
Diagnosing Abstraction Failure

for Separation Logic–Based Analyses

Josh Berdine1, Arlen Cox2,�, Samin Ishtiaq1, and Christoph M. Wintersteiger1

1 Microsoft Research, Cambridge
2 University of Colorado, Boulder

Abstract. Abstraction refinement is an effective verification technique
for automatically proving safety properties of software. Application of
this technique in shape analyses has proved impractical as core compo-
nents of existing refinement techniques such as backward analysis, gen-
eral conjunction, and identification of unreachable but doomed states are
computationally infeasible in such domains.

We propose a new method to diagnose proof failures to be used in a
refinement scheme for Separation Logic–based shape analyses. To check
feasibility of abstract error traces, we perform Bounded Model Check-
ing over the traces using a novel encoding into SMT. A subsequent di-
agnosis finds discontinuities on infeasible traces, and identifies doomed
states admitted by the abstraction. To construct doomed states, we give a
model-finding algorithm for “symbolic heap” Separation Logic formulas,
employing the execution machinery of the feasibility checker to search
for concrete counter-examples. The diagnosis has been implemented in
SLAyer, and we present a simple scheme for refining the abstraction of hi-
erarchical data structures, and illustrate its effectiveness on benchmarks
from the SLAyer test suite.

1 Introduction

Abstraction refinement has proven to be an effective technique for verification
of safety properties of software. Iterative refinement of the abstraction allows
the use of a coarse and computationally cheap abstraction that often suffices to
prove the desired property. If the abstraction is not precise enough, it supports
incremental shifting to a potentially very precise and computationally expensive
analysis. This technique has been very successfully applied to predicate abstrac-
tion domains. Not so for shape analyses. The consequence is that the abstractions
used in shape analyses must be very conservative, since any information that is
abstracted away is forever irrecoverable. One solution is to simply choose the
right abstraction in the first place, but while this can be computationally effi-
cient, the choice is sensitive to the property and program, making this approach
difficult to use in tools intended to be somewhat generally applicable.

To explain why a straightforward analogue of traditional counter-example
guided abstract refinement (CEGAR) techniques used for predicate abstraction

� This work was performed while an intern at Microsoft Research, Cambridge.

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 155–173, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

156 J. Berdine et al.

does not work for shape analyses, recall a basic CEGAR procedure. Suppose
that the goal is to prove that some error state is not reachable, and that for
a given abstraction this proof fails. In this context it is common to abstract
traces rather than just states, and failing to find a proof amounts to finding an
abstract trace to error, t. The first question is whether t constitutes a disproof
of the property, or witnesses that the abstraction is too coarse to prove the
property. This question can be answered by checking feasibility of t, that is,
whether or not it represents at least one concrete trace. If so, there is nothing
to do; the concrete trace witnesses that the program violates the property. If
t is not feasible, then it must contain a discontinuity where concrete execution
cannot follow the abstract trace. That is, for every concrete trace along t from
an initial state to a state s at the discontinuity, execution would have to “leap
sideways” to some unreachable state s′ that the abstraction does not distinguish
from s, before concrete execution from s′ may proceed to reach error. The aim
of abstraction refinement is to increase the precision of the abstraction in order
to partition the doomed states such as s′ from the others, and thereby avoid
the introduction of t. To perform an effective refinement, a discontinuity and a
characterization of doomed states is found, that is, the failure of abstraction is
diagnosed. One way to do so is to search for a program point � on t such that the
over-approximationQ of the reachable states after executing along t to � and the
weakest precondition with respect to error of the command C along the suffix
of t from � to error , wp(C, error), are consistent, i.e., Q ∧wp(C, error) �= false.

In this case � is a discontinuity and the models of the formula Q∧wp(C, error)
are doomed states that need to be partitioned from others. There are various
refinement techniques, but the use of precondition computation and conjunction
or similar operations is ubiquitous.

The use of precondition computation and conjunction presents a serious prob-
lem in the context of shape analysis. To get an understanding of why backward
shape analysis is very expensive, consider the weakest precondition of a com-
mand that swings a pointer stored at x from one object to another p resulting in
a state satisfying Q: P = wp(∗x = p, Q). In the states that satisfy P , there are
many possible aliasing configurations for x, and ∗x might point to any object at
all, or be any dangling pointer. There are very many such states, and they are
not uniform in a way for which known shape analysis domains provide compact
representations. Additionally, shape analyses based on separation logic use “sym-
bolic heap” fragments of the logic similar to that introduced by Smallfoot [4],
which do not include general conjunction. Reducing a general conjunction to a
symbolic heap formula is theoretically possible, but computationally infeasible.

Therefore, an abstraction failure diagnosis that avoids precondition computa-
tion and general conjunction is a prerequisite for refinement of shape abstractions
in a fashion similar to that applied for predicate abstraction. We propose to refine
based on individual doomed states introduced by abstraction, rather than sym-
bolic representations of all such states, and present a diagnosis technique that
identifies discontinuities on abstract traces obtained from failed separation logic
proofs and fabricates doomed states showing where the abstraction is too coarse.

Diagnosing Abstraction Failure 157

Our procedure starts with a failed separation logic proof in the form of an
abstract transition system and slices out an abstract counter-example. These
abstract counter-examples generally contain loops and hence represent infinitely-
many abstract error traces. A finite subset of these abstract traces is checked
for feasibility using a very precise modeling of memory allocation and a new
technique for encoding bounded model checking (BMC) as a single satisfiability
modulo theories (SMT) problem, using quantified formulas with uninterpreted
functions and bit-vectors.

If a concrete counter-example is not found, then a new algorithm is used
to diagnose the failure of abstraction. This proceeds by searching through the
points on the abstract counter-example for a discontinuity. For each point on the
abstract counter-example, the prefix leading to the point is replaced with code
that generates concrete states represented by the abstract state at that point.
If this new abstract counter-example is feasible, then the program point under
consideration contains a discontinuity, and the generated state is doomed. The
diagnosis algorithm reports the input and output of abstraction and the doomed
state witnessing that the abstraction was too coarse.

It should be emphasized that the state-of-the-art in refinement of shape ab-
stractions is manual. When a shape analysis fails, the reason must be diagnosed
by hand, and the definition of abstraction must be changed by hand. As the size
of analyzed programs increases, the time and effort involved in diagnosing ab-
straction failure becomes a practical bottleneck. Therefore, automatic diagnosis
of abstraction failure by itself represents a significant advance. Additionally, as a
demonstration and quality check of the diagnosis, we present a simple automatic
abstraction refinement scheme which uses the discontinuity and doomed state
to select which “patterns” to use for abstracting hierarchical data structures.

2 Separation Logic–Based Shape Analysis

Before presenting the material on abstraction failure diagnosis, we must pro-
vide some background on shape analysis using separation logic. In particular we
introduce programs, abstract states, abstract transition systems, failed proofs,
and give some description of pattern-based abstraction.

Programs. Assuming some language of pure expressions E, the language of
state-transforming commands is generated by the following grammar:

C ::= x = malloc(E) | free(x) allocate and delete heap memory

| x = nondet() | x = E kill and move (register)

| ∗x = y | x = ∗y store and load (heap)

| assume(E) | assert(E) assumptions and assertions

| nop | C;C sequential composition

158 J. Berdine et al.

A program is defined by its control-flow graph 〈L,E, �0, κ〉, where the vertices L
are program locations, the program entry point is the root �0 ∈ L, and the edges
E ⊆ L× L are labeled with commands by κ : E → C.

Abstract States. Separation logic–based shape analyses represent sets of pro-
gram states using formulas in a “symbolic heaps” fragment [4] of separation
logic’s assertion language [24]. Our diagnosis algorithms are implemented in
SLAyer [5], which uses the following language of formulas :

P,Q ::= F first-order formulas

| emp | l
→ r | ls(Λ, k,p,f , b,n) atomic heap formulas

| P ∗Q | P ∨Q | ∃x.Q
Apart from emp, which describes the empty part of a heap, atomic heap formulas
are of two forms: points-to or list-segment. A points-to l
→ r describes a single
heap object at location l that contains a value described by record r. A list-
segment ls(Λ, k,p,f , b,n) describes a possibly-empty, possibly-cyclic, segment
of a doubly-linked list, where the heap structure of each item of the list is given
by Λ. In particular, ls(Λ, k,p,f , b,n) is the least predicate satisfying

ls(Λ, k,p,f , b,n) iff (k = 0 ∧ f = n ∧ p = b)

∨ ∃x′,y′. k > 0 ∧ Λ(p,f ,x′,y′) ∗ ls(Λ, k−1,x′,y′, b,n) .

See [3] for details on this predicate, but note that p,f , b,n denote vectors of
parameters, which are sometimes empty and written simply as a space.

The set of formulas is closed under separating conjunction P ∗Q, disjunction
P ∨Q, and existential quantification ∃x.Q. Note the absence of conjunction and
negation of heap formulas. The pure, heap-independent, part of the logic (F) is
essentially passed through to the Z3 SMT solver [17]. We assume that first-order
formulas are among the expressions, F ⊂ E.

The set of abstract states is Q�, where � is the error state.

Pattern-Based Abstraction. The abstraction performed by SLAyer is pa-
rameterized by “patterns”, the Λ argument formulas of the ls predicate that
describe the shape of hierarchical data structures. See [3] for more detail, but as
an example, consider a pattern for simple singly-linked lists

sll entry(, front , , next) = (front
→ [Flink: next])

and a pattern for singly-linked lists where each item carries a data object

sll objs(, front , ,next) = ∃d′, r.(front
→ [Data: d′;Flink: next]) ∗ (d′
→ r) .

Abstracting the formula, which represents a list of two items carrying data,

∃d′0, d′1, f ′, r0, r1.(head = item) ∧ (nd �= 0) ∗
(head
→ [Data: d′0;Flink: f

′]) ∗ (d′0
→ r0) ∗
(f ′
→ [Data: d′1;Flink: 0]) ∗ (d′1
→ r1)

Diagnosing Abstraction Failure 159

using sll entry results in (a warning about leaked memory and)

∃l . (head = item) ∧ (nd �= 0) ∗ ls(sll entry, l, , head , , 0)

while using sll objs results in

∃l . (head = item) ∧ (nd �= 0) ∗ ls(sll objs, l, , head , , 0) .

Note that abstracting using sll objs produces a logically stronger result than
abstracting using sll entry. The former preserves the fact that the Data fields
point to valid objects, while the latter loses this information. As a result, ad-
justing the patterns used for abstraction provides an effective mechanism for
abstraction refinement, analogous to the set of predicates used to control preci-
sion of predicate abstraction.

Abstract Transition Systems and Failed Proofs. SLAyer abstracts a pro-
gram to an abstract transition system (ATS). An ATS is a graph 〈L,E, �0, κ, δ〉,
which is a program where program points are labeled with abstract states by
δ : L → Q�.

An ATS is constructed by the analysis while exploring the computation tree of
the program under the abstract semantics, creating cycles when abstract states
are covered by existing ones. A fully-expanded ATS where no vertex is labeled
with � induces a proof in separation logic, where for each edge e = (�i, �j) ∈ E,
the triple {δ �i} κ e {δ �j} is valid.

An ATS where some vertex �e is labeled with � constitutes a failed proof. If
δ �e = �, then �e is an error vertex, and the ATS restricted to the transitive
predecessors of �e is an abstract counter-example. An abstract counter-example
is either concretely feasible, or it witnesses that the abstraction is too coarse.

Abstract Programs. The CEGAR approach to model checking commonly in-
volves construction of an abstract program. If the abstract program contains an
error, subsequent analysis finds an abstract trace that shows it. If this trace is
infeasible in the abstract program, then it is also infeasible in the concrete pro-
gram, and refinement may be performed based on the explanation for abstract
infeasibility. If it is feasible in the abstract program, then it is checked for feasi-
bility in the concrete program to determine whether it corresponds to a concrete
error or should be refined.

We do not use such a two-staged approach. While we do employ abstraction
functions to obtain an ATS, they are used to abstract sets of program states,
producing abstract states, instead of directly abstracting program transitions,
producing abstract transitions. The ATS is therefore a relation over abstract
states, not an abstracted relation over concrete states. An abstract program
could be obtained from the ATS, however, all error traces in the ATS will be
feasible in the resulting system.

160 J. Berdine et al.

In short, since we do not use a postcondition computation that loses more pre-
cision than required by the abstraction,1 there is no need to check if a potential
counter-example is due to imprecision in the postcondition computation.

[Aside: Some theoretical results regarding the complexity of adding arbitrary
Boolean connectives to the fragments of separation logic used in analyzers are
known [10]. For the simple propositional case with no inductive definitions,
the model checking problem is NP-complete and the validity problem is ΠP

2 -
complete. Adding general Boolean conjunction preserves these bounds. General
negation is more problematic, both problems become PSPACE-complete even in
this simple case. Furthermore, performing backward analysis in the known way
requires −−∗ [24], which also brings both problems up to PSPACE-complete.]

3 Abstraction Failure Diagnosis

Our approach to failure diagnosis is meant to be employed in the context of
abstraction refinement. We therefore give a brief overview using a typical ab-
straction refinement algorithm for presentation purposes. Algorithm 1 first runs
an abstract interpreter in analyze and if it succeeds, it returns Safe. If not, we
simplify ATS using slice and then search for a concrete counter-example via
feasible, which is described in Section 4. If it has a concrete counter-example,
then we report Unsafe. If it does not have a concrete counter-example, we try to
refine the abstraction. The diagnose procedure searches for doomed states and
is described in Section 5. It returns a description of the discontinuity at which
the abstract state was identified as doomed. If such a state is not found, or if
the refinement fails for other reasons, the algorithm terminates with a result of
PossiblyUnsafe. Otherwise it repeats the process using the new abstraction.

We illustrate the behavior of our algorithm on the simple linked list program
depicted in Figure 1. This program creates a list of non-deterministic length
with a heap allocated data object in every element and then deletes the list.
This program is safe.

SLAyer initially fails to prove that the program is safe, the corresponding
ATS is shown in Figure 2(a). At the transition from vertex 4 to vertex 3, the
abstract interpreter explored the first while loop twice, creating and explicitly
tracking a list of length 2 with points-to predicates. At the third iteration of
the loop, it widens at vertex 2. In doing so, it selects an sll entry shape,
thereby discarding information that is required to complete the proof. It still
has a d0 data object, but it has lost d1 and it has lost any connection between
data elements like d0 and the list itself. When the abstract interpreter reaches
the last command through the transition from vertex 1 to 0, it no longer knows
if the particular list element points to the beginning of allocated memory or not.
As a result, the proof attempt fails.

Once analyze terminates with a failed proof attempt, feasible attempts to
find a concrete counter-example in the abstract counter-example. Since this pro-
gram is safe, it does not find one, and the algorithm then runs diagnose which

1 With the exception of losing some disequations between deallocated addresses.

Diagnosing Abstraction Failure 161

Algorithm 1. Abstraction refinement algorithm

l e t abstraction_refinement prog abstraction =
l e t ats = analyze prog abstraction in
i f safe ats

return Safe

else
let abstract_cex = slice ats in
le t concrete_cex = feasible abstract_cex bound in
i f concrete_cex != None

return Unsafe

else
let failure = diagnose abstract_cex bound in
i f failure = None

return PossiblyUnsafe

else
let abstraction ’ = refine failure abstraction in
i f abstraction ’ = None

return PossiblyUnsafe

else
return abstraction_refinement prog abstraction ’

searches for a concrete counter-example starting from each widened state in the
abstract counter-example. In this example, the state at vertex 2 is the only
widened state. It then synthesizes a new, temporary ATS shown in Figure 2(b)
which is constructed to generate all models of the separation logic formula on
the vertex (within bounds). It then continues to check feasibility of counter-
examples in this new ATS, which, in this example, yields a counter-example
that constructs a single element list, where the data pointer is invalid.

Now that a doomed state has been found, the refine procedure attempts to
construct a more precise abstraction. It succeeds only if it is able to find a new
abstraction in which the doomed state is no longer included at the discontinuity.
In this example, the refine procedure implemented in SLAyer (see Section 6)
activates the previously inactive sll objs pattern which preserves information
about the Data objects. Finally, it restarts the abstract interpreter with the new
abstraction, which, in this example, is successful in proving safety of the program.

4 Feasibility Checking

When the abstract interpretation is unable to show that a program is safe, we
obtain an ATS which represents the relevant parts of the program together with
an abstract model (abstract values for every variable at every control location).
To distinguish between actual errors and abstraction failures, we check feasibility
of error traces in the ATS. Note that this is a general verification problem and
that we may employ any of a multitude of Model Checking algorithms to solve

162 J. Berdine et al.

1 typedef struct _SLL_ENTRY {
2 void∗ Data ;
3 struct _SLL_ENTRY ∗Flink ;
4 } SLL_ENTRY , ∗PSLL_ENTRY ;
5
6 void main (void) {
7 SLL_OBJS ∗head = NULL , ∗item ;
8 while (nondet ()) {
9 item = (PSLL_ENTRY) malloc (s izeof (SLL_ENTRY)) ;

10 item−>Data = (int ∗) malloc (s izeof (int)) ;
11 item−>Flink = head ;
12 head = item ;
13 }

14 while (head) {
15 item = head ;
16 head = item−>Flink ;
17 free (item−>Data) ;
18 free (item) ;
19 }
20 }

Fig. 1. An example program

this problem. Here, we propose a Bounded Model Checker (BMC). For any fixed
unrolling depth, this represents an under-approximation of the ATS. The trade-
off between precision and efficiency is of paramount importance in practice and
we propose to use BMC because it conveniently offers fine-grained control over
the precision through a single parameter.

Recent advances in SMT solving have made it possible to encode BMC in-
stances through a single query to the theorem prover [25] and to solve them by
providing efficient quantifier instantiation and elimination procedures. In par-
ticular, the theory of bit-vectors with uninterpreted functions and quantifiers
(SMT UFBV) has been shown to be a very effective means of analyzing BMC
instances [33]. This theory allows for an encoding that does not require a pre-
determined unrolling depth for every loop, but for the whole system, i.e., the
unrolling bound corresponds to the number of nodes visited in the ATS, but the
SMT solver may freely chose a different bound for each loop in the ATS. This
simplifies the analysis and allows the utilization of powerful heuristics employed
by SMT solvers to increase performance.

4.1 A Memory Model

To encode an ATS into SMT UFBV, a memory model is required. To achieve
maximum precision, we use a flat memory model that implements accurate ex-
ecution semantics. A segmented model might be easier to analyze, but would
introduce unsoundness [18].

This choice is motivated by theparticular interest in detecting four specific
classes of errors: 1) Array out of bounds errors; 2) Dereferencing NULL pointers;
3) Double frees; and 4) Frees of unallocated memory. In a flat memory model,
these four errors can be reduced to two: out of bounds errors and NULL pointer
errors can both be treated as dereferencing unallocated memory; a double free
error corresponds to an attempt to free unallocated memory.

Diagnosing Abstraction Failure 163

emp

∃d0, r0, k. head = item ∧ nd �= 0 ∧ d0 �→ r0 ∗
ls(SLL ENTRY, k, , head, , 0)

∃d0, r0, k. head = item ∧ d0 �→ r0 ∗
ls(SLL ENTRY, k, , head, , 0)

Error

head = 0;
nd = nondet();
assume(nd != 0);
item = (PSLL_ENTRY)malloc(8);
d0 = malloc(4);
item->Data = d0;
item->Flink = head;
head = item;
nd = nondet();
item = (PSLL_ENTRY)malloc(8);
d1 = malloc(4);
item->Data = d1;
item->Flink = head;
head = item;

nd = nondet();

assume(nd != 0);
item = (PSLL_ENTRY)
 malloc(8);
d0 = malloc(4);
item->Data = tmp;
item->Flink = head;
head = item;

assume(nd == 0);
assume(head != 0);
item = head;
head = item->Flink;
free(item->Data);

∃d0, d1, r0, r1. head = item ∧ nd �= 0∧
d0 �→ r0 ∗ head �→ [Data : d0;Flink : next] ∗

d1 �→ r1 ∗ next �→ [Data : d1;Flink : 0]

4:

3:

2:

1:

0:

(a)

emp

k = nondet();
assume(head == item);
assume(nd != 0);
d0 = malloc(4);
assume(head == f);
assume(len == k);

assume(len > 0);
a = malloc(8);
assume(f == a);
f = f->Flink;
l--;

assume(len == 0);
assume(f == 0);

5:

6:

∃d0, r0, k. head = item ∧ nd �= 0 ∧ d0 �→ r0 ∗
ls(SLL ENTRY, k, , head, , 0)

∃d0, r0, k. head = item ∧ ∧d0 �→ r0 ∗
ls(SLL ENTRY, k, , head, , 0)

Error

nd = nondet();

assume(nd != 0);
item = (PSLL_ENTRY)
 malloc(8);
d0 = malloc(4);
item->Data = tmp;
item->Flink = head;
head = item;

assume(nd == 0);
assume(head != 0);
item = head;
head = item->Flink;
free(item->Data);

2:

1:

0:

(b)

Fig. 2. (a) Abstract counter-example prior to refinement and (b) with prefix of vertex
2 replaced

Memory allocation must be modeled accurately for a flat model to be able to
find errors. If a strategy is chosen similar to a real memory allocator (first fit, best
fit, etc), the objects are packed together and will likely not cause errors when
accessing out of bounds array elements. For this reason we allow the SMT solver
to place the allocated objects. We existentially quantify the starting location
for each allocation, such that, if objects can be rearranged to cause an error to
occur, they will be.

In our encoding, memory is modeled by three arrays: heap, alloc, and objsize.
The first contains a representation of the heap at a given time (execution step):

heap : Time → Address → V alue

The alloc array is used to track whether a memory address is allocated or not:

alloc : Time → Address → Bool

164 J. Berdine et al.

If some address is not allocated at the time of being accessed, this corresponds
to a segmentation fault. The objsize array is used to track the size of allocated
objects at a given time and memory address:

objsize : Time → Address → Nat ∪ {⊥}
Note that this array contains ⊥ (encoded as −1) for memory locations that are
allocated, but not at the beginning of an object.

4.2 Encoding to SMT

The procedure feasible ats bound checks for the feasibility of counter-examples
of bounded length in an ATS. If such a counter-example exists, it returns a
mapping μ : L → Structures which associates each vertex with a Kripke structure
that provides a concrete interpretation for each variable, function symbol, and
the heap memory. If no such counter-example exists, feasible returns None.

In order to pose the bounded model checking problem as a single SMT prob-
lem, we make use of quantifiers. We constrain the solver to start at some symbolic
set of initial states constructed by init and then for some bounded number of
steps, unroll the transition relation of the ATS. The function tr(ats, t) corre-
sponds to the encoding of the transition relation of the ATS ats from time t− 1
to time t. The top-level check is encoded as

init() ∧ ∀t. 0 < t < bound → tr(ats, t) .

Our encoding makes use of semantic functions �·�, which take a state and con-
tinuations (to work out what to do next in the translation). In what follows, the
encoding of commands is denoted by

�·�C : St → (St → SMT) → (St → SMT) → SMT ,

which takes a state and two continuations, one for successful transitions and one
for transitions to error. The transition relation tr(ats, t) is encoded as

tr(ats, t) = (at(t− 1) = �e → at(t) = �e)∧
⎧
⎨

⎩

∧

�∈L

at(t− 1) = � → (
∨

(�,�′)∈E

�κ(�, �′)�C σ sk ek)

⎫
⎬

⎭
,

where L and E are the sets of vertices and edges of the ATS and the function
at(t) encodes the control vertex at time t.

We use the 4-tuple 〈vars, heap, alloc, objsize〉 to represent a state of the sys-
tem, where vars is the set of variables in the ATS. This is used as the source
of generating the corresponding time-stamped variables in the encoding. For ef-
ficiency reasons, the implementation also keeps flags for if and when the state
was last updated. The arrays in the initial environment σ0 are empty.

The top-level command encoding takes the two continuations, one to signify
a successful transition sk = λσ. STEP(t, �, σ) and another for transitions to

Diagnosing Abstraction Failure 165

the error ek = λσ. ERR(t, σ). If the command completes without error, the
command threads the modified state to sk, otherwise it threads the modified
state to the error continuation. Once the error continuation is followed, the top-
level encoding tr ensures that the system will stay in the error state. These
continuations allow for a clean representation of the ATS that maximizes the
use of if-then-else structures and minimizes general disjunctions. Threading the
state also allowed us to reduce the number of quantifiers used in the problem
by using if-then-else constructs instead of quantified uninterpreted functions, so
long as we are in the same block as previous heap updates.

The initial continuations end with the STEP and ERR predicates which are
defined as follows. STEP(t, �, σ) asserts that at(t) = � to ensure the transition
of the vertex to the next time step. (A transition to �e is explicitly disallowed.)
Furthermore, it preserves all the values from the current block that must be
preserved (heap if modified, alloc and objsize if modified, as well as all vari-
ables). Lastly, STEP(t, �, σ) asserts that pure(δ �), the pure consequences of the
Separation Logic assertion at �, hold at time t. The ERR(t, σ) predicate is like
STEP(t, �, σ) except that the transition must be to �e and pure(δ �) = true.

We now describe the encoding of commands, concentrating on the memory-
related commands malloc, free and store. A forthcoming tech report [6] gives
a full definition of the encoding for the other commands.

The malloc command produces a new function for the alloc array. It uses
a fresh variable to store the location. We cannot simply constrain the target
variable x, because it may already have been assigned a value and thus is not
unconstrained. By introducing a fresh variable, f , constraining it and updating x
to be equal to f , we achieve the desired effect. The seemingly odd constraint that
f ≤ f + s, given that s ≥ 0 exists because of the modular behavior of arithmetic
in the bit-vector theory. Without this constraint, memory would be allowed
to wrap around past zero. While this behavior should be prohibited by the
constraint from init that location 0 is always deallocated, adding this constraint
provides performance benefits. Formally, the encoding of malloc is defined by

�x := malloc(s)�C σ sk ek = let 〈vars, heap, alloc, objsize〉 = σ in

let f = gensym() in

let z = (�s�Exp σ) in

∀i.f ≤ i < f + z → alloc(i) = false ∧
∀i.f ≤ i < f + z → objsize(i) = −1 ∧
let a′ = λa. ite(f ≤ a < f + z , true , alloc a) in

let s′ = λa. ite(f = a , s , objsize a) in

(sk 〈vars⊕ [x
→ f], heap, a′, s′ 〉) ,

where gensym() represents the introduction of a fresh symbol.
The free command is similar to malloc, except that it relies upon the values

in the objsize array instead of the alloc array. It requires that the objsize of the
freed address have a value other than −1, whose value indicates no value in the

166 J. Berdine et al.

size array. This value in objsize indicates how many successive entries in alloc,
starting at address x, need to be set back to false. Formally,

�free(x)�C σ sk ek = let 〈vars, heap, alloc, objsize〉 = σ in

let f = gensym() in

let s = (objsize x) in

let a′ = λa. ite(f ≤ a < f + s , false , alloc a) in

let s′ = λa. ite(f = a , −1 , objsize a) in

let σ′ = 〈vars, heap, a′, s′ 〉 in
ite(x = 0 , (sk σ) , ite(s �= −1 , (sk σ′) , (ek σ))) ,

The store command first checks the precondition (alloc x), which is that the
memory at the target address is in fact allocated. If this precondition holds, the
execution is allowed to continue with the updated state where heap has been
assigned to a new function. Conversely, the execution continues at �e, assuming
that the state was not updated as required by the command. Formally, we have

�*x = y�C σ sk ek = let 〈vars, heap, alloc, objsize〉 = σ in

let heap′ = λa. ite(a = x , y , (heap a)) in

ite((alloc x) , (sk 〈vars, heap′, alloc, objsize〉) , (ek σ)) .

5 Doomed State Synthesis

We define the diagnose procedure for identifying doomed states, i.e., for states
for which abstraction was too aggressive, and so can be passed to a refinement
procedure. Our procedure works as follows: It iterates through the edges of the
abstract counter-example, to determine at which of them the widening operator
has abstracted too coarsely. It does this by analyzing a new, temporary ATS in
which the prefix of the cutpoint �′ has been replaced with a program fragment
that constructs states which satisfy δ �′, the formula at that cutpoint. We then
use the feasible procedure to search for a concrete counter-example in this
new ATS. If a counter-example is found, then it returns the discontinuity (�, �′)
together with the doomed state obtained by looking up �′ in the concrete trace
μ. The diagnose procedure is depicted in Algorithm 2.

Executing the code generated by prefix Q produces states that satisfy Q.
Algorithm 3 defines prefix, where the generated pseudo-code is shorthand for
standard control-flow graph construction, and the local v in C form is short for
C[v’/v]; v’= nondet() where v’ is fresh.

The model generation assumes a model finder for first-order logic, so first-
order formulas F are simply assumed. Existential quantification is synthesized
using non-deterministic assignment, reverse engineering Floyd’s assignment ax-
iom. Disjunction is translated into a non-deterministic branch, that is, disjunc-
tion of commands. Nothing need be done to synthesize emp since it is a sub-heap

Diagnosing Abstraction Failure 167

Algorithm 2. Doomed state search

l e t diagnose 〈L,E, �0, κ, δ〉 bound =
for (�, �′) ∈ E do

i f widened (�, �′)
l e t 〈Ln,En, �n, κn〉 = cfg_of ((prefix δ �′) ; goto �′) in
le t mod_ats = 〈L ∪ Ln,E ∪ En, �n, κ ∪ κn, δ ∪ (Ln×{emp})〉 in
match feasible mod_ats bound with
| None −>

continue
| μ −>

return ((�, �′) , μ(�′))
return None

of any heap. Points-to formulas are synthesized by a malloc() call, and sepa-
rating conjunction is mapped to sequential composition. This has the effect of
encoding the core partiality in the semantics of ∗ into the freshness guarantee
and non-determinism provided by allocation, meaning that correctly generating
models relies on an accurate treatment of allocation. Lastly, lists are synthesized
by using a loop to realize induction on the list length. As an example, prefix
ls(sll entry, k, , p, , q) is realized by, after slight simplification:

local l , f , a ;
l = k ; f = p ;
for (; l> 0 ; −−l) {

a = malloc (sizeof (sll)) ;
assume (f == a) ;
f = f−>Flink ;

}
assume(f = q ∧ l = 0) ;

Lemma 1. Every reachable state of prefix Q satisfies Q.

Theorem 1. The abstraction_refinement procedure is a sound analysis.

Proof. The procedure only returns Safe when the abstract interpreter in analyze

did in fact find a proof; this result is correct as long as the refine procedure
maintains the fact that the abstraction is in fact a valid abstraction. In case the
procedure returns Unsafe, it has found a concrete counter-example which wit-
nesses the fact that the program is in fact unsafe. In all other cases, the procedure
returns PossiblyUnsafe, which does not harm the soundness of the analysis. ��
Note that approach for doomed state synthesis has the effect of translating sep-
aration logic formulas to code, and then in the feasibility checker, to first-order
logic formulas. It would be possible to compose these two translations and trans-
late separation logic formulas to first-order logic directly, but the result would
be more difficult to understand, and would impede reuse in the implementation.

168 J. Berdine et al.

Algorithm 3. Prefix synthesis

l e t prefix Q =
match Q with
| F −>

assume (F)
| ∃x. Q −>

local x in (prefix Q)
| Q0 ∨ . . . ∨QN −>

i f nondet () then (prefix Q0)
else (prefix Q1 ∨ . . . ∨QN)

| emp −>
nop

| Q ∗ R −>
(prefix Q) ; (prefix R)

| l
→ [r; o1 : e1; . . . ; oN : eN] −>
local a in
a = malloc(sizeof (typeof (r))) ;
assume (a = l) ;
∗l . o1 = e1 ; . . . ; ∗l . oN = eN

| ls(Λ, k,p,f , b,n) −>
local l ,w ,x in
l = k ; w = p ; x = f ;
for (; l > 0 ; l = l − 1) {

local y ,z in
(prefix Λ(w,x,y,z)) ;
w = y ; x = z

}
assume (l = 0 ∧w = b ∧ x = n)

Note that the separation logic formulas are not precisely expressible in first-order
logic due to transitive closure used to interpret the list predicate and second-
order quantification implicit in the semantics of the ∗ connective. So a direct
translation must under-approximate, and the ways that the transitive closure
and second-order quantification interact make this nontrivial. The translation
via the model-construction code avoids eagerly constructing formulas of size ex-
ponential in the bound, unlike a naive “blasting” approach. Additionally, the
translation via code approach potentially allows the solver to unroll loops in the
generation of a model of the separation logic formula guided by the path to error,
where a direct translation would blindly generate the first order logic formula
without any guidance.

6 Experimental Evaluation

There are two motivations in undertaking the work described in this paper. One
is to make precise the notion of abstraction failure diagnosis in separation logic

Diagnosing Abstraction Failure 169

shape analyses. The other, a more practical one, is to use this understanding to
improve the quality of results of SLAyer runs. We implemented feasibility check-
ing and diagnosis in SLAyer. This alone has improved SLAyer regression tests,
in particular turning around two dozen known unsafe tests from PossiblyUnsafe

to definitely Unsafe.
We also implemented a simple pattern refine procedure. SLAyer keeps a set

of active and inactive abstraction patterns. When widening admits a doomed
state s, this diagnosis is fed into SLAyer’s shape discovery module in order to
select a pattern to eliminate the doomed state. The basic algorithm for refine-
ment is to enumerate the inactive patterns, for each one widen to s′ using the
active patterns plus the chosen one, and then check if s entails s′. If not, keep
the chosen pattern active; otherwise it keeps looking. This is a simple automatic
refinement procedure, and we can imagine more sophisticated schemes. For in-
stance, to deal with more complex programs, we could try with all the inactive
patterns and then minimize akin to unsat core minimization in MaxSAT.

Table 1 presents some experimental results. The programs are taken from the
SLAyer test suite, and so are biased towards control (rather than data), traver-
sal through linked lists, pointer arithmetic, etc. The table gives the results for
SLAyer without and with this simple pattern refinement scheme. The second
column indicates that these are all tests where SLAyer previously reported an
inconclusive result, in the time indicated in the third column. The fourth column
reports the result using the techniques described here, either Unsafe indicating
a concrete counter-example of memory safety was found, or Safe indicating that
a memory safety proof was found after abstraction refinement, or PossUnsafe
indicating a result that remains inconclusive. The fifth column reports the addi-
tional time taken either for feasibility checking or for diagnosis and refinement,
indicated as the sum of shape analysis and feasibility checking times.

7 Related Work

Counter-Example Guided Abstraction Refinement (CEGAR) inspired this work.
SLAyer’s implementation attempts to mirror the primary steps of the algorithm
without requiring weakest precondition or general conjunction. There have been
many implementations of CEGAR, though it is most popularly used with pred-
icate abstraction as in the SLAM tool [1,2]. Other implementations include one
by Clarke et al [13] applied to hardware, the BLAST project [23], MAGIC [11]
and SATABS [15]. Obtaining the initial abstraction is not addressed by CE-
GAR, but there are several techniques, including existential abstraction [14] and
predicate abstraction [16, 22].

Our feasibility checking algorithm is an implementation of bounded model
checking [7] and is most closely related to the CBMC [12] bounded model checker
for C programs. We implement bounded model checking as a single large problem
and leave the task of determining unrolling to the SMT solver. This differs from
CBMC in that CBMC does explicit unrolling.

Instead of bounding the depth of the search, it is possible to bound the breadth
of the search by using a symbolic or concolic testing technique. Tools like EXE [9],

170 J. Berdine et al.

Table 1. SLAyer versus SLAyer + Feasibility Checking and Pattern Refinement

Test SLAyer SLAyer + Diagnosis

Disproved/Refined
Result Time Result Time

T2 n-19 PossUnsafe 0.031 Unsafe +0.078
T2 n-1b PossUnsafe 0.016 Unsafe +0.062
T2 n-34 PossUnsafe 0.031 Unsafe +0.140
T2 n-38 PossUnsafe 0.078 Unsafe +0.421
T2 p-38 PossUnsafe 0.515 Unsafe +12.230
T2 p-50 PossUnsafe 0.062 Unsafe +0.562
T2 p-62 PossUnsafe 0.078 Unsafe +0.546
changing truth value PossUnsafe 0.062 Unsafe +1.373
complicated safe PossUnsafe 0.140 PossUnsafe +89.279
complicated unsafe PossUnsafe 0.156 Unsafe +2.309
no loops unsafe PossUnsafe 0.016 Unsafe +0.140
simple loop unsafe PossUnsafe 0.109 Unsafe +0.078
very simple unsafe PossUnsafe 0.000 Unsafe +0.016
csll remove unsafe PossUnsafe 0.499 Unsafe +1.342
cleanup isochresourcedata PossUnsafe 0.796 Unsafe +23.306
array in formal PossUnsafe 0.016 Unsafe +0.094
deref NULL PossUnsafe 0.016 Unsafe +0.031
free free PossUnsafe 0.000 Unsafe +0.016
free local PossUnsafe 0.000 Unsafe +0.047
if pointer PossUnsafe 0.000 Unsafe +0.016
sized arrays PossUnsafe 0.016 Unsafe +0.078
store to 0 PossUnsafe 0.000 Unsafe +0.031
sll copy unsafe PossUnsafe 0.218 Unsafe +2.293
list of objects PossUnsafe 0.140 Safe +0.230+5.975

KLEE [8], DART [20], CUTE [32] and SAGE [21] are well tuned to rapidly search
large code bases looking for memory violations, assertion violations and arith-
metic bugs. They could benefit from the reduction in state-space that searching
an abstract transition system provides, but we preferred the guarantee that all
paths were searched up to a specific depth and thus did not use these techniques.

Instead of bounding the search space using an abstract transition system,
a symbolic testing engine could use a heuristic that guides it to reach certain
program points. Ma, et al [28] explore this approach but do not attempt to use
it to guide another analysis.

Our approach to refinement is complementary to the pattern discovery and
synthesis such as [3], but refinement is not the only way to improve the widening.
By adding more information to the abstraction, such as numerics [29, 30], the
proofs will become more likely to succeed. This does not preclude a refinement
phase, however. This would reduce the number of times refinement was needed,
but widening still loses data values and thus might lose information such as
sortedness of a fixed length list that our counter-example generation would know.

Diagnosing Abstraction Failure 171

An abstraction refinement technique applicable to shape analysis has been
proposed [27]. This technique refines the generalization of predicate abstrac-
tion [31] used by TVLA [26]. Rather than being guided by counter-examples,
refinement is directed by either the syntax of an asserted formula with an inde-
terminate valuation, or by detection of precision loss by the abstraction during
the proof attempt, without an indication that the lost precision is relevant to
the proof failure.

A problem similar to feasibility checking has been investigated in the context
of TVLA [19]. There, a bounded breadth-first search through program paths
and a bounded model finder for first-order logic is used, in contrast to out sin-
gle search encoded into SMT. It seems likely that this feasibility checker could
be combined with our diagnosis technique to also obtain an abstraction failure
diagnosis for shape analyses based on 3-valued logic.

8 Conclusion

We have presented a method for diagnosing abstraction failure in separation
logic-based analyses. To do this, we use a new algorithm to pinpoint where ab-
straction failed based on a concrete counter-example. We generate this concrete
counter-example with a bounded model checker that precisely analyzes abstract
transition systems. These techniques have been implemented and evaluated using
a pattern-based abstraction refinement scheme in SLAyer, a tool for automated
analysis of low-level C programs, and have become an invaluable aid in debug-
ging failed SLAyer runs and refining the definition of abstraction. With this
contribution, we look forward to finding new automatic refinement algorithms
that significantly improve the capacity and precision of shape analyses.

References

1. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with
SLAM. Commun. ACM 54(7) (2011)

2. Ball, T., Rajamani, S.K.: Automatically Validating Temporal Safety Properties
of Interfaces. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 103–122.
Springer, Heidelberg (2001)

3. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang,
H.: Shape Analysis for Composite Data Structures. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

4. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic Execution with Separation
Logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidel-
berg (2005)

5. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: Memory Safety for Systems-Level Code.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 178–183.
Springer, Heidelberg (2011)

6. Berdine, J., Cox, A., Ishtiaq, S., Wintersteiger, C.: Diagnosing abstraction fail-
ure for separation logic–based analyses. Tech. Rep. MSR-TR-2012-44, Microsoft
Research, Cambridge (April 2012)

172 J. Berdine et al.

7. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

8. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: OSDI (2008)

9. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: Automat-
ically generating inputs of death. In: CCS (2006)

10. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and Complexity Results for
a Spatial Assertion Language for Data Structures. In: Hariharan, R., Mukund, M.,
Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 108–119. Springer, Heidelberg
(2001)

11. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of
software components in C. IEEE Trans. Software Eng. 30(6) (2004)

12. Clarke, E., Kroning, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

13. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided
Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

14. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16 (1994)

15. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-Based Predicate
Abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

16. Colón, M., Uribe, T.E.: Generating Finite-State Abstractions of Reactive Systems
Using Decision Procedures. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp.
293–304. Springer, Heidelberg (1998)

17. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

18. Elkarablieh, B., Godefroid, P., Levin, M.Y.: Precise pointer reasoning for dynamic
test generation. In: ISSTA (2009)

19. Erez, G.: Generating concrete counterexamples for sound abstract interpretation.
Master’s thesis, School of Computer Science, Tel-Aviv University, Israel (2004)

20. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing.
In: PLDI (2005)

21. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:
NDSS (2008)

22. Graf, S., Säıdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

23. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software Verification with
BLAST. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 235–
239. Springer, Heidelberg (2003)

24. Ishtiaq, S., O’Hearn, P.W.: BI as an assertion language for mutable data structures.
In: POPL (2001)

25. Jussila, T., Biere, A.: Compressing BMC encodings with QBF. Electr. Notes Theor.
Comput. Sci. 174(3), 45–56 (2007)

26. Lev-Ami, T., Sagiv, M.: TVLA: A System for Implementing Static Analyses. In:
SAS 2000. LNCS, vol. 1824, pp. 280–302. Springer, Heidelberg (2000)

Diagnosing Abstraction Failure 173

27. Loginov, A., Reps, T., Sagiv, M.: Abstraction Refinement via Inductive Learning.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 519–533.
Springer, Heidelberg (2005)

28. Ma, K.-K., Yit Phang, K., Foster, J.S., Hicks, M.: Directed Symbolic Execution.
In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 95–111. Springer, Heidelberg
(2011)

29. Magill, S., Berdine, J., Clarke, E., Cook, B.: Arithmetic Strengthening for Shape
Analysis. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 419–
436. Springer, Heidelberg (2007)

30. Magill, S., Tsai, M.H., Lee, P., Tsay, Y.K.: Automatic numeric abstractions for
heap-manipulating programs. In: POPL (2010)

31. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. 24(3) (2002)

32. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. SIG-
SOFT Softw. Eng. Notes 30 (2005)

33. Wintersteiger, C.M., Hamadi, Y., de Moura, L.M.: Efficiently solving quantified
bit-vector formulas. In: FMCAD (2010)

	Diagnosing Abstraction Failure
for Separation Logic–Based Analyses
	Introduction
	Separation Logic–Based Shape Analysis
	Abstraction Failure Diagnosis
	Feasibility Checking
	A Memory Model
	Encoding to SMT

	Doomed State Synthesis
	Experimental Evaluation
	Related Work
	Conclusion
	References

