
TreVisor

OS-Independent Software-Based Full Disk Encryption
Secure against Main Memory Attacks

Tilo Müller, Benjamin Taubmann, and Felix C. Freiling

Department of Computer Science
Friedrich-Alexander University of Erlangen-Nuremberg

Abstract. Software-based disk encryption techniques store necessary
keys in main memory and are therefore vulnerable to DMA and cold boot
attacks which can acquire keys from RAM. Recent research results have
shown operating system dependent ways to overcome these attacks. For
example, the TRESOR project patches Linux to store AES keys solely
on the microprocessor. We present TreVisor, the first software-based and
OS-independent solution for full disk encryption that is resistant to main
memory attacks. It builds upon BitVisor, a thin virtual machine monitor
which implements various security features. Roughly speaking, TreVisor
adds the encryption facilities of TRESOR to BitVisor, i. e., we move
TRESOR one layer below the operating system into the hypervisor such
that secure disk encryption runs transparently for the guest OS. We have
tested its compatibility with both Linux and Windows and show positive
security and performance results.

1 Introduction

Why Disk Encryption Matters. Disk encryption is an increasingly popu-
lar method to protect sensitive data against physical loss and theft of nomadic
computer systems. According to a Ponemon survey from 2010 [24], the majority
of U. S. enterprises has an overall strategy for data protection from which full disk
encryption (FDE) is the fastest growing favorite (59%). Also the U. S. govern-
ment recommends agencies to encrypt all data on mobile devices to compensate
the lack of physical security outside their agency location [15].

However, widespread FDE solutions under Windows, such as BitLocker [17]
and TrueCrypt [30], do not protect data effectively in all scenarios where an
adversary has physical access to the computer.

Attacks against Disk Encryption. Since public weaknesses in common cryp-
tographic primitives like AES are unknown, practical attacks against FDE often
target the key management. Weak passphrases give rise to efficiently guessable
keys, a fact that has been exploited by law enforcement authorities for many
years. If strong passphrases are used, however, retrieving the cryptographic key
can be circumvented by accessing the encrypted data through system subversion.
Trojans and system level rootkits are usually sufficient to circumvent any kind
of FDE and hard to prevent in general.

F. Bao, P. Samarati, and J. Zhou (Eds.): ACNS 2012, LNCS 7341, pp. 66–83, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



TreVisor 67

But even if the user is not tricked into installing malicious software, physical
access alone can be sufficient for system subversion. The master boot record
(MBR) of an encrypted hard disk must necessarily be left unencrypted in
software-based solutions for bootstrapping purposes. As a consequence, software
keyloggers can always be placed in the master boot record of the disk. Such
attacks have been called evil maid attacks [14] and typically require access to
the target machine twice, once before, and once after the victim has entered the
password.

However, evil maid attacks are based on system infiltration and are therefore
not always applicable for lawful actions. Instead, physical memory access can
be used to break FDE in many cases since widespread FDE products, including
BitLocker and TrueCrypt, hold the encryption key in main memory. These at-
tacks require access to the machine while it is running or suspended to RAM, a
common scenario in the lawful seizure of evidence.

Historically, the first successful attacks on main memory used direct mem-
ory access (DMA). DMA allows devices to bypass the operating system (OS)
and to access physical memory directly for performance reasons. Attacks ex-
ploiting this feature first came up in 2005 when an Apple Macintosh’s system
space was compromised by plugging in a malicious iPod via Firewire [3]. Later,
similar attacks were used to unlock Windows Vista [21] and Windows 7 [4] even
though BitLocker was active. Other interfaces, including PC Card [8,11], PCI
Express [5], and Thunderbolt [25], are believed to have the same security issues
as Firewire.

Another way to access main memory is to exploit the remanence effect of
DRAM, i. e., the fact that RAM contents fade away gradually over time. Due
to the remanence effect, encryption keys can be restored, e. g., after rebooting
the system with a malicious USB flash drive. This type of attack became known
as cold boot [10] in 2008. Cold boot attacks are generic and pose a threat to
all current software-based FDE technologies, including Microsoft’s BitLocker,
Apple Macintosh’s FileVault and Linux’ dm-crypt.

Threat Model Windows Linux OS-Independent

Memory System BitLocker/ dm-crypt/ TRESOR/
Attack Status TrueCrypt TrueCrypt LoopAmnesia BitVisor TreVisor

off or S4
cold boot run/locked X X X

S3 X X X

off or S4
DMA run/locked X X X

S3 X X

Fig. 1. Categories of our threat model. S3 and S4 stands for “suspended to RAM” and
“disk”, respectively. Vulnerable scenarios are marked with X.



68 T. Müller, B. Taubmann, and F.C. Freiling

Threat Model. Since it is impossible to protect FDE against system subver-
sion by malware, we delegate this threat to the malware detection community and
concentrate on memory attacks that rely on physical access. Such attacks can be
classified according to the state of the system when an adversary gained access:
(1) switched off or suspended to disk, (2) running but locked, and (3) suspended
to RAM.

The resultant threat categories as well as countermeasures and vulnerable
scenarios are depicted in Fig. 1. If a laptop was lost or got stolen, it was hopefully
switched off or suspended to disk. In this category, all common FDE solutions
protect the data on disk successfully. If the system was running (but the screen
was locked1), widespread FDE systems for Windows and Linux are vulnerable to
both cold boot and DMA attacks. The same holds for the third category: most
machines that are suspended to RAM by the time an adversary gains access are
vulnerable today.

Countermeasures. The current technological responses to cold boot attacks at-
tempt to keep the key inside the CPU rather than in RAM: AESSE [18] stores the
key inside SSE registers, TRESOR [19] inside debug registers, LoopAmnesia [23]
inside MSRs, and FrozenCache [16] inside CPU caches. Besides AES keys, asym-
metric keys are considered in the literature [22]. All of those systems treat registers
and caches inside the CPU as more secure against attacks than RAM. As long as
nobody finds a practical way to read out CPU contents, e. g., by injecting malicious
code onto the bus, those systems are in fact more secure than conventional disk
encryption systems. Unfortunately, these countermeasures require deep changes
within the operating system. This is why all mentioned projects [18,19,23,16] are
written for Linux and are not applicable to Windows.

The idea of keeping keys outside of RAM protects against DMA attacks on
suspended machines, too, because in TRESOR and LoopAmnesia the key is
irretrievably lost during suspend-to-RAM when the CPU is switched off. How-
ever, these solutions do not protect against DMA attacks on running machines,
because DMA attacks generally allow to compromise the system space and con-
sequently to read out key storage registers by executing code with ring 0 privi-
leges. Currently, Intel’s VT-d [1] technology can fully protect against such DMA
attacks. Intel VT-d comprises an I/O Memory Mapping Unit (IOMMU) that
enables address remapping for DMA data transfers. Just like traditional MMUs
that translate virtual to physical addresses, the IOMMU translates device-visible
addresses into physical ones. Hence, certain memory locations, e. g., the system
space, can effectively be protected. However, Intel VT-d was introduced as vir-
tualization technology and Windows 7 does not use it to protect against DMA
attacks.

On the contrary, there exist hypervisor-based systems that do. BitVisor [28],
for example, is a thin virtual machine monitor (VMM) which implements vari-
ous security functionalities for a single guest, meaning that it exploits virtualiza-
tion technology to enhance security and not to run multiple systems in parallel.

1 If the screen was not locked but a privileged user was logged in, an adversary can
access data trivially.



TreVisor 69

Among others, BitVisor supports full disk encryption and activates the IOMMU
to enforce DMA security. But it does not protect against cold boot attacks.

Overall, we are not aware of any solution in the literature that (1) is operating
system independent, and (2) secure against all threats listed in Fig. 1. Of course,
another valid countermeasure is to revert to purely hardware-based FDE systems
such as Intel’s SSD 320 Series [13]. Since the key is held within the hard disk
and cannot be read out, such approaches withstand attacks on main memory.
But software-based solutions enjoy many advantages like reduced costs, vendor
independence, configurability, and versatility; this is why we focus on software-
based solutions in the remainder of this paper.

Contributions. In this paper, we present TreVisor. TreVisor is a software-based
solution to FDE that is designed to be

– practically secure against the threats from Fig. 1 (i. e., cold boot and DMA),
– cryptographically secure by supporting the ciphers AES-128, -192, and -256,
– transparent to the operating system by using virtualization technology, and
– fast, in particular through Intel’s new AES instruction set [9].

To this end, TreVisor unites two working projects (TRESOR [19] and BitVi-
sor [28]) resulting in a free and robust FDE system that can be used by both
Windows and Linux users. To the best of our knowledge, no other system exists
that meets all these requirements.

We believe that integrating TRESOR’s encryption routine into a hypervi-
sor is a promising way for future FDE solutions, because using virtualization
technology for disk encryption has several advantages:

– Hypervisors are isolated from the OS; even root users and local privilege
escalations [2] cannot harm the encryption process or retrieve the key.

– All OSs are equally supported; it is possible to access the same encrypted
partitions simultaneously from Windows and Linux.

– Hypervisors are small; the risk to have serious programming errors shrinks
with the size of code.

– Building up a full disk encryption system is easy; only the hypervisor must
be present unencrypted.

– DMA threats can centrally be counteracted by VT-d/IOMMU settings.

Altogether, TreVisor brings many of the advantages known from hardware-based
FDE, such like resistance against memory attacks and transparency, into a
software-based solution. As we show in this paper, TreVisor can achieve all these
goals with a performance penalty of about one-third compared to unencrypted
disks, which we find acceptable.

However, TreVisor requires both Intel’s new AES instruction set (AES-NI)
and support for VT-x/VT-d, which is currently available only with Intel Core i5
and Core i7 processors.



70 T. Müller, B. Taubmann, and F.C. Freiling

Outline. The remainder of our paper is structured as follows: first we give back-
ground information about TRESOR and BitVisor in Sect. 2. Then we introduce
the implementation of TreVisor from a technical point of view in Sect. 3, fol-
lowed by an evaluation regarding compatibility (Sect. 4), performance (Sect. 5),
and, most notably, security (Sect. 6). Finally, we conclude in Sect. 7.

2 Background

We now briefly give the necessary background on TRESOR (Sect. 2.1) and BitVi-
sor (Sect. 2.2). Readers familiar with these projects can safely skip this section.

2.1 TRESOR

TRESOR [19] runs encryption securely outside RAM; it is a Linux kernel patch
for the x64 architecture designed to run AES resistant against cold boot attacks.
TRESOR avoids RAM usage completely and runs the key management as well
as the AES algorithm entirely on the microprocessor. To that end, some registers
of the x64 architecture must permanently be used as cryptographic key storage
and are not applicable for their intended purpose. The four breakpoint registers
dr0 to dr3 have been chosen for that because they are (1) only accessible with
ring 0 privileges, (2) large enough to store an AES-256 key, and (3) seldom used
by end-users. Indeed, hardware breakpoints cannot be set by userland debuggers
like GDB anymore. But given the fact that only developers and reverse engineers
need to set breakpoints (and software breakpoints can still be set), the absence
of these registers on end-user systems is acceptable as compared with the gain
in security.

Other registers, like the SSE and general purpose registers (GPR), are used
temporarily inside atomic sections, too. Before leaving the atomic section, these
registers are reset to null and hence, they are safe to be swapped out to RAM
during context switching. Only debug registers are not safe to be swapped out
by context switching and cannot be used by other threads.

To overcome future cryptanalysis based on memory residues, TRESOR fol-
lows a strict security policy: no intermediate state of AES is ever going to RAM,
meaning that nothing but the output block is written back to RAM after the
input block has been read. Thereto, TRESOR’s atomic sections encompass en-
cryption (resp. decryption) of entire AES blocks.

AES uses a key schedule with 10-14 round keys based on the secret key. This
key schedule is computed once and then stored inside RAM by all conventional
AES implementations for performance reasons. But in TRESOR, the debug
registers are fully occupied with the AES key itself and round keys cannot be
stored permanently. Therefore, TRESOR uses a so called on-the-fly key schedule,
meaning that each round key is re-computed inside the atomic section of each
block. This contains a potential performance drawback; we get back on this in
Sect. 5.

Despite this drawback, or because of it, TRESOR accelerates its AES com-
putations by Intel’s new AES instruction set (AES-NI) that implements AES



TreVisor 71

efficiently in hardware. It is currently available to Intel Core i7 processors, most
Core i5 and will be available to many upcoming x86 CPU, including AMD pro-
cessors.

To sum up, TRESOR is a cold boot resistant implementation of AES, pri-
marily designed for hard disk encryption. It is currently restricted to CPUs of
the Core-i series, and so is TreVisor.

2.2 BitVisor

Traditional VMMs like Xen and VMware require numerous components to pro-
vide virtual hardware devices that can be shared among parallel guests. To the
contrary, BitVisor [28] is a thin hypervisor architecture based on Intel VT-x (and
AMD-V) which is designed to enforce I/O device security of single VMs. It is
OS-independent, meaning that the VM can run unmodified versions of Windows,
Linux, or any other x86 operating system.

BitVisor minimizes the overhead introduced by virtualization, leading to a
so called parapass-through architecture: hardware is directly passed through to
the guest except for a few administrated devices. Thereby, the need for most
device drivers is eliminated inside the VMM and the guest OS handles devices
directly. The exceptional case are devices which must explicitly be administrated
in order to enforce security functionalities. In our disk encryption scenario, these
are primarily hard disks. Thereto, BitVisor comes with its own set of parapass-
through drivers for (S)ATA disks; these drivers know the specification of the
target device and can handle intercepted I/O accesses correctly without fully
virtualizing them. Extracted data, such as the sectors of a hard disk, can be
manipulated by the VMM, e. g., for encryption and decryption.

In order to prevent attacks from malicious I/O devices against the memory
region of the hypervisor, external DMA accesses are restricted by the IOMMU.
From the operating system’s point of view, I/O devices still have access to the
system space. But since the disk encryption routine runs with ring -1 privileges,
BitVisor’s IOMMU settings guarantee resistance against read- and writeable
DMA attacks.

Using the IOMMU to restrict direct memory access, no parapass-through
drivers are required. For example, DMA attacks based on Firewire are success-
fully defeated while parapass-through drivers for Firewire can be excluded.

To sum up, BitVisor is a secure lightweight hypervisor which, by running only
a single VM, eliminates the need for most components that are required to share
system resources among VMs.

3 Design and Implementation

The use cases of TreVisor are mobile single-user systems, i. e., laptops, because
these get frequently lost and stolen at public places like airports while running or
being suspended, and left unattended in hotel rooms. In other words, TreVisor
is designed to protect systems that are especially exposed to attacks based on



72 T. Müller, B. Taubmann, and F.C. Freiling

physical access. Additionally, TreVisor should be available for Windows users,
or, even better, be operating system independent.

The requirement to be OS-independent quickly brings hypervisor-based solu-
tions into mind. A first idea is to move a solution like TRESOR [19] or LoopAm-
nesia [23] into a Linux-based hypervisor like Xen or VMware and to runWindows
on top of that. Such a design would have had the advantage that TRESOR, which
is a Linux kernel patch, could have been applied to the setup directly. However,
we generally consider such a design as bad because running a second, full operat-
ing system introduces significant overhead. Instead, TreVisor is implemented as
a thin hypervisor for single guests, meaning that no resource must be virtualized
or shared among VMs, drastically facilitating the VMM implementation. Only
hard disk accesses are intercepted in order to encrypt and decrypt them securely
with TRESOR. Everything else, like the keyboard, mouse, printer, video, and
sound card, is passed through to the guest without intervention.

In a nutshell, TreVisor is implemented as a patch for BitVisor and introduces
the OS-independent parts of TRESOR to it. That is, to enforce security mea-
sures, TreVisor exploits hardware capabilities of modern Intel CPUs that are
otherwise hardly used by end-users. Usually, end-user systems do neither utilize
the debugging registers nor do they make use of the VT-d/IOMMU technology.
TreVisor activates these, otherwise mostly idle, components to protect against
cold boot and DMA attacks.

To sum up, TreVisor aims to be a disk encryption solution that prevents
information leakages through main memory attacks while being transparent to
the OS and to the end-user. Thereto it combines two technologies: BitVisor taken
by itself is not resistant against cold boot attacks, and TRESOR does neither
support Windows nor does it defeat DMA attacks on running machines.

In the following sections we describe technical challenges we faced when inte-
grating TRESOR’s encryption routines into the BitVisor code.

Key Storage Registers. TRESOR employs the debug registers dr0 to dr3 as
cryptographic key storage, because those are (1) only accessible from ring 0, (2)
large enough to store AES-256 keys, and (3) seldom used by end-users. While
point two and three remain valid inside hypervisors, point one does not because
we need to protect the key against ring 0 (the guest’s kernel space) rather than
ring 3 (the userland). In other words, in TreVisor we need a set of registers that
is only accessible with ring -1 privileges.

As such a set of registers does not exist, we have to stay with the debug
registers. Luckily, virtualization allows us to define sensitive events that lead
the processor to switch context from the guest into the hypervisor, e. g., on
executing privileged instructions or on accessing certain registers. Using VM
execution control [12], we can effectively hide the debug registers from ring 0,
i. e., from the guest OS, as follows:

– cpuid is an instruction that provides information about present CPU fea-
tures. We hook into cpuid and forge its result by negating the DE (debugging
extension) feature.



TreVisor 73

– cr4 is an x86 control register that contains a flag to enable/disable de-
bugging. We intercept cr4 write accesses and deny all attempts to enable
debugging.

– “MOV-DR exiting” is a virtualization control which causes the VM to exit
on every mov instruction to or from debug registers. We enable this feature
to ultimately prevent the guest from reading or overwriting the key.

All these measures cause unconditional VM exits and bring the hypervisor into
action. The first measure is required to inform the OS about missing debugging
capabilities. Since we generally disallow debugging in the second measure, an OS
might react unexpectedly (e. g., crash) if it assumes debugging is present. The
third measure is required to deny any read and write access to debug registers.
Of course, a well programmed OS would never try to access a debug register
if the CPUID negates its presence, but we want to be on the safe side for two
reasons:

First, the OS (or any device driver) might be erroneous and write to debug
registers despite their alleged absence. This immediately leads to data corruption
on the encrypted hard disk because the key gets falsified. Second, an adversary
who compromises the guest’s system space could easily retrieve the secret key.

Summarizing, we used virtualization techniques to effectively change the priv-
ilege level of the debug registers from 0 to -1.

Key Management. As pointed out in the last section, we can get exclusive con-
trol over debug registers inside the hypervisor. We now take this exclusive access
for granted and examine how to securely read the key from a user prompt into
those registers. Due to numerous encryption features, BitVisor already comes
with some kind of key management. Unfortunately, this key management is in-
adequate for our purpose as it stores passwords and keys in RAM (where they
are vulnerable to cold boot attacks). Thus, we have to replace BitVisor’s key
management with a more secure one. To this end, we display a TreVisor specific
password prompt at boot time.

The password is transformed into a 256-bit key by multiple SHA-256 iterations
and then copied into the debug registers. We make sure that all residues of both
the password and the key are erased from RAM thoroughly. Therefore we do
not send the password or key into untrusted libraries; instead we use a custom
implementation of the SHA-256 algorithm.

To support multicore CPUs, we have to write the secret key into the debug
registers of all CPUs because we cannot assume that the TreVisor code is always
executed on CPU0. To the contrary, hypervisor code is generally executed on
the CPU which led to the VM-exit. And since process migration is a costly task,
we distribute the secret key among all cores.

Writing the secret key into different cores turned out to be more complicated
than we expected. The problem actually is that BitVisor itself does not fully
initialize the APs (application processors) but runs on the BSP (boot strap pro-
cessor) until the OS boots. In other words, BitVisor leaves it to the guest OS
to set up remaining cores. As a solution we hook into the first inter-processor
interrupt (IPI) of each CPU; IPIs are used by the OS to signal events between



74 T. Müller, B. Taubmann, and F.C. Freiling

processors. TreVisor intercepts the start-up signals in order to initialize the de-
bug registers with keybits before they may be used for encryption. When a guest
OS does not activate all cores, the key will only be present in those that have
been activated.

The mechanism we implemented requires that the keybits are temporarily
copied from the BSP into RAM and then further into the APs. Unfortunately,
it is impossible to copy data between processors directly. That is, our solution
might not be absolutely secure against cold boot attacks for the time of initial-
izing a new CPU. But all OSs that we are aware of initialize CPU cores during
boot-up or never and thus, we consider the risk as negligible.

Disk Encryption. TreVisor supports disk encryption with AES-128, AES-
192, and AES-256. During startup, we always copy 256 keybits into the debug
registers; if AES-128 or AES-192 are used, superfluous bits are just ignored.

In order to encrypt the disk, we have to hook into the guest’s HDD activi-
ties. Fortunately, BitVisor already provides most of the necessary functionality,
including parapass-through drivers for ATA and USB disks. To put it simply,
we only have to replace the standard AES routines in BitVisor by TRESOR. To
this end, we add TRESOR to an internal crypto API and activate it within the
configuration.

Comparable to context switches inside an OS, hypervisors must switch the
context between the guest and itself. Thereto Intel VT-x supports virtual ma-
chine control structures (VMCS) to hold guest states. These structures encom-
pass all necessary registers, e. g., the GPRs and potentially the SSE and debug
registers, too. On multicore systems, each processor has its own guest context.

Since TRESOR uses GPR and SSE registers, we have to run disk encryp-
tion routines inside a critical section where interrupts and context switches are
disabled. Only by running TRESOR atomically, we can guarantee that no inter-
mediate state of AES or the key schedule is ever going to the VMCS structures in
RAM. Before leaving the atomic section, we zero-fill the GPR and SSE registers
so that they are safe to be swapped out.

Additionally we have to take care of the SSE task switch bit (TS) and make
sure that we save/restore the guest’s SSE state before/after encrypting a disk
block. The SSE registers are quite large (4 kilobits in total) and since a hypervisor
usually does not use them, they are not saved by default for performance reasons.

Suspend to RAM. Lastly, we spent considerable effort to support ACPI sus-
pend modes in TreVisor. Since the CPU is switched off during suspend modes, we
have to re-read the key upon wakeup. Normally, all CPU registers are backed up
in RAM during suspend modes, but in TreVisor the debug registers are naturally
prevented from being stored inside RAM.

The ACPI mode S3 (suspend-to-RAM) is basically supported by BitVisor
since release 1.2 (October 2011). We consider S3 as an important feature for
mobile users as it speeds up the boot process and reduces power consumption. It
just enhances the usefulness of mobile environments. Above that, it is especially



TreVisor 75

important to the cold boot scenario since the key of conventional FDE systems
is not lost during S3.

Therefore we want to support S3 in TreVisor, and “all” we have to do is to
re-read the key upon wakeup. This may sound easy, but in practice, video cards
continuously fail to get re-initialized after S3 and the screen stays blank (until
we return to the OS which re-initializes the video card smoothly thanks to the
parapass-through architecture). We ended up with a workaround where the user
must re-enter the password “blind” and thus, we must consider S3 support in
TreVisor still as work in progress.

4 Compatibility

We analyzed TreVisor regarding its compatibility with userland programs, op-
erating systems, encrypted partitions and hardware components.

Userland Programs. Generally, userland programs are supported unless they
use one of the hardware components which are occupied by TreVisor; these
are VT-x/VT-d and the debugging extensions. Although the TRESOR encryp-
tion routines additionally use multimedia (SSE) and general purpose registers,
other programs are fully supported, including office and internet applications,
3D games, simulations, and more.

Debuggers are not fully supported. In particular hardware breakpoints cannot
be set as we have verified with GDB in Linux and OllyDBG in Windows. Al-
though the running debugger does not crash, setting a hardware breakpoint has
just no effect (since TreVisor effectively prevents overwriting the debug regis-
ters). However, setting software breakpoints works fine and software breakpoints
are the default breakpoints in most debuggers.

Virtualization software like VirtualBox and VMware is not fully supported
either. Again, these programs do not crash but they run less efficiently as they
cannot make use of Intel’s VT-x (it is already used by TreVisor). The problem
could be solved in the future because nested VT-x is generally possible when
supported by the lowest hypervisor.

Operating Systems. One of the most important advantages of TreVisor com-
pared to TRESOR is its capability to run an unmodified version of basically
every x86 OS, including Windows 7, Linux, BSD variants, and more. We have
verified this for the most important OSs, in particular for the 32- and 64-bit
variants of Windows and Linux.

During development, the Windows operating system and its device drivers
caused somehow more trouble than Linux. For example, booting up the 64-
bit variant of Windows 7 fails with a blue screen when the CPUID negates
debugging extensions. The problem can magically be solved by not changing the
return value of CPUID but still disabling the debugging extensions (which is in
fact a wrong configuration).



76 T. Müller, B. Taubmann, and F.C. Freiling

Encrypted Partitions. TreVisor supports full AES, including the 128-, 192-,
and 256-bit variant; other ciphers are not supported.

Indeed, TreVisor allows to encrypt several partitions, but all of those must be
encrypted with the same secret key because no space is left to store additional
keys in debug registers. A possible solution to this problem is to store a keyring
in RAM that is encrypted with a master key. As a downside, this solution induces
a significant performance drawback because the key has to be decrypted before
scrambling a block. Hence, and since TreVisor is primarily designed for single-
user systems, we decided against it.

Partitions that are encrypted with TreVisor can be used by both Windows
and Linux. Using partitions that were encrypted with another disk encryption
software is not possible (at least not without re-encryption).

Hardware Components. Since we utilize recent Intel technologies, we had
to write TreVisor close to the hardware and consequently, there are incompat-
ibilities with many existing systems. It is almost impossible to support older
CPUs because hardware virtualization simplifies the implementation of hyper-
visors considerably.

From current Intel CPUs, only the Core i5 and i7 series are compatible with
TreVisor as these are the only 64-bit CPUs that support VT-x/VT-d as well
as the AES instructions. We have tested TreVisor successfully with both, the i5
and i7. Most notably, CPU frequency scaling features can, unfortunately, not be
used from within the guest at the time of this writing.

As mentioned above, we are also aware of problems with some video cards
and ACPI wakeup. After TreVisor resumes from suspend-to-RAM, users must
re-enter the password “blind” because the password prompt regularly fails to
get displayed.

Tu sum up, guaranteeing the support of a wide range of commercial hardware
components, including CPUs, video cards, and ACPI, is a difficult task. In this
sense, TreVisor must be seen as an academic prototype, not as a market-ready
product.

5 Performance

We now present TreVisor disk encryption benchmarks. We have evaluated the
performance of TreVisor on two different systems: Windows 7 (64-bit) and
Ubuntu Linux (64-bit, kernel 3.0). On both systems our tests revealed practi-
cal benchmark data; the performance drawback compared to unencrypted disks,
and compared to disks encrypted with AES-NI, is about one-third.

Table 1 illustrates the encryption and decryption speed of TreVisor in mega-
bytes per seconds. We list the encryption speed of all three TRESOR variants
(TRESOR-128, -192, and -256) and compared TRESOR-256 with reference val-
ues of plain disk access (No-VMM), BitVisor without encryption (No-Crypto),
BitVisor with our own, memory-based AES-NI implementation (AES-NI/256),
and BitVisor with its default, OpenSSL-based AES variant (StdAES/256).



TreVisor 77

Table 1. Basic throughput data (a) of TreVisor in MB/s. The penalty of the reference
values (b) is in comparison to the throughput of TRESOR-256.

TRESOR-128 TRESOR-192 TRESOR-256

Linux/write 59.3 54.4 56.0
Linux/read 38.8 36.3 32.5
Windows 43.4 39.4 35.3

(a)

No-VMM No-Crypto AES-NI/256 StdAES/256

Linux/write 60.7 7.74% 59.9 6.51% 59.2 5.41% 57.6 2.78%
Linux/read 63.7 48.98% 63.2 48.58% 62.9 48.33% 37.8 14.02%
Windows 54.1 34.75% 53.9 34.51% 53.4 33.90% 41.4 14.73%

(b)

Under Linux, we evaluated the encryption speed (write to an encrypted par-
tition) as well as the decryption speed (read from an encrypted partition) with
the dd utility. To minimize the effect of disk caching, we copied large files (10
gigabytes) that do not fit into RAM and averaged over several test runs. Under
Windows we used the PC analysis software SiSoft Sandra 2011 to create com-
bined disk benchmarks (read and write). It remains unclear how the values are
determined by SiSoft Sandra in detail and thus, the inferior throughput com-
pared to Linux does not necessarily mean that hard disks under Windows work
slower.

We took the disk speed of BitVisor without encryption (No-Crypto) into ac-
count to investigate the performance drawback that arises from hooking into disk
writes without modifying them. As shown by Table 1, this effect is minor. Addi-
tionally we added our own, memory-based implementation of AES to BitVisor
(AES-NI/256), because the default implementation of BitVisor does not utilize
the AES instruction set. To investigate the exact performance drawback caused
by TRESOR’s on-the-fly key schedule, we patched TRESOR’s encryption rou-
tine to store all round keys persistently in RAM. We were surprised by the
outstanding acceleration attributed to AES-NI; the difference between AES-NI
and no encryption is nominal.

As shown in Table 1, the performance drawback of TRESOR-256 compared to
standard AES-256 is only about 3% for writing but about 14% for reading. This
effect stems from the on-the-fly key schedule: decryption round keys are derived
from encryption round keys by an additional, costly operation (namely aesimc,
inverse mix columns). As the key schedule must be recomputed for each input
block, this extra operation becomes noticeable. In comparison with plain (not
encrypted) disks the effect intensifies and the performance decreases to almost
50% for decryption/reading. Writing, on the other hand, is not affected by the
extra operation and the performance decrease compared to all reference values
is below 10%.



78 T. Müller, B. Taubmann, and F.C. Freiling

In summary, TreVisor can practically be employed without a noteable per-
formance drawback for encryption, but with a performance drawback of up to
50% for decryption. However, compared to the gain in security, we consider this
performance loss as acceptable. Furthermore, we want to point to the combined
read/write benchmarks under Windows, revealing a decrease of about one-third
on average. Lastly, we want to note that the decrease relative to traditional,
non AES-NI implementations is below 15%; and those systems were practically
deployed for many years until AES-NI CPUs came up recently.

6 Security

First we show that TreVisor is, above all, secure against cold boot attacks and
DMA attacks. Furthermore it can be configured in a way that is mostly se-
cure against evil maid attacks. Last we discuss timing attacks and attacks by
privileged users.

Cold Boot Attacks. The major development object of TreVisor is to offer
Windows users the opportunity to encrypt their hard disks resistant to cold boot
attacks. All existent, software-based FDE systems for Windows store necessary
keys in RAM. As shown by a recent study about the practicalness of cold boot
attacks [6], this problem must be taken seriously.

To defeat cold boot attacks we consistently treat RAM as insecure and adopted
TRESOR’s techniques to hold keys in CPU registers. But the correctness of
TRESOR does not necessarily imply the correctness of TreVisor.We have to show
that no programming error slipped into our implementation that, for example,
leads the debug registers to be written out into RAM during context switching.

To prove resistance against cold boot attacks we analyzed the RAM of a
TreVisor system in order to show that (1) debug registers are never swapped
out into VMCS structures, and (2) GPR and SSE registers are not swapped out
inside critical sections. The most comfortable way to analyze the memory of a
TreVisor system is to run TreVisor itself inside a VM and examine its memory
from outside. Unfortunately, nested VT-x does not work in current virtualization
software; either it is not supported at all, or, as in VMware (4.0.2), it is officially
supported but still causes TreVisor to crash.

Hence, we had to examine memory via cold boot attacks. We booted a mini
OS from USB as well as over network (PXE) and dumped everything that was
left in memory. Additionally we used BitVisor’s debug console to examine the
entire main memory at runtime and patched TreVisor to go through the crucial
VMCS structures. Last but not least, we implemented log messages on access to
debug registers.

Instead of using aeskeyfind [10], which is based on the AES key schedule
that is not stored in TreVisor at all, we had advantage over real attackers by
searching for known keybits. Despite this advantage, we were not able to find
any match of the key that exceeds three bytes, a finding which can be explained
by chance alone. On the other hand, when we explicitly wrote keybits into RAM,
we were able to recover them.



TreVisor 79

Summarizing, we were not able to recover keybits, the key schedule or any
part of them despite strenuous efforts.

DMA Attacks. Read-only DMA attacks are prevented by TreVisor as ex-
plained in the previous section – since the TreVisor key never enters RAM,
it cannot be retrieved by reading from RAM. However, writeable DMA attacks
may still be harmful because they can compromise the system space and execute
privileged code, e. g., code that displays the debug registers.

Writeable DMA attacks can only be circumvented by restricting the memory
space that is available to DMA capable I/O ports like Firewire. Such restrictions
can effectively be implemented via the IOMMU of Intel’s VT-d technology.

Normally, hypervisors use the IOMMU to protect themselves from access of
untrusted guest OSs. However, the same mechanism can be used to improve secu-
rity against DMA attacks, and so does BitVisor. BitVisor verifies that addresses,
which are specified by guest DMA descriptors, do not point into hypervisor re-
gions.

It should be mentioned that BitVisor protects only its own memory regions;
the system space of the guest is not protected and still vulnerable to DMA
attacks. But since the disk encryption logic of TreVisor resides in the hypervisor,
the key cannot be accessed from the guest.

Summarizing, BitVisor implements an effective approach to protect its mem-
ory space against malicious I/O devices and hence, TreVisor is secure against
DMA attacks.

Evil Maid Attacks. As a matter of fact, software-based FDE systems do not
enforce full disk encryption due to bootstrapping reasons. At least the MBR and
a small decryption routine must be stored unencrypted in order to launch the
remaining system. This weakness affects most existent FDE solutions, including
TrueCrypt, and allows for so called evil maid attacks: unencrypted MBRs can be
infiltrated with bootkits (which, for example, may have keylogging functionality).

To overcome such attacks, we successfully tested a configuration of TreVisor
that enables true FDE, meaning that the master boot record of the disk must
not be left unencrypted. For this reason we store both the bootloader and the
hypervisor onto an external USB flash drive which is required to be plugged in
during boot time. (Additionally, reconfiguring the BIOS should be protected by
a password.)

Although this countermeasure thwarts the most evident MBR attacks, it is
not perfect. First, the USB device must be handled like a physical key, meaning
that loss of the device threatens the protection mechanism. Second, only the
integrity of the bootloader can be verified, not the integrity of the BIOS (e. g.,
BIOS kits [26]). Therefore, we are working on the support of trusted platform
modules in future versions of TreVisor as it would be both more convenient and
more secure. BitLocker, for example, already supports such a TPM configuration.

Timing Attacks. We want to mention briefly that TRESOR is resistant to
another kind of side channel attacks – timing and cache-based attacks [20].



80 T. Müller, B. Taubmann, and F.C. Freiling

However, this is not special because all disk encryption systems which build
upon Intel’s AES-NI, including BitLocker and TrueCrypt, are resistant to timing
attacks. Intel itself states that, beyond improving performance, the AES instruc-
tion set provides security benefits by running in data-independent time [27].

Privileged User Attacks. In TreVisor, an adversary who could gain root or
administrator privileges cannot compromise the key. Of course, such an adver-
sary is mostly able to read out the disk, but the encryption key itself cannot be
accessed. This again is an improvement compared to BitLocker and TrueCrypt
where the key resides in system space – always available to attacks by the super-
user. In TreVisor the key does not reside in system space but ring -1 privileges
are required to access it. TreVisor does not grant access from the untrusted guest
OS and hence, it is impossible for an adversary to read the key without breaking
out of the VM.

Preventing such VM escapes was one of the design goals of BitVisor. The
authors argue that BitVisor comprises only about 20 KLOC (kilo lines of code)
which is quite small compared to other VMMs. Reduced code size effectively
increases the reliability of a hypervisor as it reduces the risk of serious program-
ming errors. For example, local privilege escalations for the Linux kernel appear
regularly (e. g., CVE-2009-2692, CVE-2010-3081, and CVE 2012-0056 [2]). Thus,
even when using TRESOR, which is a Linux kernel patch, the secret key cannot
effectively be protected against local attacks because once a user compromised
system space, the key can easily be retrieved. In contrast, a TreVisor user would
additionally have to break out of the VM – which is at least a further obstacle.

7 Conclusions and Future Work

In this paper we described TreVisor, a disk encryption scheme that is primar-
ily designed to resist main memory attacks. Our proposal goes along with a
prototype implementation that runs reliably in practice but allows for many
improvements in future work, too.

Conclusions. Software based disk encryption solutions like BitLocker and True-
Crypt are designed to preserve confidentiality and integrity in the case of physical
loss. But in many practical cases they do not fulfill these requirements as it has
been shown by several known attacks: cold boot, DMA, and evil maid attacks.

Hence, there is practical need for a disk encryption solution that finally inte-
grates countermeasures to all these threats [7]. TreVisor, which claims to be such
a solution, has several advantages as compared with conventional disk encryption
software:

– As only a hypervisor must be present unencrypted, truly full disk encryption
can easily be enforced. For example, the small hypervisor can be stored on
external bootable devices, improving protection against evil maid attacks.

– As VT-x technology is utilized to run below the operating system, TreVisor
encrypts transparently for the OS. That is, TreVisor permits, for example,
Linux and Windows to access the same encrypted partition simultaneously.



TreVisor 81

– As it is based on TRESOR and VT-d/IOMMU technology, TreVisor secures
against attacks on main memory, namely cold boot and DMA attacks.

We believe that exploiting otherwise hardly used components, i. e., the debug
registers and VT-x/VT-d, is a reasonable way to deploy more secure disk en-
cryption in mobile end-user systems.

To conclude, TreVisor substantially increases the security of disk encryption
systems. It is the first system which is secure against known main memory at-
tacks, in particular against cold boot and DMA attacks. Before TreVisor, coun-
termeasures against these attacks were spread over small, academic projects and
serious disk encryption systems still do not implement them.

Future Work. We believe that utilizing virtualization technology in order to en-
force OS-independent disk encryption is the most promising software-alternative
to compete with hardware-FDE, which becomes increasingly popular. At the
time of this writing, however, TreVisor can only be treated as a prototype of
what could be done in future. To be deployable on the mass market, many is-
sues have to be solved, mainly regarding usability and compatibility:

– Easy installation, particularly for Windows users. Currently, TreVisor must
be compiled under Linux and manually be started from within GRUB before
booting the OS.

– User-friendly suspend-to-RAM support. At the moment, suspend-to-RAM
must be considered as “experimental” since TreVisor fails to display a visual
password prompt.

– CPU frequency scaling from within the guest. This is especially important
to save battery life of notebooks.

Above that, we are continuously working on further security improvements, pri-
marily on the integration of trusted platform modules into the boot process.
Proving the integrity of boot components by means of the TPM would be a
secure and convenient add-on to TreVisor in the future.

Acknowledgments. We would like to thank Richard Mäckl, Johannes Stüttgen,
and Stefan Vömel as well as the anonymous reviewers for reading a prior version
of this paper and giving us valuable suggestions for improving it.

Availability. TreVisor is free software which is published under the GPL v2 [29].
Its source code is publicly available at www1.cs.fau.de/trevisor

References

1. Abramson, D., Jackson, J., Muthrasanallur, S., Neiger, G., Regnier, G., Sankaran,
R., Schoinas, I., Uhlig, R., Vembu, B., Wieger, J.: Intel Virtualization Technology
for Directed I/O. Intel Technology Journal 10 (August 2006)

2. Aedla, J.: Linux Kernel CVE-2012-0056 Local Privilege Escalation Vulnerability
(January 2012); Common Vulnerabilities and Exposures,
http://www.securityfocus.com/bid/51625/

http://www.securityfocus.com/bid/51625/


82 T. Müller, B. Taubmann, and F.C. Freiling

3. Becher, M., Dornseif, M., Klein, C.N.: FireWire - All Your Memory Are Belong
To Us. In: Proceedings of the Annual CanSecWest Applied Security Conference,
Vancouver, British Columbia, Canada. Laboratory for Dependable Distributed Sys-
tems, RWTH Aachen University (2005)

4. Böck, B.: Firewire-based Physical Security Attacks on Windows 7, EFS and
BitLocker. Secure Business Austria Research Lab (August 2009)

5. Carrier, B.D., Spafford, E.H.: Getting Physical with the Digital Investigation Pro-
cess. IJDE 2(2) (2003)

6. Carbone, Bean, Salois: An in-depth analysis of the cold boot attack. Technical
report, DRDC Valcartier, Defence Research and Development, Canada, Technical
Memorandum (January 2011)

7. Cardwell, M.: Protecting a Laptop from Simple and Sophisticated Attacks (August
2011),
https://grepular.com/Protecting a Laptop

from Simple and Sophisticated Attacks
8. Devine, C., Vissian, G.: Compromission physique par le bus PCI. In: Proceedings

of SSTIC 2009. Thales Security Systems (June 2009)
9. Gueron, S.: Intel’s New AES Instructions for Enhanced Performance and Secu-

rity. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 51–66. Springer,
Heidelberg (2009)

10. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calan-
drino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest We Remember: Cold
Boot Attacks on Encryptions Keys. In: Proceedings of the 17th USENIX Security
Symposium, San Jose, CA, pp. 45–60. Princeton University, USENIX Association
(2008)

11. Hulton, D.: Cardbus Bus-Mastering: 0wning the Laptop. In: Proceedings of
ShmooCon 2006, Washington DC, USA (January 2006)

12. Intel Corporation. Intel 64 and IA-32 Architectures Developer’s Manual, Combined
Volumes: 1, 2A, 2B, 2C, 3A, 3B and 3C edition (December 2011)

13. Intel Corporation. Solid-State Drive 320 Series (2011),
http://www.intel.com/content/www/us/en/

solid-state-drives/solid-state-drives-320-series.html

14. Rutkowska, J.: Evil Maid goes after TrueCrypt. The Invisible Things Lab (October
2009),
http://theinvisiblethings.blogspot.com/2009/10/

evil-maid-goes-after-truecrypt.html
15. Johnson, C.: Protection of Sensitive Agency Information. U.S. Executive Office of

the President, Washington, D.C. 20503 (June 2006)
16. Pabel, J.: Frozen Cache (January 2009), http://frozenchache.blogspot.com/
17. Microsoft Corporation. Windows BitLocker Drive Encryption: Technical Overview.

Microsoft (July 2009)
18. Müller, T., Dewald, A., Freiling, F.: AESSE: A Cold-Boot Resistant Implementa-

tion of AES. In: Proceedings of the Third European Workshop on System Security
(EUROSEC), Paris, France, pp. 42–47. RWTH Aachen / Mannheim University,
ACM (April 2010)

19. Müller, T., Freiling, F., Dewald, A.: TRESOR Runs Encryption Securely Outside
RAM. In: 20th USENIX Security Symposium, San Francisco, California. University
of Erlangen-Nuremberg, USENIX Association (August 2011)

20. Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: The
Case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

https://grepular.com/Protecting_a_Laptop_from_Simple_and_Sophisticated_Attacks
https://grepular.com/Protecting_a_Laptop_from_Simple_and_Sophisticated_Attacks
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-320-series.html
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-320-series.html
http://theinvisiblethings.blogspot.com/2009/10/evil-maid-goes-after-truecrypt.html
http://theinvisiblethings.blogspot.com/2009/10/evil-maid-goes-after-truecrypt.html
http://frozenchache.blogspot.com/


TreVisor 83

21. Panholzer, P.: Physical Security Attacks on Windows Vista. Technical report. SEC
Consult Vulnerability Lab, Vienna (May 2008)

22. Parker, T.P., Xu, S.: A Method for Safekeeping Cryptographic Keys from Memory
Disclosure Attacks. In: Chen, L., Yung, M. (eds.) INTRUST 2009. LNCS, vol. 6163,
pp. 39–59. Springer, Heidelberg (2010)

23. Simmons, P.: Security Through Amnesia: A Software-Based Solution to the Cold
Boot Attack on Disk Encryption. CoRR, abs/1104.4843. University of Illinois at
Urbana-Champaign (2011)

24. Ponemon, L.: 2010 Annual Study: U.S. Enterprise Encryption Trends. Ponemon
Institute, Symantec (2010)

25. Graham, R.D.: Thunderbolt: Introducing a new way to hack Macs. Errata Security,
http://erratasec.blogspot.com/2011/02/

thunderbolt-introducing-new-way-to-hack.html (February 2011)
26. Sacco, A.L., Ortega, A.A.: Persistent BIOS Infection: The early bird catches the

worm. In: Proceedings of the Annual CanSecWest Applied Security Conference,
Vancouver, British Columbia, Canada. Core Security Technologies (2009)

27. Gueron, S.: Intel Advanced Encryption Standard (AES) Instruction Set White
Paper. Intel Corporation, Rev. 3.0 edn. Intel Mobility Group, Israel Development
Center (January 2010)

28. Shinagawa, T., Eiraku, H., Omote, K., Hasegawa, S., Hirano, M., Kourai, K.,
Oyama, Y., Kawai, E., Kono, K., Chiba, S., Shinjo, Y., Kato, K.: In: International
Conference on Virtual Execution Environments, Washington, DC, USA. University
of Tsukuba (March 2009)

29. Richard Stallman and Jerry Cohen. GNU General Public License Version 2. Free
Software Foundation (June 1991)

30. TrueCrypt Foundation. TrueCrypt: Free Open-Source Disk Encryption Software
for Windows, Mac OS and Linux (2010), http://www.truecrypt.org/

http://erratasec.blogspot.com/2011/02/thunderbolt-introducing-new-way-to-hack.html
http://erratasec.blogspot.com/2011/02/thunderbolt-introducing-new-way-to-hack.html
http://www.truecrypt.org/

	TreVisor
	Introduction
	Background
	TRESOR
	BitVisor

	Design and Implementation
	Compatibility
	Performance
	Security
	Conclusions and Future Work




