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Abstract. This paper presents differential-based distinguishers against
ISO standard hash functions RIPEMD-128 and RIPEMD-160. Second-
order differential paths are constructed on reduced steps of their com-
pression functions. These lead to 4-sum attacks on 47 steps (out of 64
steps) of RIPEMD-128 and 40 steps (out of 80 steps) of RIPEMD-160.
Then new properties called a (partial) 2-dimension sum and q-multi-
second-order collision are considered. The partial 2-dimension sum is
generated on 48 steps of RIPEMD-128 and 42 steps of RIPEMD-160,
with a complexity of 235 and 236, respectively. Theoretically, 2-dimension
sums are generated faster than the brute force attack up to 52 steps of
RIPEMD-128 and 51 steps of RIPEMD-160, with a complexity of 2101

and 2158, respectively. The attacks on RIPEMD-128 can also be regarded
as q-multi-second-order collision attacks. The practical attacks are im-
plemented and generated examples are presented. We stress that our
results do not impact to the security of full RIPEMD-128 and RIPEMD-
160 hash functions.

Keywords: RIPEMD-128, RIPEMD-160, double-branch structure,
2-dimension sum, q-multi-second-order collision.

1 Introduction

Hash functions are taking important roles in various aspects of the cryptography.
Since the collision resistance of MD5 and SHA-1 were broken byWang et al. [1,2],
cryptographers have looked for stronger hash function designs. While various
new designs are discussed in the SHA-3 competition [3], some of existing hash
functions seem to have much higher security than the MD4-family. Evaluating
such hash functions are useful especially if they are standardized internationally.

RIPEMD-128 and RIPEMD-160 [4] are hash functions standardized by ISO
[5]. RIPEMD-160 is also included in the recommended ciphers list of the Cryp-
tography Research and Evaluation Committees (CRYPTREC) set up by the
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Japanese Government [6]. RIPEMD-160 is standardized in the SSL protocol
[7], and is included in the OpenSSL Cryptography and SSL/TLS Toolkit [8].
RIPEMD-128 and RIPEMD-160 are implemented in various cryptographic li-
braries. For example, BouncyCastle [9], FlexiProvider [10], and GNU Crypto [11]
for JAVA, and Crypto++ [12] for C++. The use of RIPEMD-128 and RIPEMD-
160 in HMAC is explained in RFC [13,14].

RIPEMD-128 and -160 adopt the narrow-pipe Merkle-Damg̊ard structure.
Their compression functions adopt the double-branch structure, which takes
a previous chaining variable Hi−1 and a message block Mi−1 as input and
computes two compression functions CFL(Hi−1,Mi−1) and CFR(Hi−1,Mi−1).
The output Hi is computed by merging Hi−1, CFL(Hi−1,Mi−1), and
CFR(Hi−1,Mi−1). Due to the double size of the internal state and the diffi-
culties of controlling the two functions simultaneously, only a few results were
published before. Note that, in order to prevent the recent meet-in-the-middle
preimage attacks [15,16,17], some hash functions adopt a structure, which ap-
plies the feed-forward function several times, e.g. ARIRANG [18]. Ohtahara et
al. pointed out that such a structure can be viewed as the double-branch struc-
ture [19]. Hence, analyzing the double-branch structure is useful even for the
future hash function design.

RIPEMD-128 produces 128-bit digests and its compression function consists
of 4 rounds, 64 steps. RIPEMD-160 produces 160-bit digests and its compression
function consists of 5 rounds, 80 steps. Mendel et al. investigated the differen-
tial property of the compression functions of RIPEMD-128 and -160 [20]. They
applied the linear approximation and showed low Hamming weight differential
paths up to 3 rounds (48 steps) for RIPEMD-128 and up to some intermediate
step in the third round (steps 33 – 48) for RIPEMD-160. Although [20] is use-
ful to obtain some intuition for collision attacks, a lot of work is necessary to
complete the attacks. The complexity and even the possibility of the attacks are
unclear. Other previous results are the ones by Ohtahara et al. [21] and Wang et
al. [22], which investigated preimage attacks. [21] showed that the first 33 steps
of RIPEMD-128 and the first 31 steps of RIPEMD-160 can be attacked while
[22] showed that intermediate 36 steps of RIPEMD-128 can be attacked.

In this paper, boomerang type differential properties are discussed. The
boomerang attack was first proposed by Wagner for analyzing block-ciphers
[23]. It divides the function E(·) into two subparts E0 and E1 such that
E(·) = E1 ◦ E0(·). Let the probabilities of differential paths for E0 and E1 be p
and q, respectively. The boomerang attack exploits the fact that a second order
differential property with a probability p2q2 exists for the entire function E.
Aumasson et al. [24] applied the boomerang attack to the internal cipher of the
hash function Skein. However, the goal of the attack is still recovering the secret
key. After that Birukov et al. [25] and Lamberger and Mendel [26] independently
applied this property on the compression function so as to mount distinguish-
ers. Then, Sasaki [27] showed a straight-forward application of the framework of
[25,26] to the MD4-family (using the single-branch structure) consisting of up
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to 5 rounds. With the straight-forward technique by [27], it is unclear how to
attack the single-branch structure consisting of more than 5 rounds.

Our Contributions

This paper presents differential distinguishers against the compression functions
of RIPEMD-128 and RIPEMD-160. The results are summarized in Table 1.

Our first target is the 4-sum property. Then, new differential property called a
2-dimension sum and a q-multi-second-order collision are considered. Note that
the partial 4-sum and partial 2-dimension sum can be introduced naturally.

Then, differential paths are constructed on reduced RIPEMD-128 and -160
compression functions. The differential path construction is based on the frame-
work of the boomerang distinguisher by [25,26]. Our strategy is regarding CFL

as the first part of the boomerang attack (E0) and CFR as the second part (E1),
hence the entire function (E) is viewed as the single-branch structure with 8 and
10 rounds for RIPEMD-128 and -160, respectively. This simplifies the differential
path construction because the differential paths for CFL and CFR can be ana-
lyzed almost independently. However, because the straight-forward application
of the framework to the MD4-family [27] can only work up to 5 rounds, several
improvements are necessary to extend the number of attacked rounds.

On RIPEMD-128, we use the local collision to construct differential paths.
This leads to a long differential path satisfied with a high probability. As a
result, 4-sums and partial 2-dimension sums are generated with a practical com-
plexity up to 47 and 48 steps, respectively. In addition, 2-dimension sums are
theoretically generated faster than the brute force attack up to 52 steps.

On RIPEMD-160, the local collision involves more message words than
RIPEMD-128, and thus using the local collision is inefficient. Instead, we show an
interesting non-linear differential property of RIPEMD-160 which can avoid the
quick propagation of the difference. As a result, 4-sums and partial 2-dimension
sums are generated with a practical complexity up to 38 and 40 steps, respec-
tively. In addition, 2-dimension sums are theoretically generated faster than the
brute force attack up to 43 steps. If the attack target starts from the second
round, the numbers of attacked steps become 40, 42, and 51 for 4-sums, partial
2-dimension sums, and theoretical 2-dimension sums.

Paper Outline. In Sect. 2, differential properties are discussed. In Sect. 3,
the specification of RIPEMD-128 and -160 are explained. In Sect. 4, attacks on
RIPEMD-128 are explained. In Sect. 5, attacks on RIPEMD-160 are explained.
Finally, the paper is concluded in Sect. 6.

2 Differential Properties to Be Distinguished

We summarize differential properties discussed in previous papers, which are
4-sums and second-order collisions, and introduce new properties called 2-
dimension sums and q-multi-second-order collision.
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Table 1. Attacks on the compression functions. “2D-sum” and “q-multi-2nd”denote
2-dimension sum and q-multi-second-order collision respectively.

Target #Steps Property Information Generic Complexity Reference
Theoretic Bound Attack

RIPEMD-128 33 preimage 2128 2128 2119 [21]
(total 64 steps) 36† preimage 2128 2128 2123 [22]

45 4-sum 232 242 227 Ours
47 4-sum 232 242 239 Ours
48 q-multi-2nd 255 for q = 17 - 253 Ours
52 q-multi-2nd 2108 for q = 53 - 2107 Ours

RIPEMD-160 31 preimage 2160 2160 2148 [21]
(total 80 steps) 38 4-sum 240 253 242 Ours

40 partial 2D sum 264 264 242 Ours
43 2D sum 2160 2160 2151 Ours
40‡ 4-sum 240 253 236 Ours
42‡ partial 2D sum 264 264 236 Ours
51‡ 2D sum 2160 2160 2158 Ours

†: The attacked steps start from an intermediate step.
‡: The attacked steps start from the second round.

2.1 Previously Discussed Properties

4-sum is a set of 4 different inputs (I0, I1, I2, I3) where the sum of the correspond-
ing outputs is 0, namely CF(I0)⊕CF(I1)⊕CF(I2)⊕CF(I3) = 0. If the function
is ideal, finding 4-sums requires at least 2n/4 queries for n-bit output. There-
fore, if the 4-sum is obtained faster than 2n/4 computations, CF is regarded as
non-ideal. Apart from the information theoretic bound (2n/4), the current best
generic attack to find 4-sums is a generalized birthday attack [28], which re-
quires 2n/3 computations and 2n/3 memory. Hence, if 4-sums are generated with
a complexity between 2n/4 and 2n/3, CF is said to be weak because the same
property cannot be detected on other functions with the current knowledge.

The second-order collision [29,26] is a special form, in other words, a subset
of the 4-sum. It can be viewed as limiting the form of input values on the 4-sum
property. [29,26] defined the derivative at a point α for a function f as

Δ(α)f(y) = f(y + α)− f(y).

Then, the second-order derivative1 at (α, β) is defined as

Δ(α,β)f(y) = Δ(β)(Δ(α)f(y))

= f(y + α+ β)− f(y + β)− f(y + α) + f(y).

The second-order collision attack is finding (α, β, y) such that Δ(α,β)f(y) = 0.

Previous work [29,26] showed that the information theoretic bound is 3 · 2n/3
1 In [29,26], the n-th order derivative is discussed rather than the specific case n = 2.
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because the problem is essentially finding three parameters α, β, y with an n-bit
relation. On the other hand, the current best generic attack requires 2n/2.

2.2 2-Dimension Sums and Suitability for Double-Branch Structure

Similarly to the framework of the rebound attack [30], which limits the input
and output differences before making any query, we introduce a new differential
property, which we call 2-dimension sums. The 2-dimension sum is a special
form, in other words, a subset of the second-order collision. We further introduce
limitations to the form of input values on the second-order collision. The problem
is changed to find a value y such that Δ(α,β)f(y) = 0 for two pre-specified values
α and β. The 2-dimension sum is different from the second-order collision only
in the sense that α and β are pre-specified. The information theoretic bound
for the 2-dimension sum is 2n because the problem is essentially finding an
n-bit value satisfying an n-bit condition. A generic attack for this problem is
also 2n computations; choose the value of y and check that the corresponding
CF(y)⊕ CF(y ⊕ α)⊕ CF(y ⊕ β)⊕ CF(y ⊕ α⊕ β) is 0.

The 2-dimension sum is particularly useful to attack the double-branch struc-
ture. The attacker can construct a pseudo-near-collision path for CFL with set-
ting input chaining variable difference to α. Then, a pseudo-near-collision path
for CFR is independently constructed with setting other difference β. If the prod-
uct of the probability of each path (after the message modification) is higher
than 2−n/2, the 2-dimension sum can be generated faster than 2n by using
the boomerang attack approach [25,26]. Different from the original RIPEMD,
RIPEMD-128 and -160 adopt very different functions as CFL and CFR. There-
fore, the independence of the path construction for CFL and CFR greatly helps
the attacker. More detailed discussion is given in Sect. 4, and 5.

Note that the partial 2-dimension sum is naturally introduced, where CF(y)⊕
CF(y⊕α)⊕CF(y⊕ β)⊕CF(y⊕α⊕ β) becomes 0 only for the specified partial
bits, say d bits. In this case, the complexity of the generic attack is 2d and thus
a valid distinguisher must find it faster than 2d computations.

2.3 q-Multi-second-order Collision

By following the framework of the q-multicollision [31], we introduce a notion
of a q-multi-second-order collision on a function f : {0, 1}X → {0, 1}Y , which
is a set of two non-zero differences and q distinct inputs {Δ,∇, x1, x2, · · · , xq}
satisfying

f(x1)− f(x1 +Δ) + f(x1 +Δ+∇)− f(x1 +∇) = 0,

· · ·
f(xq)− f(xq +Δ) + f(xq +Δ+∇)− f(xq +∇) = 0.

Information-Theoretic Bound. Let an adversary make k distinct queries
x1, . . . xk to a random function. For any specified Δ and ∇, k distinct queries
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at most contribute to k quartets as below; (x1, x1 + Δ,x1 + ∇, x1 + Δ +
∇), . . . , (xk, xk +Δ,xk +∇, xk +Δ +∇). So the number of q-tuple quartets is(
k
q

)
for any specified Δ and ∇. There are less than 22X values for (Δ,∇). Thus

in total the number of q-tuple quartets satisfying the form is at most 22X · (kq
)
.

One such q-tuple has a probability 2−q×Y . We get the following inequality.

22X ·
(
k

q

)
≥ 2qY ,

k(k − 1) · · · (k − (q − 1))

q!
≥ 2qY−2X ,

k > q
√
q! · 2Y− 2X

q . (1)

2.4 Remarks for the Motivation of Studying Weak Properties

Some may say that studying weak non-ideal properties such as the partial 2-
dimension sum is meaningless. In fact, compared to the collision, the impact
of finding weak differential properties are very limited. However, the security
of symmetric primitives is usually evaluated and get trusted by demonstrating
many cryptanalytic attempts. Therefore, we believe that not only investigating
the standard properties but also extending the number of steps as much as
possible with any non-ideal property is useful to understand the state-of-the-art
about the security. Especially, such an activity is important for RIPEMD-128
and RIPEMD-160 because they are standardized and implemented in various
environments but only a few cryptanalyses were presented so far. This paper is
not claiming that weak distinguishers working for more steps are better than
standard attack scenarios with a smaller number of attacked steps. Considering
various approaches leads to better understanding and may be useful in future.

3 Specifications

RIPEMD-128/-160 were proposed by Dobbertin et al. [4] as stronger hash func-
tions than RIPEMD [32]. They take a message of arbitrary length as input and
produce 128-bit and 160-bit hash digests, respectively. Because our attack target
is the compression function, we omit the description of the domain extension.

3.1 RIPEMD-128

The compression function of RIPEMD-128 takes a 128-bit chaining variable
Hi−1 and a 512-bit message block Mi−1 as input and outputs a 128-bit chaining
variable Hi. Mi is divided into sixteen 32-bit message words m0,m1, . . . ,m15.
Let pLj be a 128-bit chaining variable and aLj , b

L
j , c

L
j and dLj be 32-bit variables

satisfying pLj = aLj ‖bLj ‖cLj ‖dLj , where 0 ≤ j ≤ 64. Similarly, pRj and aRj , b
R
j , c

R
j , d

R
j

are defined. The computation for CFL is as follows.

pL0 ← Hi−1, pLj+1 ← SFL
j (p

L
j ,mπL(j)) for j = 0, 1, . . . , 63,
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Table 2. Boolean functions, message expansions, and rotation numbers

fx(X, Y, Z)

x = 0, . . . , 15 X ⊕ Y ⊕ Z
x = 16, . . . , 31 (X ∧ Y ) ∨ (¬X ∧ Z)
x = 32, . . . , 47 (X ∨ ¬Y ) ⊕ Z
x = 48, . . . , 63 (X ∧ Z) ∨ (Y ∧ ¬Z)
x = 64, . . . , 79 X ⊕ (Y ∨ ¬Z)

πL(j) πR(j)

j = 0, . . . , 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12
j = 16, . . . , 31 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2
j = 32, . . . , 47 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13
j = 48, . . . , 63 1 9 11 10 0 8 12 4 13 3 7 15 14 5 6 2 8 6 4 1 3 11 15 0 5 12 2 13 9 7 10 14
j = 64, . . . , 79 4 0 5 9 7 12 2 10 14 1 3 8 11 6 15 13 12 15 10 4 1 5 8 7 6 2 13 14 0 3 9 11

Table 3. Computations for the Output of the Compression Function

RIPEMD-128 RIPEMD-160

H
(a)
i H

(b)
i−1 + cL64 + dR

64 H
(b)
i−1 + cL80 + dR

80

H
(b)
i H

(c)
i−1 + dL

64 + aR
64 H

(c)
i−1 + dL

80 + eR80
H

(c)
i H

(d)
i−1 + aL

64 + bR64 H
(d)
i−1 + eL80 + aR

80

H
(d)
i H

(a)
i−1 + bL64 + cR64 H

(e)
i−1 + aL

80 + bR80
H

(e)
i − H

(a)
i−1 + bL80 + cR80

where SFL
j is a step function for CFL and performs the following computation.

aLj+1 ← dLj , bLj+1 ← (aLj + fj(b
L
j , c

L
j , d

L
j ) +mπL(j) + kLj ) ≪ sLj ,

cLj+1 ← bLj , dLj+1 ← cLj ,

where ‘+’ represents the addition on modulo 232, ‘≪ s’ represents left cyclic
shift by s bits, fx is a Boolean function, πL(j) is the message expansion, and
kLj is a constant. CFR is similarly described. The values of sRj , π

R(j), kRj are

different and f63−j is used in step j. Details of fx, π
L(j), πR(j) are in Table 2.

Finally, the output Hi = H
(a)
i ‖H(b)

i ‖H(c)
i ‖H(d)

i is computed as shown in Table 3.

3.2 RIPEMD-160

The compression function of RIPEMD-160 is almost the same as the one for
RIPEMD-128. The chaining variable size is 160 bits, and thus 160-bit interme-
diate states are represented by five 32-bit variables, e.g. pLj = aLj ‖bLj ‖cLj ‖dLj ‖eLj .
The step functions SFL and SFR are iteratively computed 80 times (0 ≤ j ≤ 79).
The details of the computation of SFL are as follows.

aLj+1 ← eLj , bLj+1 ← ((aLj + fj(b
L
j , c

L
j , d

L
j ) +mπL(j) + kLj ) ≪ sLj ) + eLj ,

cLj+1 ← bLj , dLj+1 ← cLj ≪ 10, eLj+1 ← dLj .

Most of the parameters are shared with RIPEMD-128. The details are de-
scribed in Table 2. In the computations of SFR, the Boolean function in step
j is f79−j(bRj , c

R
j , d

R
j ). The other computations are similarly specified as SFL.

Finally, the output chaining variable Hi is computed as shown in Table 3.
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Fig. 1. Our Attack Strategy on RIPEMD-128 and -160

4 Attacks on RIPEMD-128

We construct differential distinguishers against compression function of RIPEMD-
128. Hereafter, we compute the difference in modular subtraction because the
main operation of RIPEMD-128/-160 is the modular addition. The message dif-
ferences, differential path, and sufficient conditions against RIPEMD-128 are
shown in Tables 4, 5 and 6 respectively.

4.1 Overall Strategy

A graphical description of our strategy is given in Fig. 1. First, we construct a Δ-

differential-path Δ
ΔM−−→ Δ′ in the left branch, and a ∇-differential-path ∇ ∇M−−→

∇′ in the right branch. Then we try to search for an input of the compression
function (H,M) such that (H,M), (H +Δ,M +ΔM ), (H +∇,M +∇M ), and
(M +Δ+∇, H +ΔM +∇M ) satisfy the following conditions.

– The difference propagations between (H,M) and (H + Δ,M + ΔM ) and
between (H + ∇,M + ∇M ) and (H + ∇ + Δ,M + ∇M + ΔM ) follow Δ-
differential-path in the left branch.

– The difference propagations between (H,M) and (H + ∇,M + ∇M ) and
between (H + Δ,M + ΔM ) and (H + Δ + ∇,M + ΔM + ∇M ) follow ∇-
differential-path in the right branch.

For such a (H,M), we obtain the relationship; CF(H,M)+CF(H+Δ+∇,M+
ΔM +∇M ) − CF(H +Δ,M +ΔM ) − CF(H +∇,M +∇M ) = 0, where CF is
the compression function of RIPEMD-128.

Note that the terminology “4-sum” is somehow strange to discuss the above
modular subtraction. However, the terminology “second-order collision” usually
considers the limitation of the inputs, and discusses essentially different proper-
ties. Hence, to avoid the confusion, we use “4-sum” for the above property.

4.2 Constructing Δ-Differential-Path

We should keep the differential path as simple as possible in order to maximize
its probability. One natural approach is to restrict the difference propagations.
Particularly, we expect that f functions do not produce new differences.
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Table 4. Differential path construction for 3-round RIPEMD-128

round πL(j) πR(j)
1 0© 1 2 3 4 5 6© 7 8 9 10 11 12 13 14 15 5 14 7 0 9 2 11 4 13 6© 15 8 1 10 3 12

Δ MM ← Δ constant MM ←
2 7 4 13 1 10 6© 15 3 12 0© 9 5 2 14 11 8 6© 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2

constant ← LC → constant ∇ constant
3 3 10 14 4 9 15 8 1 2 7 0© 6© 13 11 5 12 15 5 1 3 7 14 6© 9 11 8 12 2 10 0 4 13

constant Δ Δ → constant ∇ →

The f functions of the first and the third rounds in the left branch have weak
absorption property. By weak absorption property, we mean that a bit difference
is produced by f with the probability 1 if a (particular) input variable has a
difference at that bit. So we must make the Δ-differential-path short in these
two rounds. In order to achieve it, we generate a local collision in the second
round of the left branch, and pick a message difference ΔM which appears at a
very beginning step in the first round and at a very late step in the third round.
Such a strategy maximizes the probability of the whole differential path. Finally
we choose the message difference ΔM as below

Δm0 = −210; and Δm6 = 231.

Δ is determined backwards according to the differential path in the first round.

Δa0 = 28; Δb0 = 0; Δc0 = 231 + 216; and Δd0 = 231 + 216.

Δ′ changes with the number of the attacked steps. Moreover, we do not specify
Δ′ according to amplified probability using multiple outside differential paths.

Remarks on Multiple Differential Path. At step 44 of Δ-differential-path,
a difference of ∗25 is produced by the f function. For this difference, we do not
limit the sign for each pair, but we need the condition that the signs are identical
between two pairs. Hence, the probability to satisfy this condition is 2−1 rather
than 2−2. We also set 2 similar conditions at steps 46 and 47.

4.3 Constructing ∇-Differential-Path

The f function of the second round in the right branch has weak absorption
property. So we must make ∇-differential-path short in the second round of the
right branch. At the same time, the f function in the first round of the right
branch has strong absorption property. By strong absorption property, we mean
that no bit difference is produced by f by setting conditions if only one input
variant has a difference on that bit. So we decide to generate a relatively long
but simple sub-path in the first round, which should be ended by the message
difference in the second round. We should pick a message difference which ap-
pears at a very beginning step in the second round and at a very late step in
the third round. The whole differential path consists of 2 sub-paths: a long path
going through the whole first round and ending at a beginning step in the second
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round; and a short path at the late steps in the third round. Finally we choose
the message difference ∇M and corresponding ∇ as below

∇m6 = −230; ∇a0 = 220; ∇b0 = 0; ∇c0 = 0; and ∇d0 = 26.

4.4 Searching for (H,M)

Firstly, we search for (H,M)s which satisfy the differential path for the first 17
steps in both branches. The complexity of finding such (H,M)s, i.e. the com-
plexity for satisfying the first 17 steps can be ignored by applying the message
modification technique (e.g. [1,2]) and optimizing the computation order. More
precisely, the message modification is a technique to efficiently satisfy all con-
ditions in the first round. It exploits the property that each step in the first
round is computed with a message word which is not fixed yet. For example, to
satisfy the conditions of the variable bj+1 in the first round, you can iterate the
computation in step j many times by only changing the value of mπ(j) without
influencing the previous steps. Hence, by satisfying the conditions step by step,
the complexity is greatly reduced. Moreover, modifying the message word m12

never impacts to the sufficient conditions in the first round. This is because m12

is used in late steps of the first round in both branches (See Table. 4). Thus,
once we obtain an (H,M) satisfying the differential path up to step 17, we can
generate up to 232 valid (H,M) by modifying m12. As a summary, the complex-
ity for satisfying the differential path for the first 17 steps is (approximately)
2−32 times of the complexity of satisfying the whole differential path, and thus
can be ignored.

For the remaining steps (after step 17), we simply satisfy the path in the
brute-force manner. Hence, the entire attack complexity only depends on the
number of conditions after step 17.

4.5 Complexity Evaluation and Experiments

Besides counting the number of conditions in Δ- and ∇-differential-paths after
step 17, we also experimentally verify the amplified probability for outside paths.

Attack on 45 steps. There are 9 and 7 conditions in theΔ- and∇-differential-
paths, respectively. Each condition must be satisfied in two pairs and thus its
probability is 2−2. However, 1 condition in the Δ-path is the one discussed
in the remarks in Sect. 4.2, which satisfied with probability 2−1. Overall, the
complexity is 231(=2(8+7)+1). We then experimentally check the amplified
probability, and the final complexity is 227. This implies that 45 steps of the
compression function is non-ideal with respect to the 4-sum property.

Attack on 46 and 47 steps. We experimentally checked the amplified prob-
ability, and the final complexities on 46 and 47 steps are 234 and 239 respec-
tively. With respect to the 4-sum property, our attack on 47 steps is faster
than the current best generic attack [28].
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Table 5. Differential Paths for 2-Dimension Sums on 3-Round RIPEMD-128

∗ means that the +/−sign of difference is not specified. ΔbLj is 0 for all index j which
are not listed below. Similarly ΔbRj is 0 for all index j which are not listed below.

Path for CFL Path for CFR

ΔaL
0 = 28; ΔbL0 = 0; ΔaR

0 = 220; ΔbR0 = 0;

ΔcL0 = ∗231 + 216; ΔcR0 = 0; ΔdR0 = 26;
ΔdL0 = ∗231 + 216;

Step j ΔbLj Step j ΔbRj
2 ∗231 1 228

3 ∗231 2 215

22 28 5 29

43 −221 6 230

44 ∗25 9 216

46 ∗226 13 230

47 −228 ∗ 212 39 −24
48 ∗210 43 −29

47 −216

Attack on 48 steps. The complexity to satisfy the path is 248. We then in-
troduce q-multi-second-order collisions. Generating them by following the
path requires q · 248. When q = 17, the complexity is less than 253. On
the other hand, from Eq.(1), the generic case requires more than 17

√
17! ·

2128−
2(512+128)

17 ≈ 255.55. Hence, our attack is faster than the generic case.

Attack on 52 steps. ∇-differential-path in the fourth round of the right branch
becomes very complicated because the f function does not have the ab-
sorption property. Thus we only verified the amplified probability in the
fourth round. As a result, the complexity to obtain a 4-sum is 2101. We then
consider the q-multi-second-order collision for q = 53. Our attack requires
53 · 2101 < 2107, while the generic case in Eq.(1) requires 2108.21.

The attack was implemented on single PC. The generated 46-step 2-dimension
sum, which is 3-round (48-step) partial 2-dimension sum, is shown in Table. 8.

Table 6. Sufficient Conditions of Attacks on 3-Round RIPEMD-128

Left Branch Right Branch

cL0,16 = 0; dL
0,16 = 0; bL1,16 = bL0,16; bR0,6 = cR0,6; b

R
0,28 = 1; bR0,15 = 0; cR0,28 = 0;

no carry in bL2 ; no carry in bL3 ; dR
0,6 = 0; bR1,28 = 0, bR1,15 = 1; bR2,15 = 0

bL22,8 = 0; cL22,8 = dL
22,8; b

L
24,8 = 0; bL25,8 = 1 bR3,9 = 0; bR4,15 = bR3,15; b

R
4,30 = 0; bR4,9 = 1;

bL43,21 = 1; bL43,5 = 0; dL
43,21 = 0; bL44,21 = 1; bR5,9 = 0; bR5,30 = 1; b6,30 = 0; bR7,9 = bR6,9;

bL45,26 = 0; bL45,5 = 1; bL46,28 = 0, bL46,12 = 0; bR7,16 = 0; bR8,30 = bR7,30; b
R
8,16 = 1; bR9,16 = 0;

no carry in bL46; b
L
47,28 = 1; bL47,26 = 1; bR11,16 = bR10,16; b

R
12,30 = 0; bR13,30 = 0;

no carry in bL47; no carry in bL48; bR15,30 = bR14,30; b
R
39,4 = 1; bR40,4 = 0;

(H,M) and (H +∇,M +∇M ): cR39,4 = dR
39,4; b

R
41,4 = 1; bR42,9 = bR41,9; b

R
43,9 = 1;

share same bit values on bL44,5 , b
L
46,26, b

L
47,12 ; b

R
44,9 = 0; bR45,9 = 0; bR46,16 = bR45,16 ; b

R
47,16 = 1;
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5 Attacks on RIPEMD-160

Two attacks are presented on RIPEMD-160; in the first scenario, the attack
target is starting from the first round and in the second scenario, the attack
target is starting from the second round.

In the first scenario, the f functions of both branches do not have the absorp-
tion property in the first and third rounds. This makes the efficient differential
path construction hard. On the other hand, in the second scenario, the absorp-
tion property is available in both branches in the first and third rounds. The
differential path is more efficient than the first scenario, and the number of
attacked steps is beyond 3 rounds (up to 52 steps).

5.1 Overall Strategy and Relatively Slow Differential Propagation

Different from RIPEMD-128, using the local-collision to construct the path is not
efficient in RIPEMD-160. For RIPEMD-128, the local-collision is formed only
with differences in 2 message words. However, in RIPEMD-160, we need the
difference in 3 message-words due to the direct addition from chaining variable
ej . Hence, we stop using the local-collision. Instead, we insert the difference only
into 1 message word that appears in a late step of the second round, and just
propagate it to the third round as much as possible. The problem is that the
differential propagation in RIPEMD-160 seems much quicker than RIPEMD-128
due to the direct addition from chaining variable ej , and thus not so many steps
can be attacked. However, we explain an useful property of RIPEMD-160 where
we can limit the impact of the differential propagation. In fact, this is the main
reason why we can attack more than 3 rounds in the second scenario.

Cancelling Differences between ej and fj+1. Assume that, in some step,
there is no difference in chaining variables and a message difference is inserted.
If the difference is not propagated through f in the following 3 steps, only chain-
ing variable e has the difference. This situation is illustrated in Fig. 2. Let j
be the step index of this chaining variable and (Δaj , Δbj , Δcj , Δdj , Δej) =
(0, 0, 0, 0,+2n). In step j, ej is directly added to compute bj+1, thus the dif-
ference +2n is always propagated to bj+1. As shown in Fig. 2, Δej and Δbj+1

can cancel each other in step j + 1 through fj+1.
Assume that the difference 2n in bj+1 does not cause the carry, and thus only

n-th bit has the difference. In step j+1, if the difference in the n-th bit of bj+1 is
output from fj+1, moreover if its sign is opposite (−2n), the cancellation occurs.

In the attack starting from the first round, we utilize this property in the third
round where fx(X,Y, Z) is (X ∨¬Y )⊕Z in both branches. Y = 1 and Z = 1 are
the conditions for this event. On the other hand, in the attack starting from the
second round, fx(X,Y, Z) in the left branch is (X ∧ Z) ∨ (Y ∧ ¬Z). Then, the
sign of Δfj+1 cannot be opposite of Δej , and we need a different strategy. In
step j, we make a carry in bj+1 as shown in Fig. 3. Therefore, n-th bit position
changes in the opposite direction as Δej . Finally, in step j + 1, by propagating
the difference in the n-th bit and by absorbing the difference in the (n + 1)-th
bit, the cancellation occurs.
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mπ( j )

kj
<<<s(j) <<<10

aj bj cj dj ej

+2n [any]

fj

aj+1 bj+1 cj+1 dj+1 ej+1
+2n [any] +2n [+n]

mπ( j+1 )

kj+1

0000

0

<<<s(j+1) <<<10

fj+1

aj+2 bj+2 cj+2 dj+2 ej+2
+2n

[+n]

-2n [-n]

difference 
cancellation

Fig. 2. Difference cancellation between ej
and fj+1. The sign of Δfj+1 must be op-
posite of Δej . Information in ‘[ ]’ is the bit-
wise difference. ‘[any]’ represents that the
bitwise difference is irrelevant.

mπ( j )

kj
<<<s(j) <<<10

aj bj cj dj ej

fj

aj+1 bj+1 cj+1 dj+1 ej+1
+2n [+(n+1), -n]

mπ( j+1 )

kj+1

0000

0

<<<s(j+1) <<<10

fj+1

aj+2 bj+2 cj+2 dj+2 ej+2

-2n [-n]

difference 
cancellation

+2n

[+(n+1), -n]

+2n [any]

+2n [any]

Fig. 3. Difference cancellation with con-
sidering the carry effect for the case that
the sign of Δfj+1 is always the same as
Δej

Table 7. Differential path construction for the first 3-rounds of RIPEMD-160

round πL(j) πR(j)
1 0 1 2© 3 4 5 6 7 8 9 10 11 12 13 14 15 5 14 7 0 9 2© 11 4 13 6 15 8 1 10 3 12

← Δ constant MM ← ∇ constant
2 7 4 13 1 10 6 15 3 12 0 9 5 2© 14 11 8 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2©

constant Δ → constant ∇
3 3 10 14 4 9 15 8 1 2© 7 0 6 13 11 5 12 15 5 1 3 7 14 6 9 11 8 12 2© 10 0 4 13
→ Δ → ∇

5.2 Scenario 1: Attack from the First Round

The message differences for the attack from the first round is shown in Table 7.
We need to insert both of the Δ-difference and ∇-difference in the 10th bit of
m2. To avoid the contradiction of two paths, the differences and the values of
m2 must be carefully chosen. We choose the following message differences;

Δm2 = m2
2−m1

2 = m4
2−m3

2 = +210,∇m2 = m3
2−m1

2 = m4
2−m2

2 = −210. (2)

To achieve this, we first choose m1
2 and then compute m2

2 ← m1
2 + 210 and

m3
2 ← m1

2 − 210. m4
2 should be m1

2 + 210 − 210 and thus identical with m1
2.

Hence, the attack only requires 3 messages m1
2,m

2
2,m

3
2 rather than the standard

message quartet. The differential paths and sufficient conditions are shown in
Tables 10 and 11.

For the differential path in Table 10, the first round of CFL and CFR can be
guaranteed with the message modification in negligible time. Hence, the attack
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cost only depends on the differential path from the second round. As a result, we
can generate 4-sums up to 38 steps with 242 computations. Because 242 < 2160/3,
the attack runs faster than the generic 4-sum attack. This can be regarded as
partial 2-dimension sums up to 40 steps because the newly computed values in

the last 2 steps are not used to compute two output chaining variables H
(b)
i−1 and

H
(c)
i−1. The attack was implemented on a PC. The generated 38-step 4-sum (or

40-step partial 2-dimension sum) is shown in Table 9 in Appendix. Theoretically,
2-dimension sums can be generated up to 43 steps with 2151 computations.

5.3 Scenario 2: Attack from the Second Round

The overall strategy is the same as the first scenario. The details of the attack
such as the message difference, differential path, and sufficient conditions are
optimized for this scenario. Different from the first scenario, the f functions in
the third round (round 4) have the absorption property. Hence, the differential
propagation can be controlled more efficiently and this enables us to attack more
rounds. Due to the limited space, we only show the message differences and how
to propagate them in Table 12. The complexity to generate 4-sums up to 40
steps is 236 computations, which is faster than the generic 4-sum attack using
the generalized birthday attack. A 40-step 2-dimension sum, which can also be
regarded as 42-step partial 2-dimension sum, was generated in our experiment.
Due to the limited space, the generated data is omitted.

6 Concluding Remarks

We presented distinguishers against compression functions of RIPEMD-128 and
-160. Differential paths were constructed by regarding CFL as the first part and
CFR as the second part. This enabled us to analyze CFL and CFR independently.
On RIPEMD-128, the local collision was applied to construct differential paths.
Partial 2-dimension sums were generated for 48 steps. Theoretically, the attack
works up to 52 steps. On RIPEMD-160, the difference cancelation between Δej
and Δfj+1 was exploited. Partial 2-dimension sums were generated up to 40
steps. Theoretically, the attack works up to 43 steps. If the attack starts from
the second round, more rounds can be attacked. We stress that our results do not
impact to the security of full RIPEMD-128 and RIPEMD-160 hash functions.

Acknowledgements. Lei Wang was supported by Grant-in-Aid for JSPS Fel-
lows (23001043).
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A Data for Experiments and Attacks on RIPEMD-160

Table 8. 4-sum on 46-steps and partial 2-dimension sum on 48-steps of RIPEMD-128

H1
i 0x400268ec; 0x159b2e00 0x 6a66026; 0x268c3594;

M1
i 0x7b69e00f; 0x7a1da89e; 0xb6760e61; 0x222860d3; 0x20d0343c; 0x36333ccb; 0x44a67388; 0x9034d3f9;

0x19810c83; 0x9cba7f1e; 0x43aa3459; 0xe8987de1; 0xf48cfeb0; 0x36b56404; 0xca71b589; 0x4e4956b3;

46-Step H1
i+1 0x8e492929; 0x34c37860; 0x085981da; 0x3a28780d;

3-Round H1
i+1 0xf57d1452; 0x00cc6f47; 0x9c7fe2e0; 0x5cdae22d;

H2
i 0x400269ec; 0x159b2e00; 0x86a76026; 0xa68d3594;

M2
i 0x7b69df0f; 0x7a1da89e; 0xb6760e61; 0x222860d3; 0x20d0343c; 0x36333ccb; 0xc4a67388; 0x9034d3f9;

0x19810c83; 0x9cba7f1e; 0x43aa3459; 0xe8987de1; 0xf48cfeb0; 0x36b56404; 0xca71b589; 0x4e4956b3;

46-Step H2
i+1 0x4b37a7fb; 0xe0a9ebf0; 0x09e98a18; 0x17b730cd;

3-Round H2
i+1 0x672c3692; 0x5e5c2707; 0xe9e5bbda; 0xc6e4b82a;

H3
i 0x401268ec; 0x159b2e00; 0x06a66026; 0x268c35d4;

M3
i 0x7b69e00f; 0x7a1da89e; 0xb6760e61; 0x222860d3; 0x20d0343c; 0x36333ccb; 0x04a67388; 0x9034d3f9;

0x19810c83; 0x9cba7f1e; 0x43aa3459; 0xe8987de1; 0xf48cfeb0; 0x36b56404; 0xca71b589; 0x4e4956b3;

46-Step H3
i+1 0xd2ae4d5e; 0x5b495822; 0x13ac118a; 0x9c22aa6a;

3-Round H3
i+1 0x5955db12; 0x62b6a1a4; 0xe0a50755; 0xa0eb49c4;

H4
i 0x401269ec; 0x159b2e00; 0x86a76026; 0xa68d35d4;

M4
i 0x7b69df0f; 0x7a1da89e; 0xb6760e61; 0x222860d3; 0x20d0343c; 0x36333ccb; 0x84a67388; 0x9034d3f9;

0x19810c83; 0x9cba7f1e; 0x43aa3459; 0xe8987de1; 0xf48cfeb0; 0x36b56404; 0xca71b589; 0x4e4956b3;

46-Step H3
i+1 0x8f9ccc30; 0x072fcbb2; 0x153c19c8; 0x79b1632a;

3-Round H3
i+1 0xcb04f456; 0xc0465964; 0x2e0ae04f; 0x0afb77c2;

46-Step 4-sum 0x00000000; 0x00000000; 0x00000000; 0x00000000;

3-Round 4-Sum 0xfffff704; 0x00000000; 0x00000000; 0x00065801;

Table 9. 38-step 4-sum and 40-step partial 2D sum on RIPEMD-160 from 1st round

H1
i 0x4144c3a7; 0x8a965cea; 0x647e4d03; 0x04e7a03c; 0x18814c3e;

M1
i 0x15f04e2b; 0xb2c328cd; 0x8eea7e12; 0xa1d55a25; 0xbff66c59; 0x399570f1; 0x997d1fd4; 0xea8f403e;

0xab607923; 0x712bc2a1; 0x32c11766; 0xafaf4bfe; 0x7297f9d4; 0xe2c4573f; 0x96dc27dc; 0x566d9d73;

38 Steps H1
i+1 0x33d3fb92; 0x753e7a17; 0x50fb34b1; 0x1874be98; 0x48de951c;

H2
i 0x4146bfa7; 0x8a965cea; 0x647e4d03; 0x04e7a43c; 0x08814c3e;

M2
i 0x15f04e2b; 0xb2c328cd; 0x8eea7a12; 0xa1d55a25; 0xbff66c59; 0x399570f1; 0x997d1fd4; 0xea8f403e;

0xab607923; 0x712bc2a1; 0x32c11766; 0xafaf4bfe; 0x7297f9d4; 0xe2c4573f; 0x96dc27dc; 0x566d9d73;

38 Steps H2
i+1 0x07e43a48; 0x1482c47c; 0x473df79e; 0xefed372c; 0x55037e85;

H3
i 0x404cc5a7; 0x8a9e5cea; 0x647e4c03; 0x04e7a23c; 0x18814c3e;

M3
i 0x15f04e2b; 0xb2c328cd; 0x8eea8212; 0xa1d55a25; 0xbff66c59; 0x399570f1; 0x997d1fd4; 0xea8f403e;

0xab607923; 0x712bc2a1; 0x32c11766; 0xafaf4bfe; 0x7297f9d4; 0xe2c4573f; 0x96dc27dc; 0x566d9d73;

38 Steps H3
i+1 0xad046562; 0x61c2166a; 0x9d7dc2b3; 0x901e2f34; 0x12d8aa5c;

H4
i 0x404ec1a7; 0x8a9e5cea; 0x647e4c03; 0x04e7a63c; 0x08814c3e;

M4
i 0x15f04e2b; 0xb2c328cd; 0x8eea7e12; 0xa1d55a25; 0xbff66c59; 0x399570f1; 0x997d1fd4; 0xea8f403e;

0xab607923; 0x712bc2a1; 0x32c11766; 0xafaf4bfe; 0x7297f9d4; 0xe2c4573f; 0x96dc27dc; 0x566d9d73;

38 Steps H3
i+1 0x8114a418; 0x010660cf; 0x93c085a0; 0x6796a7c8; 0x1efd93c5;

38 Steps 4-sum 0x00000000; 0x00000000; 0x00000000; 0x00000000; 0x00000000;

40 Steps 4-Sum noisy data noisy data 0x00000000; 0x00000000; noisy data
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Table 10. Differential paths for 2D sums on RIPEMD-160 in the first scenario

Path for CFL Path for CFR

ΔaL
0 = 217 − 210; ΔbL0 = 0; ΔaR

0 = −224 + 219 + 29; ΔbR0 = 219;

ΔcL0 = 0; ΔdL0 = 210; ΔeL0 = −228; ΔcR0 = −28; ΔdR0 = 29; ΔeR0 = 0;

Step j ΔbLj Step j ΔbRj
29 −221 1 −20
33 −231 32 221

36 −216 35 −214
39 27 36 +231

40 −226 − 22 38 230

41 −226 + 219 39 −224 − 215

42 −225 40 29

43 225 41 −220
42 215 + 28 + 26

43 −225 − 224 − 22

Table 11. Sufficient conditions on RIPEMD-160 in the first scenario

Left Branch Right Branch

bL0,10 = cL0,10; no carry in dL
0 and eL0 ; bR0,9 = 0; cR0,19 = 1; dR

0,8 = 0;

no carry in bL29; b
L
28,21 = bL27,21; b

L
30,21 = 0; no carry in bR0 , cR0 and dR

0 ;

bL31,31 = 1; no carry in bL33; b
L
32,31 = 1; bR0,0 = 0; bR0,18 = 1; cR0,9 = 1; cR0,22 = 1;

bL34,31 = 1; bL35,31 ∨ ¬bL34,31 = 1; bL35,16 = 0; bR0,22 = 0; bR1,29 = 1; bR2,10 = 1;

no carry in bL36 and bL37; no carry in bR32; b
R
31,21 = 0; bR33,21 = 1;

bL37,16 = 1; bL36,9 = 1; bL35,9 = 1; bR34,31 ∨ ¬bR33,31 = 1; no carry in bR35;

bL38,9 = 1; bL38,26 ∨ ¬bL37,26 = 1; bL38,7 = 0; bR34,14 = 0; no carry in bR36; b
R
34,14 = 0;

no carry in bL39; b
L
39,19 ∨ ¬bL38,19 = 1; bL40,7 = 1; no carry in bR36; b

R
36,14 = 1; bR35,31 = 0;

no carry in bL40; b
L
39,26 = 1; bL39,2 = 0; bR37,31 = 1; bR37,24 ∨ ¬bR36,24 = 1; no carry in bR38;

bL38,26 = 1; no carry in bL41; b
L
41,26 = 1; bR37,30 = 0, bR38,9 ∨ ¬bR37,9 = 1; no carry in bR39; b

R
39,30 = 1;

bL41,2 = 1; bL40,26 = 0; bL40,24 = 1; bR38,24 = 1; bR38,15 = 0; bR37,24 = 1; bR40,24 = 1

bL39,24 = 1; bL41,17 ∨ ¬bL40,17 = 1; no carry in bL42; no carry in bR40; b
R
40,15 = 1; bR39,9 = 1; bR38,9 = 1;

bL42,24 = 1; bL42,19 = 1; bL42,4 = 0; bR40,8 ∨ ¬bR39,8 = 1; no carry in bR41; b
R
41,9 = 1;

bL41,25 = 0; bL41,4 = 1; bL42,12 ∨ ¬bL41,12 = 1; bR40,20 = 0; bR41,25 ∨ ¬bR40,25 = 1; bR41,2 ∨ ¬bR40,2 = 1;

no carry in bR42; b
R
42,20 = 1; bR41,15 = 0; bR41,8 = 1;

bR42,19 ∨ ¬bR41,19 = 1;

Table 12. Differential path construction for the intermediate 3-rounds of RIPEMD-160

round πL(j) πR(j)

2 7 4 13 1 10 6 15 3 12© 0 9 5 2 14 11 8 6 11 3 7 0 13© 5 10 14 15 8 12 4 9 1 2
MM ← Δ constant MM ← ∇ constant

3 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12© 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13©
constant Δ constant ∇

4 1 9 11 10 0 8 12© 4 13 3 7 15 14 5 6 2 8 6 4 1 3 11 15 0 5 12 2 13© 9 7 10 14
→ Δ → ∇
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