

0a: —-;
1a: —-;
2a: —-;
3a: —-;
4a: —-;
5a: —-;
6a: —-;
7a: —-;
8a: —-;
9a: —-;
10a: sh++;

}

T ′′
2 () {

0b: —-;
1b: —-;
2b: —-;
3b: —-;
4b: —-;
5b: —-;
6b: —-;
7b: —-;
8b: sh++;

}

(a) original (b) intermediate (c) final

Fig. 1. Example: removing redundant lock statements from a concurrent trace program

230 V. Kahlon and C. Wang

Consider the concurrent trace program in Fig. 1 (a), which has two straight-line paths
in threads T1 and T2, respectively. The global variables are sh and array a. Suppose that
the goal is to check whether locations 10a and 8b are simultaneously reachable (e.g. a
data race), we need to decide whether there exists a valid interleaving of these trace
statements along which T1 and T2 can reach 10a and 8b, respectively.

First, note that precise knowledge of the memory accesses is available since the trace
program is derived from a concrete execution. The knowledge can be used to cut down
the number of shared accesses that need to be interleaved. For example, although a[i]
is a global variable, the entries of a accessed by the two threads in this particular trace
program are all disjoint and can be treated as thread-local. In other words, we can use
the runtime information to slice away the redundant statements. This can reduce the
trace program in Fig. 1 (a) to the one in Fig. 1 (b).

Next, consider the program in Fig. 1 (b). Since locks A and B now protect only
thread-local statements, some of these lock statements may be redundant. We shall
show in later sections that, for this particular example, these lock statements are all
redundant and therefore can be removed while preserving the original program behav-
ior. This reduction yields the simple trace program shown in Fig. 1 (c) with only the
shared variable accesses. Consequently, it becomes easy to decide the simultaneous
reachability of 10a and 8b.

Challenges in Lock Removal. The example in Fig. 1 may give a false impression
that locks protecting only thread-local operations can always be removed. This is not
true, as demonstrated by Fig. 2. In this example, variable sh=0 initially. The assertion
at b7 holds because, to get value 2, one has to execute b1...b3 → a1...a6 → b4...b7,
which is impossible since lock A is held by thread T2 at b3, which prevents thread T1

from acquiring the same lock at location a2. However, if we remove the lock/unlock
statements at a2 and a4 – since they protect only thread-local operations – the assertion
at b7 may fail because the aforementioned interleaving is now allowed. This example
highlights the fact that locks may play a key role in defining the set of allowed program
behaviors even if they do not guard any global operation. It also shows that, without a
rigorous concurrency analysis, ad hoc heuristics are often susceptible to subtle errors.
We address this problem by proposing a generally applicable lock removal framework.

T1() { T2() {

a1 : sh ++; b1 :
a2 : lock(A) b2 : lock(A)
a3 : b3 : sh=0;
a4 : unlock(A) b4 : x=sh;
a5 : b5 : unlock(A)
a6 : sh ++; b6 :
a7 : b7 : assert(x!=2);
} }

a6: sh++

b1:

b3: sh=0

b4: x=sh

b7: assert(x!=2)

a1: sh++

Fig. 2. Example: Assuming that sh=0 initially. The lock statements at a2 and a4 cannot be re-
moved despite that they do not protect any shared access. Otherwise, assertion at b7 may fail.

Lock Removal for Concurrent Trace Programs 231

3 Lock Removal: The Core Idea

We say that a program P ′ results from another program P via lock removal if P ′ is
obtained from P by converting some of the lock statements to nop. A lock statement
in P is considered as redundant if removing that statement does not alter the program
behavior. Here the program behavior is defined as the set of interleaved computations
that are allowed by the program semantics. Since lock statements impose mutual ex-
clusion constraints, they restrict the thread interactions. By removing lock statements
from P , in general, we may allow the new program P ′ to have more interleavings; on
the other hand, it is impossible to remove any previously allowed interleavings in P .
Therefore, to preserve the program behavior, we only need to ensure that every newly
added interleaving (allowed in P ′ but not in P) is equivalent, in some sense, to an exist-
ing interleaving in P . In other words, lock removal is sound as long as it does not add
new equivalence classes (of interleavings).

3.1 The Lock Removal Strategy

Since characterizing interleavings directly is cumbersome and computationally expen-
sive, we rely on the standard notion of concurrent computations as happens-before re-
lations on the shared variable accesses [20,14]. That is, executing two operations from
different threads that update the same memory location in different orders may lead to
different results. Therefore, instead of preserving interleavings of all the statements, we
focus on preserving the partial orders of shared variable accesses (reads and writes).

For a program P comprised of the n threads T1, ..., Tn, a global control state s is a
tuple (c1, ..., cn) where ci is a control location of Ti for all i ∈ [1..n]. In contrast to
a concrete program state, denoted s ∈ s, the global control state s is more abstract in
that it tracks only the program counters but not the values of the program variables.
Therefore s can be viewed as a set of concrete states. Since thread-local operations are
invisible to the other threads, in the sequel we shall assume without loss of generality
that the locations in (c1, ..., cn) are all starting points of global operations, i.e. either
shared reads/writes or lock acquisitions. This restriction can drastically cut down the
number of global control states that need to be considered during our analysis. Note
that if a thread is at location ci, it means that the operation at ci has not been executed
yet.

Definition 1 (Visible Successor). For global control states s, s′ in program P , we say
that s′ is a visible successor of s iff there exist states s ∈ s and s′ ∈ s′ such that

– s′ is reachable from s via a valid concurrent computation, and
– along this computation, the first operation is the only global operation.

Our lock removal strategy can be phrased as follows: Removing all lock statements such
that no new visible successor is introduced to any global control state that is reachable
from the initial state in P . In other words, for each s, if we can preserve the set of global
control states that s can transit to, the program behavior will be preserved.

Consider Fig. 2 as an example. For all transitions between two global control loca-
tions, e.g. from (a2, b3) to (a6, b3), our lock removal strategy says that, if the transition

232 V. Kahlon and C. Wang

is not allowed by P before lock removal, it should not be allowed by P ′ either. Based
on this strategy, the lock statements at a2 and a4 will be preserved, because removing
them would make the infeasible transition in P from (a2, b3) to (a6, b3) feasible in P ′.

3.2 Conservative Static Check

Although the lock removal strategy proposed so far is sound as well as generally appli-
cable, computing the visible successors of a global control state is a challenging task,
because the conditions in Definition 1 are semantic conditions. Checking the reachabil-
ity between two concrete states s and s′ would be too expensive in practice. To avoid
this bottleneck, we introduce a set of checks based on the notion of static or control-
state reachability.

Let s = (c1, . . . , cn) and s′ = (c′1, ..., c′n) be two global control states, where for
each i ∈ [1..n], the local path xi of Ti leads from location ci to c′i. We say that s′ is
statically reachable from s if and only if there exists an interleaving of x1, ..., xn that
obeys the scheduling constraints imposed by the locks while ignoring data (which is the
consistency between shared variable accesses).

Definition 2 (Static Visible Successor). For global control states s, s′ in program P ,
we say that s′ is a static visible successor of s iff

– s is statically reachable from s via some interleaved computation, and
– along this computation, at most one global operation is present.

Here the second condition ensures that s′ can be immediately reached from s (hence a
successor). Let SuccP(s) be the set of static visible successors of s in program P . Our
static lock removal strategy is stated as follows.

Theorem 1 (Behavior Preservation). Let program P ′ result from program P via lock
removal. If for each global control state s of P , we have SuccP(s) = SuccP′(s), then
the two programs have the same behavior as defined by the partial orders of global
operations.

Intuitively, if no new global control state becomes reachable from the initial state, then
there is certainly no new program behavior. For brevity, we omit the proof. A crucial
property of Theorem 1 is that the static reachability check can be turned into a concep-
tual lock removal procedure as follows:

1. Enumerate the set S of global control states of the given trace program.
2. For each s ∈ S, compute the set SuccP(s)of static visible successors.
3. For each lock statement lk-stmt in thread Ti, if there exists a global control location

s such that, removing lk-stmt would add a new successor s′ that is not in SuccP(s),
we must retain lk-stmt else lk-stmt is removed.

There are two remaining problems. First, given two global control states s, s′, how to
efficiently decide whether s′ is a static visible successor of s. Second, how to efficiently
compute the set of static visible successors of s while avoiding the naive enumeration
of all global control states. We will address these two problems in the next section.

Lock Removal for Concurrent Trace Programs 233

4 Compositional Lock Removal

We present a compositional analysis for static lock removal to avoid the exponential
blowup incurred by naively enumerating the global control states. Our method is thread-
modular in that the lock removal computation involves only thread-local reasoning, and
therefore has a linear worst-case time complexity in the program size.

4.1 Deciding Static Reachability

We leverage an existing procedure [18] to decide the static reachability between two
global control states. The procedure is both sound and complete for 2-threaded pro-
grams with nested locks. For programs with more than two threads, the procedure re-
mains sound but is not complete. This is acceptable because, as long as it shows that s′

is statically unreachable from s, the unreachability is guaranteed to hold.

c1

c′1

c2

c′2

s

s′

x1 x2

T1 T2

The procedure in [18] can be viewed as a generalization of the
standard lockset analysis [24]. The key insight is that, to decide
whether s′ = (c′1, c′2) is statically reachable from s = (c1, c2),
for example, in a 2-threaded program, merely checking the dis-
jointness of the set of locks held by T1 and T2 at c′1 and c′2 is
not enough (see the figure on the right). Although overlapping
locksets prove that s′ is not reachable from s, the disjointness of
the locksets is not sufficient to prove that s′ is reachable from
s. Instead, reachability can be decided more accurately by first
computing a lock access pattern (LAP) for each path from ci to
c′i, where i ∈ [1..2], and then checking whether the LAPs are
consistent.

Definition 3 (Lock Access Pattern). The lock access pattern for path xi from ci to c′i
in thread Ti, denoted LAP(ci, c

′
i), is a tuple (L1, L2, bah, fah, Held, Acq) where

– L1 and L2 are the set of locks held by Ti at ci and c′i, respectively;
– bah and fah are the backward and forward acquisition histories, respectively:

• for each lock l ∈ L2 held at c′i, bah(l) is the set of locks acquired (and possibly
released) after the last acquisition of l along path xi from ci to c′i;

• for each lock l ∈ L1 held at ci, fah(l) is the set of locks released (and possibly
acquired) since the last release of l in traversing xi backward from c′i to ci.

– Held is the set of locks that are held in every state along path xi from ci to c′i;
– Acq is the set of locks that are acquired (and possibly released) along path xi.

A key feature of this LAP-based static analysis procedure is that all computations are
local to each individual thread, which is crucial in ensuring scalability.

Decomposition Result. The static reachability from s to s′ can be decided by checking
whether the corresponding lock access patterns are consistent. For ease of exposition,
we present the result for programs with two threads. However, the result, as well as all
the other subsequent results, is applicable to programs with n threads.

Let s = (c1, c2) and s′ = (c′1, c′2) be two global control states, and
LAP(c1, c

′
1) = (L1

1, L
1
2, bah1, fah1, Held1, Acq1) and LAP(c2, c

′
2) = (L2

1, L
2
2,

234 V. Kahlon and C. Wang

bah2, fah2, Held2, Acq2) be the lock access patterns. Then s′ is statically reachable
from s iff

1. L1
1 ∩ L2

1 = ∅, and L1
2 ∩ L2

2 = ∅;
2. there do not exist locks l ∈ L1

1 and l′ ∈ L2
1 such that l ∈ fah2(l′) and l′ ∈ fah1(l);

3. there do not exist locks l ∈ L1
2 and l′ ∈ L2

2 such that l ∈ bah2(l′) and l′ ∈ bah1(l);
4. Acq1 ∩Held2 = ∅, and Acq2 ∩Held1 = ∅.

For n-threaded programs, the only significant difference would be in conditions 2 and
3, wherein one has to account for the cases in which n threads form a cyclic dependency
that may span multiple threads instead of just two.

4.2 Compositional Analysis

To avoid the expensive enumeration of global control states as described in Theorem 1,
we compute for each individual thread, all pairs of local control states that may cor-
responds to some static visible successors. More specifically, a pair (ci, c′i) of control
locations in thread Ti is called a pair of interest (POI) iff

– ci and c′i correspond to either shared variable accesses or lock acquisitions, and
– there exists a local path xi in Ti from ci to c′i such that no other shared variable

access or lock acquisition occurs between ci and c′i.

Our compositional lock removal procedure is given in Algorithm 1. After computing
the POIs of each thread Ti, it traverses that thread to collect the lock access patterns for
all POIs. Let LPi denote the set of all lock access patterns in Ti. Note that LPi can be
computed via a single traversal pass of thread Ti (step 4).

Algorithm 1. Compositional Lock Removal
1: Input: Threads T1, T2

2: for each thread Ti do
3: Enumerate all pairs of interest POI(Ti).
4: Traverse the local path in Ti to compute LAP(ci, c

′
i) for each pair (ci, c′i) ∈ POI(Ti).

5: Let LPi be the set of lock access patterns of all POIs in Ti.
6: end for
7: for each pair (lap1, lap2) where lapi ∈ LPi for all thread index i ∈ [1..2] do
8: if lap1, lap2 are inconsistent then
9: Identify the set of lock statements that are the root causes of inconsistency.

10: end if
11: end for
12: Remove lock statements that are not the root causes of inconsistency for any pair.

Instead of iterating through the set of all global control states, Algorithm 1 considers
all pairs (lap1, lap2) of lock access patterns that are inconsistent (step 7). Note that
lapi corresponds to some pair (ci, c′i) ∈ POI(Ti) and the inconsistency of lap1 and
lap2 means that there exist some lock statements that prevent (c1, c2) from reaching

Lock Removal for Concurrent Trace Programs 235

(c′1, c
′
2). In this case, we need to identify a minimum subset of lock statements that are

sufficient to establish this inconsistency, and retain these lock statements. Finally any
lock statement that is not responsible for causing an inconsistency between any pair of
lock access patterns does not impact the reachability between any pair of global control
states, and is therefore removed.

It is worth pointing out that the lock statements (to be retained) can be identified
from the lock access patterns (lap1 and lap2) alone, without considering the global
control states or the POIs that generate these lock access patterns. In other words, we
can implicitly isolate the set of non-reachable pairs of global control states without
explicitly enumerating them. The algorithm can also be extended to programs with n
threads, by changing step 7 to check for inconsistent tuples of the form (lap1, ..., lapn),
as opposed to the inconsistent pair (lap1, lap2).

4.3 Identifying the Locks to Be Retained

If s′ is not statically reachable from s in the original program P , according to Sec-
tion 4.1, at least one of the conditions in the decomposition result must be violated.
From these conditions, we can isolate the root causes that prevent s from reaching s′

statically. Our observation is that if s′ is not statically reachable from s in P , then we
need to make sure that s′ is not reachable from s in the transformed program P ′. The
behavior preservation can be guaranteed if we retain at least some (but not all) of the
lock statements that prevent s from reaching s′.

Given an inconsistent pair lap1 and lap2 of lock access patterns, we can define a
reachability barrier by isolating the locks causing the inconsistency. To this end, for
each pair (s, s′) of global control states where s = (c1, c2) and s′ = (c′1, c

′
2), we define

a reachability barrier, denoted RB(s, s′), which is the set of all locksets (L) for which
at least one of the following conditions holds:

– L = {l}, where l is held at both c1 and c2 or at both c′1 and c′2 (violating condition
1 of the decomposition result);

– L = {l, l′}, where l and l′ are held at c1 and c2, respectively, such that l ∈ fah(l′)
and l′ ∈ fah(l) (violation of condition 2);

– L = {l, l′}, where l and l′ are held at c′1 and c′2, respectively, such that l ∈ bah(l′)
and l′ ∈ bah(l) (violation of condition 3);

– L = {l}, where l is held throughout x1 (or x2) and is acquired along x2 (or x1)
(violation of condition 4).

Note that in order to ensure that s′ remains unreachable from s, it suffices to retain
the locks belonging to some lockset in RB(s, s′) as that will ensure that at least one
condition of the decomposition result is violated.

5 Applying Lock Removal to the Running Example

We now use our new method to remove all locks in the trace program shown in Fig. 1 (b)
while preserving the program behavior.

236 V. Kahlon and C. Wang

We start by identifying the pairs of interest. In the path x1 shown in Fig. 1 (b), there
are three lock acquisition statements, i.e. locations 1a, 5a and 6a, and two shared vari-
able accesses, i.e., 0a and 10a (the initial state is always treated as a shared variable
access). This leads to the pairs of interest POI(x1) = {(0a, 0a), (0a, 1a), (1a, 1a),
(1a, 5a), (5a, 5a), (5a, 6a), (6a, 6a), (6a, 10a)}. Similarly, POI(x2) = {(0b, 0b),
(0b, 3b), (3b, 3b), (3b, 4b), (4b, 4b), (4b, 8b), (8b, 8b)}.

Next, we compute the lock access patterns generated by all pairs of interest in paths
x1 and x2. Toward that end, we compute the lap2POI function for x2 that maps each
lock access pattern lap that is encountered to the set of POIs of x2 that generate that
pattern. For each (c2, c

′
2) in the set {(0b, 0b), (0b, 3b), (3b, 3b), (8b, 8b)}, no lock is

held at either c2 or c′2 and no lock is acquired along the sub-sequence of x2 from c2 to
c′2. Thus all the entries in the lock access pattern tuples for these pairs are empty (note
that if a thread is at location 3b it means that the statement at 3b hasn’t been executed
yet, i.e., lock held at location 3b is ∅).

Consider now the pair of interest (4b, 8b). We show that LAP(4b, 8b) = ({A}, ∅,
{(A, {B})}, ∅, ∅, {B}). The first two entries in the tuple are the locksets held at 4b
and 8b which are {A} and ∅, respectively. Since no lock is held at the final state 8b, the
forward acquisition histories, i.e., the fourth entry of the tuple is empty. On the other
hand, lock A is held at the initial state 4b. This lock is released at 7b. However before it
is released T2 also releases B at 6b. Thus B is in the backward acquisition history of A
which is reflect in the third entry of the tuple. Also, since lock B is acquired at location
4b, we have Acq = {B} (6th entry). Finally, since there exists no lock that is held at
all states, we have Held = ∅ (5th entry). Similarly, we may compute the lock access
patterns for the remaining pairs of interest (see Fig. 3 (b)). Similarly, we compute the
lap2POI function for x1 (see Fig. 3 (a)).

From Fig. 3 (a) and 3 (b), we compute the inconsistent pairs (p1, p2) of lock access
patterns where

1. p1 = ({A}, {A}, ∅, ∅, {A}, ∅), p2 = (∅, {A}, ∅, {(A, {})}, ∅, {A}): Held and Acq fields
of p1 and p2, respectively, have the common lock A.

2. p1 = (∅, ∅, ∅, ∅, ∅, {A}) and p2 = ({A}, {A}, ∅, ∅, {A}, ∅): Acq and Held fields of p1
and p2, respectively, have the common lock A.

3. p1 = (∅, {A}, ∅, {(A, {})}, ∅, {A}) and p2 = ({A}, {A}, ∅, ∅, {A}, ∅): Acq and Held
fields of p1 and p2, respectively, have the common lock A

4. p1 = ({A}, {A}, ∅, ∅, {A}, ∅) and p2 = ({A}, {A}, ∅, ∅, {A}, ∅): L1 fields have the
common lock A

5. p1 = ({A}, {A}, ∅, ∅, {A}, ∅) and p2 = ({A}, ∅, {(A, {B})}, ∅, ∅, {B}): L1 fields have
the common lock A

6. p1 = ({A}, ∅, {(A, {B})}, ∅, ∅, {B}) and p2 = ({A}, {A}, ∅, ∅, {A}, ∅): L1 fields have
the common lock A

7. p1 = ({A}, ∅, {(A, {B})}, ∅, ∅, {B}) and p2 = ({A}, ∅, {(A, {B})}, ∅, ∅, {B}): L1

fields have the common lock A
8. p1 = (∅, {A}, ∅, {(A, {})}, ∅, {A}) and p2 = (∅, {A}, ∅, {(A, {})}, ∅, {A}): L2 fields

have the common lock A.

Note that in each of the above cases, the only lock occurring in the reachability barriers
of the non-reachable pairs of global control states is A. Since lock B does not occur

Lock Removal for Concurrent Trace Programs 237

in any of the reachability barriers, in the first iteration, we can remove all statements
locking/unlocking B.

Now we repeat the lock removal procedure again on the trace program in Fig. 1 (b),
by converting statements 6a, 8a, 4b and 6b to nop. These new traces generate the
lap2POI functions shown in Figs. 3 (c) and (d). Note that now all pairs of access
patterns are mutually consistent. Thus the reachability barriers for all pairs of global
control states are empty. Hence all locks in the original traces can now be removed
giving us the traces with no lock statements.

(∅, ∅, ∅, ∅, ∅, ∅) → {(0a, 0a), (0a, 1a), (1a, 1a), (5a, 5a), (10a, 10a)}
(∅, ∅, ∅, ∅, ∅, {A}) → {(1a, 5a)}
(∅, {A}, ∅, {(A, {})}, ∅, {A}) → {(5a, 6a)}
({A}, {A}, ∅, ∅, {A}, ∅) → {(6a, 6a)}
({A}, ∅, {(A, {B})}, ∅, ∅, {B}) → {(6a, 10a)}

(a)

(∅, ∅, ∅, ∅, ∅, ∅) → {(0b, 0b), (0b, 3b), (3b, 3b), (8b, 8b)}
(∅, {A}, ∅, {(A, {})}, ∅, {A}) → {(3b, 4b)}
({A}, {A}, ∅, ∅, {A}, ∅) → {(4b, 4b)}
({A}, ∅, {(A, {B})}, ∅, ∅, {B}) → {(4b, 8b)}

(b)

(∅, ∅, ∅, ∅, ∅, ∅) → {(0a, 0a), (0a, 1a), (1a, 1a), (5a, 5a), (10a, 10a)}
(∅, ∅, ∅, ∅, ∅, {A}) → {(1a, 5a), (5a, 10a)}

(c)

(∅, ∅, ∅, ∅, ∅, ∅) → {(0b, 0b), (0b, 3b), (3b, 3b), (8b, 8b)}
(∅, ∅, ∅, ∅, ∅, {A}) → {(3b, 8b)}

(d)

Fig. 3. The lap2POI function for x1 (left) and x2 (right)

Generalizations. So far, for ease of exposition, we have presented all the algorithms
using concurrent trace programs with two threads. However, our results can be extended
to programs with an arbitrary but fixed number of threads. This generalizations do not
require additional insights. The only difference from the 2-thread case is that we need
an efficient technique to decide static reachability between global control states which
are now n-tuples of the form (c1, ...cn), where each ci is either a shared variable access
or a lock acquisition in thread Ti. This is achieved via a straightforward extension of the
decomposition result in Section 4.1. That is, for each pair of threads, we check whether
their lock access patterns (LAPs) are consistent.

So far we have discussed only mutex locks. A typical real-world concurrent program
in Java or C (with POSIX threads) may have additional concurrency primitives such as
thread creation and join operations, wait/notify/notifyall, as well as reentrant locks. The
presence of these synchronization primitives does not affect the soundness of our lock
removal algorithm. The reason is that, if s′ is statically unreachable from s according
to locks (while ignoring data and other concurrency primitives), it is guaranteed to be
unreachable when more synchronization constraints are considered. At the same time,
if there is a way to incorporate the causality constraints imposed by other concurrency
primitives, one can more accurately determine the reachability between global control

238 V. Kahlon and C. Wang

states, therefore leading to the identification and removal of potentially more redundant
lock statements. To this end, we have incorporated the universal causality graph based
analysis in [19] during our implementation of the proposed lock removal method. How-
ever, we note that this UCG-based analysis is orthogonal to lock removal, and can be
carried out once in the beginning of the computation.

6 Experiments

We have evaluated the lock removal method in the context of an SMT-based runtime
predictive analysis [28,29], to quickly remove the lock statements that are redundant
and therefore ease the burden of modeling and checking by the SMT solvers.

We now provide a brief overview of the symbolic predictive analysis. Given a multi-
threaded Java or C program and a user-defined test case, the predictive analysis pro-
cedure first instruments the program code to add self-logging capability, and then uses
stress tests to detect concurrency failures. However, due to the scheduling nondetermin-
ism and the astronomically large number of interleavings, it is often difficult to uncover
the concurrency bugs. If testing fails to detect any bug, we start a post-mortem analysis
of the logged execution trace.

In this subsequent analysis, first we use a simple control flow analysis to compute the
potential bugs. Consider the one-variable three-access atomicity violation [21,11] as an
example. In this case, a potential bug is a sequence tc...tr...tc′ of program statements
such that: (1) tc and tc′ are intended to be executed atomically by one thread, (2) tr is in
another thread and is data dependent with both tc and tc′ . Then we use a more precise
static analysis based on the universal causality graph (UCG [19]) to prune away the
obviously bogus violations.

For each remaining potential violation, we call the SMT-based symbolic procedure
to decide if there exists a valid interleaving under which the violation is feasible. In this
context, an interleaving is feasible if it satisfies both the synchronization consistency
(e.g. locks) and the shared memory consistency. Please refer to [28,29,26] for more
information about the symbolic encoding. Here we assume the sequential consistency
(SC) memory model. We have used the YICES solver from SRI [8] in our experiments.
Since having more lock statements generally leads to more logical constraints and there-
fore a higher cost for SMT solving, we have used lock removal before the SMT-based
analysis, to remove the redundant lock statements.

We conducted experiments using the following benchmarks1. The Java programs
come from various public benchmarks [16,17,15,27]. The C programs are the PThreads
implementation of two sets of known bug patterns. The first set (At) mimics an atomicity
violation in the Apache web server code (c.f. [21]), where At1 is the original program,
while At1a and At2a are generated by adding code to the original programs to remove
the atomicity violations. The second set (bank) is a parameterized version of the bank
example [10], where the original program bank-av has a well-known atomicity viola-
tion and the remaining two are various attempts of fixing it All our experiments were
conducted on a PC with 1.6 GHz Intel processor and 2GB memory running Fedora.

1 The benchmarks are available at http://www.nec-labs.com/∼chaowang/pubDOC/LnW.tar.gz

Lock Removal for Concurrent Trace Programs 239

Table 1 shows the results. The first five columns show the statistics of the trace pro-
gram, including the name, the number of threads, the total number of events, the num-
ber of lock/unlock events, and the number of named locks. The next nine columns show
the statistics of the lock removal computation. In particular, Columns 6-9 show the total
number of pairs of interest (POI), the number of POIs without any held lock (POI-e), the
number of POIs with non-trivial lock acquisition histories (POI-h), and the maximum
nesting depths of locks (max-h). The fact that max-h is often zero helps to make our
analysis scale to real-life programs. Columns 10-11 show the total number of relevant
pairs of global control states, and the number of pairs wherein one state is unreachable
from the other. Columns 12 and 13 show the number of critical sections (pairs of lock-
unlock statements) in the original and transformed programs, respectively. Column 14
shows the total time (in seconds) taken for the lock removal computation.

Table 1. Results: Using lock removal to improve symbolic analysis. mem means memory-out.

Concurrent Trace Program Lock Removal Computation Symbolic Analysis
name thrds events lk-evs lk-v POI POI-e POI-h max-h vis-ne vis-ch lk-r rm-r time(s) p-avs r-avs pre(s) post(s)

ra.Main 3 55 12 3 23 7 0 0 65 0 5 3 0.0 2 0 0.0 0.0
connect 4 97 16 1 43 29 0 0 1526 0 8 0 0.0 6 0 0.1 0.1
hedcex 1 122 35 7 1 0 0 0 0 0 0 0 0.0 0 0 0.0 0.0
liveness 7 283 44 9 105 68 0 0 10272 0 15 0 0.2 36 0 0.4 0.4
BarrierB1 10 653 108 2 307 168 0 0 69498 0 35 14 0.9 102 0 10.5 3.0
BarrierB2 13 805 136 2 409 217 0 0 120659 0 49 21 1.6 87 0 54.5 7.4
account1 11 902 146 21 230 134 0 0 43690 0 72 30 0.7 140 2 1.8 0.9
philo 6 1141 126 6 433 260 0 0 147294 0 63 10 2.2 81 0 42.5 19.4
account2 21 1747 282 41 442 260 0 0 171400 0 140 60 2.6 280 3 8.7 2.4
Daisy1 3 2998 422 10 843 105 29 1 17249 141 204 175 0.3 7 0 mem 21.3
Elevator1 4 3004 370 11 893 28 0 0 1453 0 184 174 0.1 4 0 29.6 0.7
Elevator2 4 5001 610 11 1992 116 0 0 25435 0 304 257 0.7 8 0 mem 4.3
Elevator3 4 8004 1128 11 2369 214 0 0 81890 0 563 468 1.9 12 0 mem 28.2
Tsp 4 45653 20 5 87 4 0 0 20 0 8 6 0.0 0 0 0.0 0.0

At1 3 88 6 1 14 7 0 0 60 0 3 0 0.0 3 0 1.0 0.0
At1a 3 100 8 1 17 10 0 0 126 0 4 0 0.0 4 0 1.0 0.0
At2a 3 462 126 2 156 149 32 1 38208 9216 52 16 0.6 52 16 2.0 0.6
Bank-av 3 748 20 3 160 104 0 0 28776 0 40 8 0.4 40 8 8.0 0.4
Bank-sav 3 852 28 3 195 139 0 0 51510 0 56 8 0.7 56 8 8.0 0.7
Bank-fix 3 856 32 3 204 147 16 1 57612 12540 64 8 0.8 64 8 9.0 0.8

Finally, the last four columns in Table 1 show the impact of lock removal on the
performance of a runtime verification procedure. Recall that, for each of the potential
atomicity violations, we use symbolic analysis to decide whether it is a real atomicity
violation. Here we first show the total number of potential atomicity violations (p-avs)
that are collected by a simple static analysis, and then show the number of real atom-
icity violations found by the precise symbolic analysis (r-avs). Please refer to [29,19]
for more details on predicting atomicity violation. The last two columns compare the
runtime of symbolic analysis with and without lock removal. The results clearly show
that lock removal has made the predictive verification step more efficient. Note that for
Daisy1 (which is file system) and Elevator2, without lock removal, symbolic execution
would run out of the 2GB memory limit, whereas after lock removal, they were able to
finish in short time.

240 V. Kahlon and C. Wang

7 Related Work

Existing work on automatically removing unnecessary synchronizations has con-
centrated mostly on performance optimization and on eliminating thread-local
locks [3,4,6,30], i.e. locks that have been acquired or released by a single thread or
used to protect an object accessed by a single thread. The difference among these meth-
ods lies in how they identify shared/escaped objects. For example, Blanchet [3] uses a
flow-insensitive escape analysis both to allocate thread-local objects on the stack and
to eliminate synchronization from stack-allocated objects. Bogda et. al. [4] also use a
flow-insensitive escape analysis to eliminate synchronization from thread local objects,
but the analysis is limited to thread-local objects that are only reachable by paths of one
or two references from the stack. Choi et al. [6] perform an inter-procedural points-to
analysis to classify objects as globally escaping, escaping via an argument, and not es-
caping. When synchronizing, the compiler eliminates synchronizations for thread-local
objects, while preserving Java semantics by flushing the local processor cache.

Ruf [22] combines a thread behavior analysis with a unification based alias analysis
to removal unnecessary synchronizations. Aldrich et al. [1] propose three analysis to
optimize the synchronization opportunities: lock analysis, unshared field analysis, and
multithreaded object analysis. Lock analysis computes a description of the monitors
held at each synchronization point so that reentrant locks and enclosed locks can be
eliminated. Unshared field analysis identifies unshared fields so that lock analysis can
safely identify enclosed locks. Finally, multithreaded object analysis identifies which
objects may be accessible by more than one thread. This enables the elimination of all
synchronization on objects that are not multi-threaded. Zee and Rinard [30] present a
static program analysis for removing unnecessary write barriers in Java programs that
use generational garbage collection.

In contrast, the focus of our work is not to identify which objects are effectively
thread-local, which objects are shared, or when they are shared, by multiple threads,
but to identify more optimization opportunities on the truly shared objects and yet re-
dundant locks. To the best of our knowledge, this is the first such lock removal algo-
rithm. It is generally applicable, based on a rigorous and unified concurrency analysis
framework. It is also practically efficient, due to the use of lock access patterns, which
involves only thread-local computation.

In the formulation of our efficient check for behavior preservation, we have leveraged
the lock access patterns [18], since our trace program has a fixed number of threads
interacting with only nested locks. To extend the method from trace programs to whole
programs, one might need to leverage the more advanced machinery in [13,9] to deal
with locks interacting with dynamic thread creation.

In the literature, there has also been some work on reducing the run-time cost of
synchronizations, e.g. by making their implementation more efficient (e.g. [2]) rather
than removing the unnecessary ones. These techniques complement ours. Our local
removal algorithm is also different from lock coarsening [7], which optimizes the nec-
essary synchronizations, e.g. those arising from acquiring and releasing a lock multiple
times in succession. Converting multiple lock operations into one, in general, changes
the program behavior, and therefore one must take care not to introduce deadlock.

Lock Removal for Concurrent Trace Programs 241

8 Conclusions

In this paper, we have presented an efficient and fully automatic lock removal technique
for concurrent trace programs. A key feature of our method is that it is compositional
in nature, i.e., hinges on a thread local analysis, which makes it applicable to large,
realistic programs. Furthermore, our technique guarantees the preservation of program
behaviors, i.e., partial orders induced on shared variable accesses. These features make
it a standalone utility with many wide ranging applications, including performance op-
timization as well as improving the efficacy of concurrent program analysis like run-
time verification, model checking and dataflow analysis. As a concrete application, we
demonstrated the use of our lock removal technique in enhancing the scalability of pre-
dictive analysis in the context of runtime verification of concurrent programs.

References

1. Aldrich, J., Chambers, C., Sirer, E.G., Eggers, S.J.: Static analyses for eliminating unneces-
sary synchronization from Java programs. In: International Symposium on Static Analysis,
pp. 19–38 (1999)

2. Bacon, D.F., Konuru, R.B., Murthy, C., Serrano, M.J.: Thin Locks: Featherweight synchro-
nization for Java. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 258–268 (1998)

3. Blanchet, B.: Escape analysis for object-oriented languages: Application to Java. In: ACM
SIGPLAN Conference on Object Oriented Programming, Systems, Languages, and Appli-
cations, pp. 20–34 (1999)

4. Bogda, J., Hölzle, U.: Removing unnecessary synchronization in Java. In: ACM SIGPLAN
Conference on Object Oriented Programming, Systems, Languages, and Applications, pp.
35–46 (1999)

5. Chen, F., Roşu, G.: Parametric and Sliced Causality. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 240–253. Springer, Heidelberg (2007)

6. Choi, J.-D., Gupta, M., Serrano, M.J., Sreedhar, V.C., Midkiff, S.P.: Stack allocation and
synchronization optimizations for Java using escape analysis. ACM Trans. Program. Lang.
Syst. 25(6), 876–910 (2003)

7. Diniz, P.C., Rinard, M.C.: Lock coarsening: Eliminating lock overhead in automatically par-
allelized object-based programs. J. Parallel Distrib. Comput. 49(2), 218–244 (1998)

8. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

9. Esparza, J., Ganty, P.: Complexity of pattern-based verification for multithreaded programs.
In: ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp.
499–510 (2011)

10. Farchi, E., Nir, Y., Ur, S.: Concurrent bug patterns and how to test them. In: Parallel and
Distributed Processing Symposium, p. 286 (2003)

11. Farzan, A., Madhusudan, P., Sorrentino, F.: Meta-analysis for Atomicity Violations under
Nested Locking. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 248–
262. Springer, Heidelberg (2009)

12. Flanagan, C., Freund, S.N.: Atomizer: A dynamic atomicity checker for multithreaded pro-
grams. In: Parallel and Distributed Processing Symposium (2004)

13. Gawlitza, T.M., Lammich, P., Müller-Olm, M., Seidl, H., Wenner, A.: Join-Lock-Sensitive
Forward Reachability Analysis for Concurrent Programs with Dynamic Process Creation.
In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 199–213. Springer,
Heidelberg (2011)

242 V. Kahlon and C. Wang

14. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems - An Ap-
proach to the State-Explosion Problem. Springer (1996)

15. Havelund, K., Pressburger, T.: Model checking Java programs using Java PathFinder. Soft-
ware Tools for Technology Transfer 2(4) (2000)

16. Joint cav/issta special even on specification, verification, and testing of concurrent software,
http://research.microsoft.com/qadeer/cavissta.htm

17. The java grande forum benchmark suite,
http://www2.epcc.ed.ac.uk/computing/research
activities/java grande/index 1.html

18. Kahlon, V.: Boundedness vs. unboundedness of lock chains: Characterizing decidability of
pairwise cfl-reachability for threads communicating via locks. In: Symposium on Logic in
Computer Science, pp. 27–36 (2009)

19. Kahlon, V., Wang, C.: Universal Causality Graphs: A Precise Happens-Before Model for
Detecting Bugs in Concurrent Programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 434–449. Springer, Heidelberg (2010)

20. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun.
ACM 21(7), 558–565 (1978)

21. Lu, S., Tucek, J., Qin, F., Zhou, Y.: AVIO: detecting atomicity violations via access interleav-
ing invariants. In: Architectural Support for Programming Languages and Operating Sys-
tems, pp. 37–48 (2006)

22. Ruf, E.: Effective synchronization removal for Java. In: ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 208–218 (2000)

23. Sadowski, C., Freund, S.N., Flanagan, C.: SingleTrack: A Dynamic Determinism Checker
for Multithreaded Programs. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 394–
409. Springer, Heidelberg (2009)

24. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A dynamic data
race detector for multithreaded programs. ACM Trans. Comput. Syst. 15(4), 391–411 (1997)

25. Sen, K., Roşu, G., Agha, G.: Detecting Errors in Multithreaded Programs by Generalized Pre-
dictive Analysis of Executions. In: Steffen, M., Zavattaro, G. (eds.) FMOODS 2005. LNCS,
vol. 3535, pp. 211–226. Springer, Heidelberg (2005)

26. Sinha, N., Wang, C.: On interference abstractions. In: ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, pp. 423–434 (2011)

27. von Praun, C., Gross, T.R.: Static detection of atomicity violations in object-oriented pro-
grams. Object Technology 3(6) (2004)

28. Wang, C., Kundu, S., Ganai, M., Gupta, A.: Symbolic Predictive Analysis for Concurrent
Programs. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 256–272.
Springer, Heidelberg (2009)

29. Wang, C., Limaye, R., Ganai, M., Gupta, A.: Trace-Based Symbolic Analysis for Atomicity
Violations. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 328–342.
Springer, Heidelberg (2010)

30. Zee, K., Rinard, M.C.: Write barrier removal by static analysis. In: ACM SIGPLAN Confer-
ence on Object Oriented Programming, Systems, Languages, and Applications, pp. 191–210
(2002)

http://research.microsoft.com/qadeer/cavissta.htm
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/index_1.html
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/index_1.html

	Lock Removal for Concurrent Trace Programs
	Introduction
	Motivation
	Lock Removal: The Core Idea
	The Lock Removal Strategy
	Conservative Static Check

	Compositional Lock Removal
	Deciding Static Reachability
	Compositional Analysis
	Identifying the Locks to Be Retained

	Applying Lock Removal to the Running Example
	Experiments
	Related Work
	Conclusions
	References

