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Abstract. Detecting collisions in the power consumption of a modern
cryptographic engine is usually difficult due to small leakages and possi-
ble countermeasures. Wide collisions offer a much stronger leakage that
significantly facilitates their detection. This is the first time wide colli-
sions are exploited in a power analysis attack. In this work we introduce
a collision detection method based on the detection of characteristic out-
liers. Detection results are compared to optimized subspace-based tem-
plates. We show that the outlier detection method, while not requiring a
template building phase, is almost as effective in detecting collisions as
the template-based approach.

1 Motivation

After several years of their exploration, side channel attacks remain a threat
to embedded cryptographic implementations. Especially various power analysis
attacks have been developed [8,9,10] and improved [1,7,12], as have countermea-
sures against them [11]. Power based collision attacks [13] are mostly disregarded
because detection of collisions is usually more sensitive to noise and countermea-
sures than most other DPA attacks. However, the AES-specific wide collisions
as described in [4] offer a huge advantage. Instead of trying to detect a single
collision of a byte during an SubBytes operation of the AES algorithm, wide col-
lisions result in a colliding column for a whole round in addition to two SubBytes
byte collisions in the prior and anterior rounds. Hence, such collisions are much
easier to detect due to increased leakage. This work is the first one to present
results of applying wide collisions using power analysis.

Related Work. In 2004, Schramm et al. mounted the first collision attack
on AES, pointing out the important fact that the collision attack significantly
reduces the attack complexity by combining the analytical and side channel
approach [13]. Bogdanov in 2007 [2] generalized the concept of internal colli-
sions and improved the attack under the assumption that byte collisions are
detectable. In the following year two multiple-differential methods – binary and
ternary voting— were raised for collision detection in [6] and multiple-differential
collision attacks MDCA were proposed in [3]. A differential cache-collision tim-
ing attack on AES was mounted on an ARM microprocessor in 2010 in [4]. This
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is a chosen plaintext attack based on the occurrence of wide collisions and its
algebraic properties.

Another important approach, the template based attack, was firstly intro-
duced in [8] in 2002. Archambeau et al. in 2006 [1] suggested a principal subspace-
based template attack which overcomes the problem of selection of important
points and specification of the minimal distance between points. Recently Bog-
danov et al. [5] combined collision attack with divide-and-conquer attacks as
DPA and template attack to further reduce the computational complexity.

Our Contribution. In this paper we propose a new practical method – the
outlier method – for detecting wide collisions in AES with a high success prob-
ability. It is for the situation where the creation of templates is impossible. It
has no requirement on any prior knowledge concerning the leakage model, but it
requires knowledge of leaking time instances in the power traces. The attack is
based on the assumption that two traces are more likely to form a wide collision
pair if they are far away from the mean trace of all the measurements and, at
the same time close to each other. The results of the outlier method attack are
compared to the detection rates of the PCA based template attack proposed
in [1]. The strength of the template-based approach lies in that the principal
components are not computed from all the traces as a whole, but instead from
the 256 bin average traces — each of which is the mean trace of a bin that
has been trained. The idea is to magnify of Inter-Bins Variation through PCA.
We extend this idea to an iterative PCA algorithm to make further separation
amongst those bins that are still close to each other in a previous iteration.

The organization of this paper is as follows. In Section 2 we review the collision
attacks, wide collisions and template attack. In Section 3 we describe the per-
formed attacks. Section 3.1 gives a detailed description of the outlier method. In
Section 3.2 the concepts of Inter-Bins Variation and Inner-Bin Variation are in-
troduced. Sections 3.3 and 3.4 introduce the PCA based template attack followed
by further improvements through repeated applications of PCA. In Section 4 we
analyze the influencing factors for the outlier method and compare the results
for the template based collision detection in conditions of reduced templates in
the time domain, full templates in the time domain and the principal subspace.

2 Background

The following gives an overview on collision attacks in general and describes the
properties of wide collisions. Furthermore, the template attack is introduced.

2.1 Collision Attack

In general, an internal collision in a cryptographic primitive occurs if some spe-
cific target function φ produces the same output value y for two different inputs
x1, x2, that is, φ (x1) = y = φ (x2). Internal collisions in AES were defined by
[13] and generalized by [2]. Collisions occur in the output of the MixColumns
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transformation in each round function of AES, which takes two different plain-
texts (or internal states) as input and outputs the same byte value. For example,
an internal collision at byte 0 in round 1 occurs for two plaintexts P, Q, where
P = (pij), Q = (qij), i, j = {0, 1, 2, 3} if

02 · p′
00 ⊕ 03 · p′

10 ⊕ 01 · p′
20 ⊕ 01 · p′

30 = 02 · q′
00 ⊕ 03 · q′

10 ⊕ 01 · q′
20 ⊕ 01 · q′

30

where all the p′
ij , q′

ij refer to the byte values of the internal state before the
MixColumns operation. Since each p′

i0 = S (kii ⊕ pii) and q′
i0 = S (kii ⊕ qii), the

above equation contains information about a part of the key. The idea of side
channel collision attack on AES is therefore to detect internal collisions from
the side channel leakages and then to reduce the number of possible subkey
candidates by making use of the above equations, as described in [13] and [2].
One of the main challenges is to get reliable detection of such collisions.

2.2 Wide Collisions

Wide collisions for AES are defined in [4]. They are a special case of internal col-
lisions in the following way. Specific plaintexts are chosen to satisfy the condition
that the bytes off the diagonal are pairwisely equal i.e. pij = qij for all i �= j.
After such chosen plaintexts entering the encryption engine, one can track the
byte of an internal collision occurring at the first round MixColumns. After the
ShiftRows operation of the next round, the entire column where this collision
byte was shifted to will collide. Therefore 4 more internal byte collisions can be
observed after the second round MixColumns.

Consequently, this gives rise to one byte collision in Round 2 SubBytes and
four additional byte collisions in Round 3 SubBytes, resulting in a total of five
byte collisions. This phenomenon is referred to as wide collision. For example, if
two plaintexts collide at byte 0 after Round 1 MixColumns (p′

00 = q′
00), they will

continue to collide in Round 2 SubBytes (S (k′
00 ⊕ p′

00) = S (k′
00 ⊕ q′

00)). After
ShiftRows, all the four bytes in the Column 0 are pairwisely equal and thus we
get four additional collisions after Round 2 MixColumns (p′′

i0 = q′′
i0, i = 0, 1, 2, 3),

which will remain colliding in Round 3 SubBytes (S (k′′
i0 ⊕ p′′

i0) = S (k′′
i0 ⊕ q′′

i0)).
The wide collision attack is described as a three stage algorithm [4]: an online

stage where side channel leakage is measured for the chosen plaintexts, a collision
detection stage which returns several pairs of plaintexts which most likely give
wide collisions, and finally a key recovery stage. It is mentioned that every 4
wide collisions for each of the diagonally chosen plaintexts sufficiently reduce the
subkey space with a remaining uncertainty of 28. Hence, a total of 16 correctly
detected collisions reduces the number of remaining key candidates to 232, which
can be exhaustively searched on an average PC within minutes.

2.3 Template Attack

Template attack is a powerful side channel attack.In [8] power traces are char-
acterized with a multivariate Gaussian distribution model. The attack assumes
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that each individual trace follows a multivariate normal distribution with the
center and covariance that are identical to the ones of the correct bin. In other
words, traces of the same bin form a Gaussian distribution. Therefore each bin
can be characterized by a template (m, C), where m refers to the mean trace
and the C is the covariance matrix.

A template attack consists of template building phase and template matching
phase. In the building phase, one characterizes the device with a set of templates
(mi, Ci), each of which is created for one bin of traces. In the matching phase
each analyzed trace x is matched to the template that it most likely belongs
to. That is, it outputs the template which gives the highest probability density
computed by

P r (x; (mi, Ci)) =
exp

(
− 1

2 (x − mi)T C−1
i (x − mi)

)
√

(2π)N det (Ci)

where N is the length of mi, the number of points in the mean trace. This is
called the full template matching.

A simplified approach is referred as the reduced template matching in which
the dependency amongst different data points are disregarded. That is, for each
template the covariance matrix is replaced with the identity matrix so that the
computation of the probability density is simplified as

P r (x; mi) =
exp

(
− 1

2 (x − mi)T (x − mi)
)

√
(2π)N

Such reduced model is equivalent to computing the Euclidean distance between
each analyzed trace x and the bin average traces mi of the templates. It deter-
mines as the correct matching the template mj that is nearest to the analyzed
trace x, i.e. ‖ x − mj ‖≤‖ x − mi ‖ , for all i.

3 Practical Collision Attacks

In classical collision attacks, bins are formed in the way that certain bytes of
the intermediate state of the cipher collide to the same value. When the same
value is processed by certain operations (e.g. MixColumns, SubBytes in AES)
of the cryptographic primitive, the pattern of the power consumption of these
operations should be highly similar. Consequently, all possible 256 values of a
given byte give rise to 256 bins, hence 256 different patterns for each colliding
byte position. In a wide collision scenario, traces of each bin provide at least
5 internal byte collisions, spanning from MixColumns in round one up to Sub-
Bytes in round three of an AES execution. This results in a highly similar power
consumption over a relatively long time period, especially for serial implemen-
tations. Hence, detecting wide collisions should be much easier than detecting
simple collisions.
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Conventionally, leaking points of the power traces refer to a subset of sam-
plings of measurement or its transformation which represents the characteristics
of the pattern of the power traces. Locating these points usually requires knowl-
edge of the implementation and leakage properties of the platform or profiling.
As an example, the two plots in Figure 1 show a single trace (the upper plot)
over the region from round one MixColumns to round three SubBytes and a
differential trace (the lower plot) calculated as the absolute value of difference
between an average of traces of bin 7 and the average of all traces obtained. It
can be seen from this figure that peaks, which indicate the location of promising
leaking points, are spread out all over this region.
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Partial Trace: from Round 1 MixColumns to Round 3 SubBytes
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|Avg(Bin 7) − Avg(all traces)|

Fig. 1. Important Point Distributions

Another observation of leakages in the wide collision attack is that the po-
sitions of peaks are not invariant with respect to all wide collision bins. Some
bins share one or more positions of leakages, while no pair of two different bins
follows an identical pattern. Figure 2 gives an intuitive idea of the distribution
of leakages for some bins.

Hence, picking only a single point from all important points for the purpose
of collision detection is rather risky because only few bins leak at this point.
In other words, if the closeness of two traces at one fixed point is the only
criterion for wide collision detection, the detection can only succeed in rare
cases because power traces of other bins that do not leak locally at this point
are dominantly influenced by noise. Such traces make it difficult for a correct
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Fig. 2. Important Points for different Bins

collision detection, since, while randomly scattered, they are far more numerous
than colliding traces.

We distinguish two different kinds of multiple-point-based approaches: One
builds on a template-based detection, the other does not require templates. When
generating templates is not possible, we propose an outlier method which as-
sumes that a pair of traces forms a collision in the case they are close to each
other and simultaneously far away from the average of all traces. As a compar-
ison, we show that wide collisions can easily be detected using templates. The
challenge in this case is to discover the characteristics of each pattern and to
correctly recognize each individual power trace from all the patterns with high
probability.

Furthermore, we introduce the concepts of Inner-Bin-Variation and Inter-
Bins-Variation as two parameters determining the effect of collision detection.
We propose methods with the application of Principal Component Analysis
(PCA) and iterative PCA so that the idea of maximizing Inter-Bins-Variation
is realized.

3.1 Outlier Method

Generally, the outlier method assumes that two traces in the outlier region – with
distance sufficiently far away from the average of all traces – are more likely to
form a collision pair if additionally they are sufficiently close to each other. It
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includes one distance function dist (x, y) that gives a distance metric between
two trace representatives x and y. It also includes two distance parameters R
and r, where R is the outlier lower bound ratio determining if one trace is inside
the outlier region, and r is the mutual distance upper bound ratio determining
if two traces are close by enough. Both R and r should be a number between 0
and 1. The procedure of the outlier method as follows:

Step 1: Use
(
x(1), ..., x(D)) as the representation of D traces collected in the

online stage and compute the average x̄ of all trace representation x(i) at
this point by x̄ =

∑
x(i)/D

Step 2: Compute the distances vector d =
(
d(1), ..., d(D)) where each entry

d(i) = dist
(
x̄, x(i)) is the distance between the trace x(i) and the average

trace x̄. Find the maximum element of the vector d by maxd = max (d).
Step 3: Find the set A of outliers by

A =
{

x(i) | d(i) ≥ R · maxd
}

It is a collection of trace representations with distance of no less than R·maxd
from the average trace x̄. Figure 3 gives an example of the location of the
outlier region.

Step 4: Find the list of pairwise distance

B =
{

dij = dist
(

x(i), x(j)
)

where x(i), x(j) ∈ A, i �= j
}

Note that if there are n outliers in set A, then the set B contains distances
of n (n − 1) /2 pairs of traces.

Step 5: Find the set C by

C =
{(

x(i), x(j)
)

| dij ≤ r · maxd , x(i), x(j) ∈ A
}

This is a filteration from the set B of those pairs with mutual distance greater
than r ·maxd. The set C is the output of the outlier method containing pairs
of traces that are promising candidates for collisions.

Please note that in general the distance function dist (·) is a combination of
all components. In practice, one could use a Euclidean distance for the dist
function, viewing the trace representatives as elements in a finite dimensional
vector space and assuming that components are independent from one another
and each component contributes equally to the resulting distance.

Pros and Cons. The existence of leaking points is a necessary prerequisite
for the wide collision detection. The points depend on the target device and
implementation and should be chosen wisely by the attacker. Usually, either
prior knowledge about the implementation or a profiling phase is needed. For
detecting significant leakage points, SPA or DPA methods can be applied.
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Fig. 3. outlier detection step 3

Choice of the parameters R and r is subjective. In practice, decreasing R while
increasing r will eventually result in more non-colliding pairs that are detected
as collisions. On the other side, decreasing r and increasing R will eventually
increase to the set of detected collisions that does not contain enough pairs for
key recovery.

The Euclidean distance is a convenient metric, since it is a straightforward
combination of the influence of each leaking point. However, it is often weaker
than a template attack on the same points. Using Euclidean distance makes two
additional non-justified assumptions: that the points leak independently of one
another and that they contribute equally to the output distance. For improved
detection results, it can be replaced by some function g (·) such that the influence
of different points can be more accurately reflected.

3.2 Inter-Bins Variation and Inner-Bin Variation

One way of selecting significant leakage points for collision detection is described
in [5] and [6]. Both publications describe the maxmin function for selecting the
most informative point of power traces and computing characteristics from traces
at this point. Specific speaking, they first find for each fixed time point the lowest
signal difference between all pairs of traces. They then find the time point that
gives rise to the biggest one among all the lowest signal differences and consider
that point to be the best choice. The logic of this method is that the lowest
signal difference determines the level of difficulty of trace separtion at each time
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point. The larger such lowest signal difference, the easier the separation of traces.
However, this method makes use of a single point of the power trace, while
ignoring all other remaining points. It yields for the attack a strong reliance
on the single point that has been selected, which still suffers the risk of being
influenced by the signal noise for each individual collision detection.

In contrast to single point selection, we propose an improved method. First,
one should only include the leaking part of the power traces, i.e. the targeted
round. For example, in wide collision attack, we only analyze the region starting
from round 1 MixColumns to round 3 SubBytes. In this situation, two parame-
ters – inter-bins variation (ITV) and inner-bin variation (INV) – determine the
ease and probability of correct collision detection.

ITV describes the variation of the characteristics of the averaged traces mi

of each bin value. It is computed as a Euclidean distance as

ITV =
√∑

i

(mi − m̄)2

where m̄ =
∑

mi/256 is the mean trace of all the bin average traces. An in-
creased ITV indicates an easier separation of the bins and more accurate pattern
matching of each individual trace. Notice that the computation of ITV can also
be applied to any representation of the traces. We refer the notion of maximizing
ITV as computing the maximal ITV amongst all representations of the traces.
Maximizing the ITV is therefore desired for the successful collision detection.

INV describes the variation of the characteristics of each individual trace x(i)
j

from that of the averaged trace mi = avgj

(
x(i)

j

)
of a particular bin Bi. That is

INV (i) =
√∑

j

(
x(i)

j − mi

)2

INV can similarly be applied to any representation of the traces and we refer
minimizing INV as computing the minimal of INV amongst all representations
of the traces. Note that INV is a tuple of 256 entries, corresponding to the inner-
bin variation of 256 bins, and minimizing one entry does not imply small values
for the rest of entries. Hence, although minimizing INV is desired, it might not
be practically feasible.

One should note that the existence of the bin average traces does not neces-
sarily guarantee the feasibility of its computation. In fact, only if one can build
up templates for the 256 bins, one can also obtain a raw representation of the
average traces of bins. Since each representation gives a computational result for
the ITV, the adversary would profit from a representation that maximizes the
ITV.

In our experience, we realize the magnification of ITV through finding the
representation of the average traces in the principal subspace, which are detailed
in 3.3 and 3.4.
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3.3 Template-Based Collision Detection

In cases where creating templates is possible, the attacker can build a template
for each bin of collision in the time domain, as detailed in [11] and described in
Section 2.3. Point selection can be automated by using principal component anal-
ysis (PCA) [1]. Template-based collision detection can achieve good detection
rates, as shown in Section 4.2. PCA is a three step algorithm:

1. Finding the mean vector x̄ and the centered data matrix X′ = (x′
1, ..., x′

D)T

of all the raw data record X = (x1, ..., xD)T , where x′
i = xi − x̄;

2. Computing the covariance matrix S = 1
D (X′)T (X′) and its d eigenvectors

(v1, ..., vd) corresponding to the largest d eigenvalues (λ1, ..., λd) of S;
3. Projecting X into the subspace spanned by the d eigenvectors (also called

components) Y = X (v1, ..., vd).

PCA performs an orthogonal projection into a subspace called principal sub-
space. The projection maximizes the variance of the data. Hence, a point selec-
tion with minimal information loss becomes possible.

Constructing templates in principal subspace is only one additional step to the
build-up of the templates in the time domain. That is, the raw traces need to be
projected into the principal subspace before the construction of templates. For
this step, the principal components could be obtained in two ways: from all the
raw traces X, or from the bin average matrix M = (m0, ..., m255)T, consisting
bin average traces mi of bin Bi where mi = avg {xj | xj ∈ Bi}. The consequence
of applying PCA for the first choice is the maximization of the variance amongst
individual traces and for the second approach amongst bin average traces. It
is clear that the second method —computing principal components from bin
averages— is desired because it achieves the goal of maximizing the ITV. Af-
ter getting the projected traces in the principal subspace, the regular template
building — the computation of bin averages and bin covariance — is performed
as discussed in Section 2.3.

Finally, in the template matching phase, each analyzed trace is firstly pro-
jected onto principal components, then matched to the closest template through
the evaluation of the probability densities. Every two different analyzed traces
that are matched to the same template form a collision pair.

3.4 Template-Based Collision Detection Using Iterative PCA

A further improvement can be achieved by repeatedly conducting PCA. This
gives rise to an iterative algorithm using projection. That is, in the template
building phase, if two bins are too close or overlapping after the first PCA
projection, one can repeat PCA projection (for which the computation of com-
ponents only involves the average traces of that two bins) to further separate
those two bins. The algorithm is given as follows:

Step 1: Use M(1) = {m0, ..., m255} to compute the first set of principal com-
ponents V(1) = (v1, ..., vr) and the projection of each trace P(1) = X · V(1).



Wide Collisions in Practice 339

Step 2: Partition the 256 bins into C
(1)
α and C

(1)
β where bins from C

(1)
α can be

clearly separated from other bins, while bins from C
(1)
β are still clustered with

some other bins. That is, if bin Bi ∈ C
(1)
β , then there exists bin Bj ∈ C

(1)
β

such that traces of bin Bi are not separable from traces in Bj .
Step 3: If C

(1)
β is not empty, compute the set M(2) which consists of the averages

of projected traces of non-separable bins in C
(1)
β

M(2) =
{

mi = avgj {pj | pj ∈ Bi} | Bi ∈ C
(1)
β

}

Then based on M(2), compute a second set of principal components V(2) and
obtain another set of projected traces P(2) = P(1) · V(2) from the previously
projected ones.

Step 4: Repeat steps 2 and 3 until after k iterations C
(k)
β is empty so that all

bins are sufficiently separated.

4 Experimental Results
All experiments have been performed on a smart card featuring an 8-bit micro-
controller based software implementation of AES. The measurements have been
performed using a Tektronix digital sampling oscilloscope with an 8 bit A/D
converter. The sampling rate of 50MS/s provides about 12 sampling points per
clock cycle.

We first evaluate the detection rate of the outlier method. We explore the
impact on the detection rate of several parameters: the number of promising
leaking points, the choices of the outlier lower bound ratio R and the mutual
distance upper bound ratio r, as well as the number of traces being investigated.
Detection results are shown in Tables 1 through 3. The first column contains
the analyzed influencing factor. The second column is the average size of set
A, i.e. the average number of the outliers, as described in Section 3.1. Again,
if n traces were in the outlier region, n (n − 1) /2 pairs are further analyzed by
computing pairwise closeness. The third column shows the size of the set C, i.e.
the average number of output pairs of promising collisions. The next column
counts the number of correctly detected collisions, that is the detected pairs
which actually form wide collisions. The last column is the ratio between the
third and the fourth column, i.e. the ratio of correctly detected collisions.

For comparison we apply template-based collision detection in three differ-
ent scenarios, (1) reduced templates in the time domain, (2) full template in
time domain and (3) full template in the principal subspaces. Figure 4 shows
how many traces per bin are necessary for training good templates and further
indicates the asymptotic recognition rate for the three cases for our platform.

4.1 Results for the Outlier Method

We apply the outlier method as detailed in Section 3.1 to detect wide collision
from the power traces. In our experiment, we define the distance function with
the norm ‖ · ‖1. That is,
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dist (x, y) =‖ x−y ‖1=
∑

i

|xi − yi|

gives the distance from trace x = (x1, ..., xt) to y = (y1, ..., yt). In our experi-
ments we use 3000 traces and fix the parameter R to 0.9 and r to 0.3. We locate
between 1 to 8 promising leaking points to analyze the influence of the com-
bination of leaking points. Table 1 confirms that using multiple points results
in a better collision detection rate comparing to the case of locating only one
important point per power trace.

Table 1. Collision Detection: Single point vs. multiple points

number of
leaking points

number of
outliers

number of
detected pairs

number of
correct detection

average rate of
correct detection

1 19.6 127.7 21.9 23.0%
4 30.6 46.3 33.4 71.1%
6 110.7 126.3 105.4 86.2%
8 81.7 88.1 82.3 93.7%

Next, we explore different choices of the parameter pair (R, r) to analyze the
effect on the collision detection rate. As explained in the algorithm in Section
3.1, R is the parameter determining which traces are in the region of “outliers”
(the set A), sufficiently far away from the center of all traces. The larger R is,
the fewer traces are considered as outliers. On the other hand r is the parameter
that determines if two outliers are close enough to each other. The smaller r
is, the fewer pairs of traces are detected as collisions, namely the smaller the
cardinality of the set C . Our experiments use 3000 traces (the same as above)
and fix 6 locations of promising leaking points. They confirm that the stricter
the choice of (R, r), i.e. the larger choice of R and the smaller choice of r, the
more accurate the detection is, as shown in Table 2. As a last analysis of the

Table 2. Collision Detection: Choices of R and r

choice of
(R, r)

number of
outliers

number of
detected pairs

number of
correct detection

average rate of
correct detection

(0.7, 0.2) 382.1 807 551 68.4%
(0.8, 0.2) 110.7 126.3 105.4 86.2%
(0.9, 0.2) 19.9 8.3 7.7 89.6%
(0.9, 0.3) 19.9 16.1 12.9 81.3%
(0.9, 0.4) 19.9 22.9 13.9 60.8%

outlier method, we explore the relationship between the successful detection
and the number of traces being used in the experiment. In this experiment, 6
leaking points are fixed, the parameter R is set to 0.8 and r is 0.2. It is found
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that increasing the number of traces yields the increase in the number of outlier
traces and the number of pairs being detected, meanwhile the detection rate
does not significantly increase, as shown in Table 3.

Table 3. Collision Detection: Impact of number of traces used

number of
traces

number of
outliers

number of
detected pairs

number of
correct detection

average rate of
correct detection

1000 37.1 13.4 12.1 93.6%
3000 81.7 88.1 82.3 93.7%
5000 118.7 217.1 200.1 93.7%
7000 127.3 277 256.9 94.3%

4.2 Results for Template-Based Detection

In the preceding outlier method, it is assumed that one can locate several leaking
points and these points are independent of each other and contribute equally to
the computation of distance function. The same assumptions hold if a reduced
template attack is mounted in the time domain. But if a full template attack
is applied, these assumptions do not need to be fulfilled. If the templates are
built in the time domain, one only needs to locate good leaking points. While
templates built in principal subspaces, as described in Section 3.3, even locating
leaking points is no longer necessary. This is because the attacker can make use
of all the region of power traces that corresponds to wide collisions operations.
Our experiment compares the method using reduced template and the full tem-
plate to see how the dependency amongst leaking points helps with assigning an
analyzed trace to its collision bin. We also compare the recognition rate between
templates in the time domain and in the principal subspace through which we
can verify that magnifying ITV enhances the recognition rate.

Our experiments use 8 leaking points in the time domain. The counterpart
in PCA is 8 principal components that correspond to the 8 largest eigenvalues
computed as specified in Section 3.4. We use 2560 to 5632 traces to build up
templates so that each template makes use of 10 to 22 traces. We test 1000
traces to match to the templates and interpret #(correct recognition)/1000 as
the recognition rate. From Figure 4 we can draw the following conclusions:

1. Using reduced templates in the time domain gives very stable recognition
rate for a wide range of the number of used training traces for the templates.
The asymptotic rate is at approx. 0.8. This is lower than the result for
the two full models when sufficient training traces are provided. Therefore,
the assumption of independence of leaking points cannot provide a strong
collision distinguisher.

2. Full templates with PCA gain better recognition results comparing to the full
templates in the time domain. Full templates in principal subspace gain close
to 0.95 recognition rate given more than 20 training traces per bin. While
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Fig. 4. Templates in the time domain and in the principal subspace

full model in the time domain achieves only around 0.8 to 0.85. This confirms
the contribution of PCA for maximizing ITV in terms of recognition.

3. Full models have stricter requirements on the number of training traces. In
particular, if the attacker chooses n leaking points in the time domain or n
principal components in the principal subspace, then the number of training
traces per bin cannot be less than n, otherwise a singular covariance matrix
C is an unavoidable result and this makes the computation of probability
density infeasible. Even when the least number of training traces is satisfied,
the computation of the covariance matrix can still be remarkably impacted
by the noise in the side channel. That is why the recognition rate for both
of the full templates is low when fewer than 14 traces per bin are used.

5 Conclusion

This paper presents the first wide collision based power analysis attack. One
major finding is the outlier collision detection method. It shows that power traces
that are close to each other in the outlier region have a highly increased chance of
forming a collision pair. It is a strong method for detecting wide collisions. Unlike
template attacks, it does not require extensive profiling. However, it is shown that
template-based approaches are a great method for detecting collisions if template
building is possible. Different ways of building collision-detecting templates are
compared. Using PCA for finding independent strong leaking points seems to be
better than hand-picking points in the time domain. However, sufficiently many
measurements for each bin must be available during template building.
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