
Cryptanalysis of 256-Bit Key HyRAL

via Equivalent Keys

Yuki Asano, Shingo Yanagihara, and Tetsu Iwata

Nagoya University, Japan
{y asano,s yanagi}@echo.nuee.nagoya-u.ac.jp,

iwata@cse.nagoya-u.ac.jp

Abstract. HyRAL is a blockcipher whose block size is 128 bits, and it
supports the key lengths of 128, 129, . . . , 256 bits. The cipher was pro-
posed for the CRYPTREC project, and previous analyses did not identify
any security weaknesses. In this paper, we consider the longest key ver-
sion, 256-bit key HyRAL, and present the analysis in terms of equivalent
keys. First, we show that there are 251.0 equivalent keys (or 250.0 pairs of
equivalent keys). Next, we propose an algorithm that derives an instance
of equivalent keys with the expected time complexity of 248.8 encryptions
and a limited amount of memory. Finally, we implement the proposed
algorithm and fully verify its correctness by showing several instances of
equivalent keys.

Keywords: Cryptanalysis, blockcipher, HyRAL, equivalent key.

1 Introduction

HyRAL is a blockcipher whose block size is 128 bits, and it supports the key
lengths of 128, 129, . . . , 256 bits [6,7,8]. The overall structure of HyRAL is the
Generalized Feistel Structure with four branches, and 128-bit key HyRAL con-
sists of 24 rounds, and 129-, 130-, . . . , 256-bit key HyRAL consist of 32 rounds.
The CRYPTREC project, running in Japan, is maintaining the e-Government
recommended ciphers list, which was first established in 2003, and the list is
planned to be revised in 2013 [3]. A call for algorithms was announced in 2009,
and HyRAL is one of the proposed algorithms for the call [6]. The security of
HyRAL against various attacks has been evaluated. The security against differ-
ential attacks [2] and linear attacks [15,16] is analyzed in [6,9,24], impossible dif-
ferential attacks [1] is analyzed in [17,18], saturation attacks [5] and higher order
differential attacks [13,14] is analyzed in [19,20,21,22,23,25,26], and boomerang
attacks is analyzed in [10]. [27] also presents security analyses against various
attacks, and so far, no security weaknesses have been identified. Therefore, iden-
tifying a security weakness of this cipher is of interest from a cryptanalytic view
point.

For a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n of k-bit keys and an n-bit
block, two distinct keys K,K ′ ∈ {0, 1}k that satisfy EK(M) = EK′(M) for all
M ∈ {0, 1}n are called equivalent keys [12]. In this paper, out of the 129 key
lengths supported in the specification of HyRAL, we consider the longest key

F. Bao, P. Samarati, and J. Zhou (Eds.): ACNS 2012, LNCS 7341, pp. 257–274, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

258 Y. Asano, S. Yanagihara, and T. Iwata

version, 256-bit key HyRAL, and present the analysis in terms of equivalent
keys. We show the following three results.

– First, we show that there are 251.0 equivalent keys (or 250.0 pairs of equivalent
keys).

– Next, we propose an algorithm that derives an instance of equivalent keys
with the expected time complexity of 248.8 encryptions and a limited amount
of memory.

– Finally, we implement the proposed algorithm and fully verify its correctness
by showing several instances of equivalent keys.

The first result is obtained by an analysis of the differential characteristic of
the particular component in the cipher called the Key Generation Algorithm,
which we write KGA. KGA is used twice in the cipher, and their outputs are
xor’ed to generate round keys. We show that, for KGA, there exist differential
characteristics of probability higher than 2−128, and hence the output differences
collide with probability higher than 2−256. Equivalent keys are obtained as the
result of this internal collision. In general, the existence of equivalent keys directly
implies the theoretical cryptanalysis of the cipher, as the time complexity of the
brute-force attack becomes less than the time complexity implied by its key
length.

The second result is the main technical contribution of this paper. We de-
velop an algorithm to generate the input of KGA that follows the differential
characteristic. The core of the algorithm is to derive the input of KGA that sat-
isfies conditions on the 64-bit intermediate variables. More precisely, it inverts
the 5 round Generalized Feistel Structure that has a feed forward at the input
of the 5th round, where there are conditions that the xor of three 32-bit input
variables of the 5th round is fixed to some constant, and that the xor of three
32-bit output variables of the 5th round is also fixed to some constant.

We obtain the third result by making use of a supercomputer system. It is well
known that obtaining concrete instances of equivalent keys implies that we obtain
collisions on the Davies-Meyer compression function based on the blockcipher.
It is also easy to obtain collisions on the Merkle-Damg̊ard hash function based
on the compression function. Therefore, the existence of equivalent keys limits
the use of the cipher in the widely deployed hash function mode.

With respect to the status of HyRAL in the CRYPTREC project, we note that
the results of this paper were reported to the project [11], and it was announced
in June 2011 that, based on the results, HyRAL did not proceed to the second
round evaluation process [4].

2 Specification of HyRAL

We first define notation used throughout this paper. For an integer n ≥ 0,
{0, 1}n is the set of n-bit strings. For two bit strings X and Y of the same
length, X ⊕ Y is their xor. For integers n,m ≥ 0 and a bit string X ∈ {0, 1}nm,
(X [1], . . . , X [m])

n← X is the partitioning operation into n-bit strings, i.e.,
X [1], . . . , X [m] are unique n-bit strings such that (X [1], . . . , X [m]) = X .

Cryptanalysis of 256-Bit Key HyRAL via Equivalent Keys 259

OK1 OK2

Y4 Y5 Y6 Y7 Z4 Z5 Z6 Z7

KM1

KM3

KM2

KM4

KAA DPA

RK1

RK2

IK1

IK6

RK8

RK9

M

C

KGA1 KGA2

K

Fig. 1. The overall structure of 256-bit key HyRAL

Outline of 256-Bit Key HyRAL. HyRAL is a blockcipher whose block size is 128
bits, and it supports the key lengths of 128, 129, . . . , 256 bits. This paper deals
with the 256-bit key version only, and the specifications of other key lengths are
in [6,7,8].

The overall structure of 256-bit key HyRAL is shown in Fig. 1. The inputs
are a key K ∈ {0, 1}256 and a plaintext M ∈ {0, 1}128, and the output is a
ciphertext C ∈ {0, 1}128. 256-bit key HyRAL consists of the Key Generation
Algorithm (KGA), the Key Assignment Algorithm (KAA), and the Data Pro-
cessing Algorithm (DPA). KGA is used twice by changing the internal constants,
and they are respectively denoted KGA1 and KGA2. For given K ∈ {0, 1}256
and M ∈ {0, 1}128, the encryption proceeds as follows.

1. Let (OK1, OK2)
128← K. That is, let OK1 be the most significant 128 bits of

K, and OK2 be the least significant 128 bits.
2. We then run KGA1 and KGA2 with OK1 and OK2, respectively, to generate

(Y4, Y5, Y6, Y7) ← KGA1(OK1) and (Z4, Z5, Z6, Z7) ← KGA2(OK2), where
Yi, Zi ∈ {0, 1}128.

3. Let (KM1,KM3,KM2,KM4)← (Y4⊕Z4, Y5⊕Z5, Y6⊕Z6, Y7⊕Z7), where
KMi ∈ {0, 1}128. We write (KM1,KM3,KM2,KM4) = KM .

4. Next, we run KAA with KM to generate (RK1, . . . , RK9, IK1, . . . , IK6)←
KAA(KM), where RKi, IKi ∈ {0, 1}128.

5. Finally, we run DPA with (RK1, . . . , RK9, IK1, . . . , IK6) and the plaintext
M to generate the ciphertext C ← DPA(RK1, . . . , RK9, IK1, . . . , IK6,M),
and then C is returned.

In KAA, (KM1,KM3,KM2,KM4) are first parsed into 32-bit strings, and then
(RK1, . . . , RK9, IK1, . . . , IK6) are generated by taking their linear

260 Y. Asano, S. Yanagihara, and T. Iwata

KM1

KM3

KM2

KM4

OK1

CST1

G1

Y4 Y5 Y6 Y7 Z4 Z5 Z6 Z7

G2 G1 G2 G1

Y3

KGA1

OK2

CST2

G1 G2 G1 G2 G1

KGA2

Z3

Fig. 2. KGA1 and KGA2

combinations. The overall structure of DPA is the 32 round Generalized Feistel
Structure with four branches. Further details of KAA and DPA are not neces-
sary in order to present the results of this paper, and their specifications can be
found in [6,7,8].

The Key Generation Algorithms KGA1 and KGA2. KGA1 and KGA2 are shown
in Fig. 2. For the input OK1 ∈ {0, 1}128, KGA1 outputs (Y4, Y5, Y6, Y7) ∈
{0, 1}512. Similarly, KGA2 takes OK2 ∈ {0, 1}128 and outputs (Z4, Z5, Z6, Z7) ∈
{0, 1}512. KGA1 and KGA2 internally use G1 and G2 functions, which are key-
less permutations over {0, 1}128. KGA1 and KGA2 differ only in the internally
used constants. The following 128-bit constants, CST1 and CST2, are used in
KGA1 and KGA2, respectively, where the prefix 0x indicates that the value is
in the hexadecimal form.{

CST1 = 0xf9251a2365cd3c2e8066cbbbfe316b7b

CST2 = 0x5de28625656b71ff9ffb1e12eef127f5

G1 and G2 Functions. G1 and G2 functions are shown in Fig. 3.

G1 and G2 functions take (X
(1)
1 , X

(1)
2 , X

(1)
3 , X

(1)
4) ∈ {0, 1}128 as the input,

and output (X
(5)
1 , X

(5)
2 , X

(5)
3 , X

(5)
4) ∈ {0, 1}128. They consist of four rounds of

the Generalized Feistel Structure with four branches. G1 function internally uses
f1, f2, f3, and f4 functions, and G2 function internally uses f5, f6, f7, and f8
functions.

f1, . . . , f8 Functions. f1, . . . , f8 functions are keyless permutations over {0, 1}32.
They take a 32-bit string as the input and generate a 32-bit string as the output.
The structure of fi function is the SP-network, and a detailed specification is
presented in Appendix A.

Cryptanalysis of 256-Bit Key HyRAL via Equivalent Keys 261

X
(1)
1 X

(1)
2 X

(1)
3 X

(1)
4

f1

f2

f3

f4

X
(5)
1 X

(5)
2 X

(5)
3 X

(5)
4

X
(1)
1 X

(1)
2 X

(1)
3 X

(1)
4

f8

f7

f6

f5

X
(5)
1 X

(5)
2 X

(5)
3 X

(5)
4

Fig. 3. G1 function (left) and G2 function (right)

3 Existence of Equivalent Keys

Overall Strategy. We make use of the differential cryptanalysis of Biham and
Shamir [2] to show the existence of equivalent keys.

Let (OK1, OK2) ∈ {0, 1}256 be the key. Let ΔOK1 be the input difference for
KGA1 and (ΔY4,ΔY5,ΔY6,ΔY7) be the corresponding output difference. Simi-
larly, let ΔOK2 and (ΔZ4,ΔZ5,ΔZ6,ΔZ7) be the input and output differences
of KGA2, respectively. We have

(ΔY4,ΔY5,ΔY6,ΔY7) = KGA1(OK1)⊕KGA1(OK1 ⊕ΔOK1) (1)

and

(ΔZ4,ΔZ5,ΔZ6,ΔZ7) = KGA2(OK2)⊕KGA2(OK2 ⊕ΔOK2). (2)

If the two output differences collide and

(ΔY4,ΔY5,ΔY6,ΔY7) = (ΔZ4,ΔZ5,ΔZ6,ΔZ7) (3)

holds, we see that the differences are canceled by the xor operation and the input
difference (ΔKM1,ΔKM3,ΔKM2,ΔKM4) of KAA becomes null. Therefore, if

262 Y. Asano, S. Yanagihara, and T. Iwata

(3) holds, we have the following equivalent keys.

(K,K ′) =

⎧⎪⎪⎨
⎪⎪⎩

((OK1, OK2), (OK1 ⊕ΔOK1, OK2 ⊕ΔOK2))
((OK1 ⊕ΔOK1, OK2 ⊕ΔOK2), (OK1, OK2))
((OK1 ⊕ΔOK1, OK2), (OK1, OK2 ⊕ΔOK2))
((OK1, OK2 ⊕ΔOK2), (OK1 ⊕ΔOK1, OK2))

(4)

In this paper, these are counted as four equivalent keys (or two pairs of equivalent
keys).

Since KGA1 and KGA2 are the same algorithms except for the internally
used constants, we may regard them identically as long as we consider their
differential characteristics. In what follows, let KGA ∈ {KGA1,KGA2} be the
Key Generation Algorithm. We next analyze the differential characteristic of
KGA.

Differential Characteristic of KGA. We regard one round of G1 and G2 functions
as one round of KGA. Then KGA is a function that consists of 20 rounds in total.
For r = 1, 2, . . . , 20, we write f

(r)
i for fi function used in the r-th round.

Let ΔOK ∈ {0, 1}128 be the input difference of KGA and (ΔY4,ΔY5,ΔY6,
ΔY7) ∈ {0, 1}512 be the corresponding output difference.

For r = 1, 2, . . . , 20, let ΔX(r) = (ΔX
(r)
1 ,ΔX

(r)
2 ,ΔX

(r)
3 ,ΔX

(r)
4) ∈ {0, 1}128

be the input difference of the r-th round, and ΔZ(r) = (ΔZ
(r)
1 ,ΔZ

(r)
2 ,ΔZ

(r)
3 ,

ΔZ
(r)
4) ∈ {0, 1}128 be its output difference. A differential characteristic is a tuple

((ΔX(1),ΔZ(1)), . . . , (ΔX(20),ΔZ(20)))

of the input and output differences of each round, that satisfies the follow-
ing conditions: First, it corresponds with the input and output differences of
KGA, and hence we have ΔX(1) = ΔOK, ΔZ(8) = ΔY4, ΔZ(12) = ΔY5,
ΔZ(16) = ΔY6, and ΔZ(20) = ΔY7. Second, for r = 1, 2, . . . , 20, we have

(ΔX
(r)
2 ,ΔX

(r)
3 ,ΔX

(r)
4) = (ΔZ

(r)
1 ,ΔZ

(r)
2 ,ΔZ

(r)
3). Third, for r ∈ {4, 8, 12, 16},

we have ΔX(r+1) = ΔZ(r) ⊕ΔOK, and for r ∈ {1, 2, . . . , 19} \ {4, 8, 12, 16}, we
have ΔX(r+1) = ΔZ(r).

For a differential characteristic ((ΔX(1),ΔZ(1)), . . . , (ΔX(20),ΔZ(20))), its
probability is defined as

DCPKGA((ΔX(1),ΔZ(1)), . . . , (ΔX(20)ΔZ(20))) =
∏

1≤r≤20

DPf
(r)
i (ΔI

(r)
i ,ΔO

(r)
i),

where ΔI
(r)
i = ΔX

(r)
2 ⊕ΔX

(r)
3 ⊕ΔX

(r)
4 is the input difference of f

(r)
i , ΔO

(r)
i =

ΔX
(r)
1 ⊕ΔZ

(r)
4 is the corresponding output difference, and the differential prob-

ability DPfi(ΔIi,ΔOi) of fi function for the input difference ΔIi and the output
difference ΔOi is defined as

DPfi(ΔIi,ΔOi) =
#{I | fi(I)⊕ fi(I ⊕ΔIi) = ΔOi}

232
.

Cryptanalysis of 256-Bit Key HyRAL via Equivalent Keys 263

For a given differential characteristic, we say that fi function is active if its input
difference is non-zero. In KGA, there are 20 fi functions and hence the maximum
number of active fi functions is 20. In the following lemma, we show that there
exists a differential characteristic with only four active fi functions.

Lemma 1. For KGA, there exists a differential characteristic with four active
fi functions.

Proof. Let δ ∈ {0, 1}32 be any non-zero bit string. Let ΔOK = (δ, δ, δ, δ) be
the input difference of KGA, and (ΔY4,ΔY5,ΔY6,ΔY7) be the output differ-
ence, where ΔY4 = (δ, δ, 0, 0), ΔY5 = (0, 0, 0, δ), ΔY6 = (δ, δ, δ, δ), and ΔY7 =
(0, 0, 0, 0). Consider the differential characteristic given in Table 1, which is also
shown in Fig. 4. Then one can verify that there are four active fi functions,

which are f
(1)
1 , f

(6)
7 , f

(11)
3 , and f

(16)
5 . ��

We see that the input and output differences of active fi functions in the dif-
ferential characteristic of Lemma 1 are both δ. Under the condition that both the
input and output differences are the same, we have counted the number of active
fi functions for the 15 non-zero input differences, which are (0, 0, 0, δ), (0, 0, δ, 0),
(0, 0, δ, δ), . . . , (δ, δ, δ, δ). The results are summarized in Table 2.

From the table, we see that the number of active fi functions of Lemma 1 is
the minimum among the 15 differential characteristics.

Differential Probability of fi Function. For fi function, let DPfi(δ) be the prob-
ability that both the input and output differences of fi function are δ, i.e.,

DPfi(δ) = DPfi(δ, δ) =
#{I | fi(I)⊕ fi(I ⊕ δ) = δ}

232
.

The probability of the differential characteristic in Lemma 1 depends only on δ,
and we write the probability as DCPKGA(δ), which is given as

DCPKGA(δ) = DPf1(δ)×DPf3(δ)×DPf5(δ)×DPf7(δ).

We present the following lemma with respect to DCPKGA(δ).

Lemma 2. There exists non-zero δ ∈ {0, 1}32 such that DCPKGA(δ) > 2−128.

Proof. For all the (232− 1) possible values 0x00000001, . . . , 0xffffffff of non-
zero δ ∈ {0, 1}32, we computed the value of DCPKGA(δ). The results are sum-
marized in Table 3. From the table, we see that there exist 89938 values of δ
such that DCPKGA(δ) > 2−128. ��

We note that, for δ = 0xd7d7d0d7, we have

DPf1(δ) = 2−25,DPf3(δ) = 2−26,DPf5(δ) = 2−26, and DPf7(δ) = 2−26. (5)

264 Y. Asano, S. Yanagihara, and T. Iwata

f
1

f
2

0
δ

δ
0

Δ
Y
4

δ
δ

δ
δ

Δ
O
K

0000

0
0

δ
δ

δ
δ

δ
δ

δ
δ

δ 0

0 δ
δ

δ

f
3

0
0

0
δ

δ
δ

f
4

0
0

0
δ

δ
δ

f
8

f
7

δ
δ

δ
δ

Δ
O
K

0
0

δ
δ

δ

f
6

0
0

f
5

0
0

δ

0

Δ
Y
5

f
1

f
2

δ
δ

δ
δ

Δ
O
K

0
0

δ
δ

δ
δ0

δ
δ

f
3

0
0

0
δ

δ

f
4

0
0

0
δ

δ
0

δ
δΔ
Y
6

f
8

f
7

δ
δ

δ
δ

Δ
O
K

0
0

δ
δ

δ
δ

δ

δ
δ

f
6

0
0

δ
δ

f
5

0
0

0
δ

δ
δ

δ
δ

δ

0
0

Δ
Y
7

f
1

f
2

δ
δ

δ
δ

Δ
O
K

0
0

f
3

0
0

f
4

0
0

δ
0

0 0
0

0

δ
0

0
0

δ
δ

0
0

δ
δ

0
0

0
00

0

0
0

0
0

0
0

δ

0

0
δ

0
0

0
δ

δ

δ
δ

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

F
ig
.
4
.
T
h
e
d
iff
eren

tia
l
ch

a
ra
cteristic

a
n
d
a
ctiv

e
f
i
fu
n
ctio

n
s
(sh

ow
n
in

g
ray

)
o
f
L
em

m
a
1

Cryptanalysis of 256-Bit Key HyRAL via Equivalent Keys 265

Table 1. The differential characteristic
and active fi functions of Lemma 1

r
Input diff. Output diff. Active

ΔX(r) ΔZ(r) fi function

1 (δ, δ, δ, δ) (δ, δ, δ, 0) f1
2 (δ, δ, δ, 0) (δ, δ, 0, δ)
3 (δ, δ, 0, δ) (δ, 0, δ, δ)
4 (δ, 0, δ, δ) (0, δ, δ, δ)
5 (δ, 0, 0, 0) (0, 0, 0, δ)
6 (0, 0, 0, δ) (0, 0, δ, δ) f7
7 (0, 0, δ, δ) (0, δ, δ, 0)
8 (0, δ, δ, 0) (δ, δ, 0, 0)
9 (0, 0, δ, δ) (0, δ, δ, 0)
10 (0, δ, δ, 0) (δ, δ, 0, 0)
11 (δ, δ, 0, 0) (δ, 0, 0, 0) f3
12 (δ, 0, 0, 0) (0, 0, 0, δ)
13 (δ, δ, δ, 0) (δ, δ, 0, δ)
14 (δ, δ, 0, δ) (δ, 0, δ, δ)
15 (δ, 0, δ, δ) (0, δ, δ, δ)
16 (0, δ, δ, δ) (δ, δ, δ, δ) f5
17 (0, 0, 0, 0) (0, 0, 0, 0)
18 (0, 0, 0, 0) (0, 0, 0, 0)
19 (0, 0, 0, 0) (0, 0, 0, 0)
20 (0, 0, 0, 0) (0, 0, 0, 0)

Table 2. The number of active fi func-
tions for a given input difference

Input diff.
Number

ΔOK

(0, 0, 0, δ) 9
(0, 0, δ, 0) 9
(0, 0, δ, δ) 10
(0, δ, 0, 0) 9
(0, δ, 0, δ) 10
(0, δ, δ, 0) 10
(0, δ, δ, δ) 7
(δ, 0, 0, 0) 9

Input diff.
Number

ΔOK

(δ, 0, 0, δ) 10
(δ, 0, δ, 0) 10
(δ, 0, δ, δ) 7
(δ, δ, 0, 0) 10
(δ, δ, 0, δ) 7
(δ, δ, δ, 0) 7
(δ, δ, δ, δ) 4

Table 3. Examples of δ that satisfies
DCPKGA(δ) > 2−128 and the number of
such δ

DCPKGA(δ) Example of δ Number

2−103 0xd7d7d0d7 1
2−104 0xc5c5d254 1
2−105 0x4e4ec554 1
2−106 0x3c3cf4ff 8
2−107 0x6161f9d9 1
2−108 0x054d9797 34
2−109 0x0101019a 157
2−110 0x0159591a 1579
2−111 0x0101e818 7685
2−112 0x01010520 80471

Existence of Equivalent Keys. We are now ready to present our main result of
this section. Fix any δ such that DCPKGA(δ) > 2−128. For randomly chosen
OK1 ∈ {0, 1}128, (1) is satisfied for

{
ΔOK1 = (δ, δ, δ, δ),
ΔY4 = (δ, δ, 0, 0),ΔY5 = (0, 0, 0, δ),ΔY6 = (δ, δ, δ, δ),ΔY7 = (0, 0, 0, 0)

(6)

with at least a probability of DCPKGA(δ). This implies that at least 2128 ×
DCPKGA(δ) values of OK1 ∈ {0, 1}128 satisfy (1). Similarly, at least 2128 ×
DCPKGA(δ) values of OK2 ∈ {0, 1}128 satisfy (2) for

{
ΔOK2 = (δ, δ, δ, δ),
ΔZ4 = (δ, δ, 0, 0),ΔZ5 = (0, 0, 0, δ),ΔZ6 = (δ, δ, δ, δ),ΔZ7 = (0, 0, 0, 0).

(7)

If we fix a value of (OK1, OK2) ∈ {0, 1}256 that satisfies (1), (6), (2), and (7),
we see that (3) is also satisfied, and hence we obtain four equivalent keys (or two
pairs of equivalent keys) of (4). From Table 3 and by eliminating the duplications,

266 Y. Asano, S. Yanagihara, and T. Iwata

the number of equivalent keys can be derived as

4× (250 × 1 + 248 × 1 + 246 × 1 + 244 × 8 + · · ·+ 232 × 80471)

4
≥ 251.0,

and the number of pairs is the half of 251.0, which is 250.0.
From the discussions above, we obtain the following theorem.

Theorem 1. In 256-bit key HyRAL, there exist 251.0 equivalent keys (or 250.0

pairs of equivalent keys).

4 Derivation of Equivalent Keys

From the result of the previous section, we know that there are 251.0 equivalent
keys in 256-bit key HyRAL. In this section, we consider the problem of deriving
a concrete instance of equivalent keys.

4.1 Equivalent Key Derivation Algorithm

As in the previous section, let KGA ∈ {KGA1,KGA2}. Recall that one round
of G1 and G2 functions are regarded as one round of KGA, and hence KGA is a
function that consists of 20 rounds in total. Let OK ∈ {OK1, OK2} be the input
of KGA, and let (K1,K2,K3,K4)

32← OK ∈ {0, 1}128 be its partition into 32-bit
strings. Similarly, let CST ∈ {CST1,CST2} be the constant used in KGA, and

let (C1, C2, C3, C4)
32← CST ∈ {0, 1}128 be its partition into 32-bit strings. KGA

is the function that consists of 20 rounds in total, and we write the input and

output strings of f
(r)
i as I

(r)
i ∈ {0, 1}32 and O

(r)
i ∈ {0, 1}32, respectively, where

r = 1, 2, . . . , 20 and f
(r)
i is fi function used in the r-th round. Figure 5 shows

the first 8 rounds of KGA.
We consider the case of δ = 0xd7d7d0d7. For i ∈ {1, 3, 5, 7}, let Ii be a list

of Ii ∈ {0, 1}32 that satisfies fi(Ii) ⊕ fi(Ii ⊕ δ) = δ. From (5), I1 consists of
128 elements, and each of I3, I5, and I7 consists of 64 elements, and we may
thus write down the lists as I1 = {I1[0], . . . , I1[127]}, I3 = {I3[0], . . . , I3[63]},
I5 = {I5[0], . . . , I5[63]}, and I7 = {I7[0], . . . , I7[63]}.

Now if we can derive (K1,K2,K3,K4) that satisfies

I
(1)
1 ∈ I1, I(6)7 ∈ I7, I(11)3 ∈ I3, and I

(16)
5 ∈ I5,

then this implies that we have derived OK that satisfies (1) and (6), or (2)
and (7).

It is easy to obtain (K1,K2,K3,K4) that satisfies one of the four conditions,

I
(1)
1 ∈ I1, since this is simply (K1,K2,K3,K4) such thatK2⊕C2⊕K3⊕C3⊕K4⊕
C4 ∈ I1. In the following lemma, we show that one can derive (K1,K2,K3,K4)
that satisfies two of the four conditions, namely, one can derive (K1,K2,K3,K4)

such that both I
(1)
1 ∈ I1 and I

(6)
7 ∈ I7 are satisfied.

Cryptanalysis of 256-Bit Key HyRAL via Equivalent Keys 267

C1

C2

C3

C4

f1

f2

f3

f4

I
(1)
1 O

(1)
1

I
(2)
2 O

(2)
2

I
(3)
3 O

(3)
3

I
(4)
4 O

(4)
4

K1K2K3K4

f8

f7

f6

f5

I
(5)
8 O

(5)
8

I
(6)
7 O

(6)
7

I
(7)
6 O

(7)
6

I
(8)
5 O

(8)
5

K1K2K3K4

Y4

Fig. 5. The first 8 rounds of KGA

Lemma 3. For arbitrarily fixed K̃1, I
(1)
1 , I

(5)
8 , and I

(6)
7 , where K̃1 = K1 ⊕K3,

the corresponding value of (K1,K2,K3,K4) can be derived.

Proof. Since I
(1)
1 and I

(5)
8 are fixed, O

(1)
1 = f1(I

(1)
1) and O

(5)
8 = f8(I

(5)
8) are also

fixed. To simplify the notation, let C̃1, . . . , C̃5 be the fixed constants defined as

C̃1 = C1⊕C3⊕C4⊕O
(1)
1 , C̃2 = C1⊕C3⊕I

(1)
1 ⊕O

(1)
1 , C̃3 = C1⊕C4⊕I

(1)
1 ⊕O

(1)
1 ,

C̃4 = C2⊕C3⊕C4, and C̃5 = C1⊕C2⊕O(1)
1 ⊕I(6)7 . We also let K̃2 = K1⊕K3⊕K4

and K̃3 = K1 ⊕K4.
First, I

(1)
1 has to satisfy I

(1)
1 = K2 ⊕ C2 ⊕ K3 ⊕ C3 ⊕ K4 ⊕ C4, which is

equivalent to

K2 = I
(1)
1 ⊕ C2 ⊕K3 ⊕ C3 ⊕K4 ⊕ C4. (8)

268 Y. Asano, S. Yanagihara, and T. Iwata

Next, since I
(2)
2 = K̃2 ⊕ C̃1, we have

O
(2)
2 = f2(K̃2 ⊕ C̃1). (9)

Similarly, since I
(3)
3 can be written as I

(3)
3 = K̃1 ⊕ C̃2 ⊕ O

(2)
2 by using (8), we

obtain

O
(3)
3 = f3(K̃1 ⊕ C̃2 ⊕O

(2)
2). (10)

Besides, since I
(4)
4 can be written as I

(4)
4 = K̃3 ⊕ C̃3 ⊕O

(2)
2 ⊕O

(3)
3 by using (8),

we obtain

O
(4)
4 = f4(K̃3 ⊕ C̃3 ⊕O

(2)
2 ⊕O

(3)
3). (11)

Now since the input of the 5th round is (C1⊕O(1)
1 , C2⊕O(2)

2 , C3⊕O(3)
3 , C4⊕O(4)

4)

and I
(5)
8 is fixed,

I
(5)
8 = C̃4 ⊕O

(2)
2 ⊕O

(3)
3 ⊕O

(4)
4 (12)

has to be satisfied. Furthermore, since I
(6)
7 is fixed, I

(6)
7 = C1⊕C3⊕C4⊕O

(1)
1 ⊕

O
(3)
3 ⊕O

(4)
4 ⊕O

(5)
8 needs to be satisfied, which is equivalent to

C̃5 ⊕O
(2)
2 ⊕ I

(5)
8 = O

(5)
8 (13)

by using (12).

At this point, since C̃5, I
(5)
8 , and O

(5)
8 are all fixed, O

(2)
2 that satisfies (13)

is uniquely determined. As we have now fixed O
(2)
2 , K̃2 that satisfies (9) is also

uniquely determined, which is K̃2 = f−1
2 (O

(2)
2)⊕ C̃1. We also see that since O

(2)
2

is now fixed and K̃1 is a fixed constant, O
(3)
3 that satisfies (10) is now uniquely

fixed. Upon fixing both O
(2)
2 and O

(3)
3 , we obtain unique O

(4)
4 that satisfies (12),

and for these fixed O
(2)
2 , O

(3)
3 , and O

(4)
4 , we obtain the corresponding K̃3, which

is K̃3 = f−1
4 (O

(4)
4)⊕ C̃3 ⊕O

(2)
2 ⊕O

(3)
3 .

Finally, we obtain (K1,K2,K3,K4) as (K1,K2,K3,K4)← (K̃1⊕K̃2⊕K̃3, K̃1⊕
K̃3 ⊕ I

(1)
1 ⊕ C̃4, K̃2 ⊕ K̃3, K̃1 ⊕ K̃2). ��

We are now ready to present the basic version of our equivalent key derivation
algorithm based on Lemma 3.

1. Fix arbitrarily I
(1)
1 and I

(6)
7 that satisfy I

(1)
1 ∈ I1 and I

(6)
7 ∈ I7.

2. Fix arbitrarily I
(5)
8 and K̃1.

3. Derive (K1,K2,K3,K4) by using Lemma 3.

4. Compute I
(11)
3 from (K1,K2,K3,K4) by following the specification of 256-

bit key HyRAL, and proceed to Step 5 if I
(11)
3 ∈ I3 is satisfied. Otherwise

return to Step 2.

Cryptanalysis of 256-Bit Key HyRAL via Equivalent Keys 269

5. Compute I
(16)
5 from (K1,K2,K3,K4) by following the specification of 256-bit

key HyRAL, and output (K1,K2,K3,K4) and halt if I
(16)
5 ∈ I5 is satisfied.

Otherwise return to Step 2.

If we assume that I
(11)
3 and I

(16)
5 are independently and uniformly distributed

random strings over {0, 1}32, then the probability that both I
(11)
3 ∈ I3 and

I
(16)
5 ∈ I5 are satisfied is (64/232)2 = 2−52, since there are 64 elements in each of
I3 and I5. Therefore, we may expect that the algorithm returns (K1,K2,K3,K4)

after trying 252 values of (I
(5)
8 , K̃1).

4.2 Time Complexity of the Algorithm

In the basic algorithm presented in Sect. 4.1, the test I
(11)
3 ∈ I3 is executed for

252 different values of (I
(5)
8 , K̃1). This test of I

(11)
3 ∈ I3 is the main cost in the

time complexity of the algorithm, and the following lemma can be used in the
actual implementation.

Lemma 4. For arbitrarily fixed K̃1, I
(1)
1 , O

(1)
1 , I

(5)
8 , I

(6)
7 , and O

(6)
7 , the corre-

sponding value of I
(11)
3 can be derived by seven computations of fi functions.

Proof. I
(11)
3 can be derived by the following steps.

1. O
(5)
8 ← f8(I

(5)
8)

2. O
(2)
2 ← C̃5 ⊕ I

(5)
8 ⊕O

(5)
8

3. K̃2 ← f−1
2 (O

(2)
2)⊕ C̃1

4. O
(3)
3 ← f3(K̃1 ⊕ C̃2 ⊕O

(2)
2)

5. O
(4)
4 ← C̃4 ⊕ I

(5)
8 ⊕O

(2)
2 ⊕O

(3)
3

6. O
(7)
6 ← f6(C1 ⊕ C2 ⊕ C4 ⊕O

(1)
1 ⊕O

(2)
2 ⊕O

(4)
4 ⊕O

(5)
8 ⊕O

(6)
7)

7. O
(8)
5 ← f5(C1 ⊕ C2 ⊕ C3 ⊕O

(1)
1 ⊕O

(2)
2 ⊕O

(3)
3 ⊕O

(5)
8 ⊕O

(6)
7 ⊕O

(7)
6)

8. O
(9)
1 ← f1(I

(1)
1 ⊕O

(2)
2 ⊕O

(3)
3 ⊕O

(4)
4 ⊕O

(6)
7 ⊕O

(7)
6 ⊕O

(8)
5)

9. O
(10)
2 ← f2(K̃2 ⊕ C̃1 ⊕O

(3)
3 ⊕O

(4)
4 ⊕O

(5)
8 ⊕O

(7)
6 ⊕O

(8)
5 ⊕O

(9)
1)

10. I
(11)
3 ← K̃1⊕C1⊕C3⊕I(1)1 ⊕O(1)

1 ⊕O(2)
2 ⊕O(4)

4 ⊕O(5)
8 ⊕O(6)

7 ⊕O(8)
5 ⊕O(9)

1 ⊕O(10)
2

We see that the above steps run with seven computations of fi functions. ��
In the proof of Lemma 4, one can run Steps 1, 2, and 3 without using K̃1.

Therefore, one possible implementation is to search 252 values of (I
(5)
8 , K̃1) by

searching 220 values of I
(5)
8 , and for each value of I

(5)
8 , we first run Steps 1, 2,

and 3 and then search all the 232 possible values of K̃1. Then the main cost of
running the algorithm becomes 5 × 252 computations of fi functions assuming
that 226 computations of fi functions can be ignored.

In order to derive both OK1 and OK2, we need to run the algorithm twice
by changing the constant (C1, C2, C3, C4), and hence the time complexity of the
algorithm is 10 × 252 computations of fi functions, which amount to running
248.8 encryption functions as there are 96 fi functions in the encryption function
of 256-bit key HyRAL. We note that the memory requirement of the algorithm
is small.

270 Y. Asano, S. Yanagihara, and T. Iwata

Table 4. Summary of the implementation. The “Cores” column indicates the number
of cores used in running the program

System
Queue

Cores Search range of I
(5)
8

Number of
Running time

name (I
(5)
8 , K̃1)

OK1 HX600
h1024 1024 0x00000000, . . . , 0x0000ffff 248 8h 48min 56s
h1024 1024 0x00010000, . . . , 0x0001ffff 248 8h 28min 4s

OK2

FX1
f1024 1024 0x00000000, . . . , 0x0003ffff 250 50h 36min 2s
f512 512 0x00040000, . . . , 0x0007ffff 250 92h 24min 15s

HX600

h256 256 0x00080000, . . . , 0x0009ffff 249 67h 42min 47s
h256 256 0x000a0000, . . . , 0x000bffff 249 67h 29min 1s
h256 256 0x000c0000, . . . , 0x000dffff 249 67h 34min 55s
h256 256 0x000e0000, . . . , 0x000fffff 249 67h 29min 57s

5 Deriving Equivalent Keys

We have implemented our algorithm in Sect. 4.2 on a supercomputer system.
The systems we used are the server systems called HX600 and FX1. HX600 has
96 nodes, which are equivalent to 384 CPUs or 1536 cores, it has a total of
6TB of memory, and the CPU is AMD Opteron 8380 (4 cores, 2.5GHz). FX1
has 768 nodes, which are equivalent to 768 CPUs or 3072 cores, it has 24TB of
memory, and CPU is SPARC64 VII (4 cores, 2.52GHz). We used C language for
the implementation of the algorithm, and MPI library for the message passing
library for the parallel process execution.

The values of δ, I
(1)
1 , and I

(6)
7 that were used in the implementation are

δ = 0xd7d7d0d7, I
(1)
1 = 0x17170c17, and I

(6)
7 = 0x1717292b. For deriving

OK1, we searched 217 values of I
(5)
8 , and for each value of I

(5)
8 , we searched

all the 232 possible values of K̃1. The program was divided into two programs

by halving the search range of I
(5)
8 , and a total of 249 values of (I

(5)
8 , K̃1) were

tested. For deriving OK2, we searched 220 values of I
(5)
8 , and for each value of

I
(5)
8 , we searched all the 232 possible values of K̃1. The program was divided

into six programs depending on the range of I
(5)
8 , and a total of 252 values of

(I
(5)
8 , K̃1) were tested. The summary of the implementation is in Table 4.
As a result, we have successfully derived one value of OK1 and three values

of OK2. The values, together with the corresponding values of I
(5)
8 and K̃1, are

in Table 5.

Table 5. Results of running the algorithm in Sect. 4.2

OK1 0x2fd918837136d461f4bc99938907dd0b (I
(5)
8 = 0x00014b73, K̃1 = 0xdb658110)

OK2

0xa20ed0f467141b2a3b038abb5f61d59e (I
(5)
8 = 0x0005b394, K̃1 = 0x990d5a4f)

0xe3a1902aa60b6c3582a9131527d43b2f (I
(5)
8 = 0x000f8a7f, K̃1 = 0x6108833f)

0x3218a5b25828a0b7d2122283894cc63b (I
(5)
8 = 0x000f9953, K̃1 = 0xe00a8731)

Cryptanalysis of 256-Bit Key HyRAL via Equivalent Keys 271

For δ = 0xd7d7d0d7, ΔOK1 = ΔOK2 = (δ, δ, δ, δ), and OK1 and OK2 in
Table 5, (K,K ′) in (4) are all equivalent keys, which can be verified by the
reference code available in [6].

6 Discussions

The existence of equivalent keys generally implies that the cipher is theoretically
cryptanalyzed, as the time complexity of the brute-force attack becomes less
than the time complexity implied by its key length. As there are 250.0 pairs
of equivalent keys in 256-bit key HyRAL, the search space of the brute-force
attack is reduced from 2256 to 2256 − 250.0. Although the fraction of equivalent
keys, 251.0, compared to 2256 is small, as a practical implication of identifying
equivalent keys, in the rest of this section, we discuss well known observations
that one can obtain collisions on the Davies-Meyer compression function based
on 256-bit key HyRAL, and on the Merkle-Damg̊ard hash function based on the
compression function.

The Davies-Meyer Compression Function. Let E : {0, 1}k × {0, 1}n → {0, 1}n
be a blockcipher with k-bit keys and an n-bit block. The Davies-Meyer com-
pression function h : {0, 1}n+k → {0, 1}n, one of the standard constructions of
a compression function, is defined as h(H,M) = EM (H)⊕H .

Let E be 256-bit key HyRAL. If we let (M,M ′) be one of the equivalent
keys (K,K ′) in (4), then for any H ∈ {0, 1}128, we have h(H,M) = h(H,M ′).
Therefore, for each equivalent keys (K,K ′) in (4), one can generate 2128 different
collisions ((H,M), (H,M ′)) on h.

The Merkle-Damg̊ard Hash Function. Let h : {0, 1}n+k → {0, 1}n be a com-
pression function. The Merkle-Damg̊ard hash function H : {0, 1}∗ → {0, 1}n
is the construction of a hash function from h, and is defined as follows. Let
H0 ∈ {0, 1}n be a fixed initial value. For an input string M ∈ {0, 1}∗, let
M̃ ∈ {0, 1}mn be the padded string in a standard and appropriate way, and
let (M1,M2, . . . ,Mm)

n← M̃ be its partition into n-bit strings. The hash value
H(M) is Hm ∈ {0, 1}n, where Hi ← h(Hi−1,Mi) for i = 1, 2, . . . ,m.

Let E be 256-bit key HyRAL, h be the Davies-Meyer compression function
based on E, and H be the Merkle-Damg̊ard hash function based on h. Let
M,M ′ ∈ {K,K ′}m be bit strings such that M 	= M ′, where (K,K ′) is any
equivalent keys in (4). Assume that the standard padding is used, e.g., appending
a bit “1” and then bits “0” followed by the encoding of the length of the input,
then we have H(M) = H(M ′) and hence we obtain a collision on H.

For example, for m = 3, (M,M ′) = ((K,K,K), (K ′,K ′,K ′)), ((K,K,K ′),
(K ′,K ′,K)), ((K,K ′,K), (K ′,K,K ′)), and ((K,K ′,K ′), (K ′,K,K)) all satisfy
H(M) = H(M ′). Similarly, when M and M ′ are m blocks in length, we obtain
2m−1 different collisions.

272 Y. Asano, S. Yanagihara, and T. Iwata

7 Summary

We presented the analysis of 256-bit key HyRAL in terms of equivalent keys. We
showed that there are 250.0 pairs of equivalent keys, leading to the theoretical
cryptanalysis of the cipher as a blockcipher with 256-bit keys. We also developed
the algorithm to derive an instance of equivalent keys, and demonstrated that we
were able to derive concrete instances with the current computing environment.

Acknowledgments. The experiment in Sect. 5 was conducted using a super-
computer system at Information Technology Center, Nagoya University. The
authors would like to thank Hideki Ando for advice on the experiment. This
work was supported in part by CRYPTREC and in part by MEXT KAKENHI,
Grant-in-Aid for Young Scientists (A), 22680001.

References

1. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

2. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J.
Cryptology 4(1), 3–72 (1991)

3. Cryptography Research and Evaluation Committees (CRYPTREC),
http://www.cryptrec.go.jp/english/index.html

4. Cryptography Research and Evaluation Committees (CRYPTREC): CRYPTREC
Report, Report of the Scheme Committee (2010) (in Japanese),
http://www.cryptrec.go.jp/english/report.html

5. Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

6. Hirata, K.: Submission Documents of HyRAL to the CRYPTREC Project (2010),
http://www.cryptrec.go.jp/english/topics/

cryptrec 20101001 callforattack.html

7. Hirata, K.: The 128bit Block Cipher HyRAL (Hybrid Randomization Algorithm):
Common Key Block Cipher. In: Proceedings of the 2010 International Symposium
on Intelligence Information Processing and Trusted Computing, IPTC 2010, pp.
9–14. IEEE Computer Society, Washington, DC (2010),
http://dx.doi.org/10.1109/IPTC.2010.179

8. Hirata, K.: The 128bit Blockcipher HyRAL. In: The 2010 Symposium on Cryptog-
raphy and Information Security, 1D1-1, SCIS 2010 (2010) (in Japanese)

9. Igarashi, Y., Takagi, Y., Kaneko, T.: Security Evaluation of HyRAL against Lin-
ear Cryptanalysis. In: The 2010 Symposium on Cryptography and Information
Security, 1D1-3, SCIS 2010 (2010) (in Japanese)

10. Inoue, T., Kaneko, T.: Security Evaluation of HyRAL against Boomerang Attack.
IEICE Tech. Rep. 111(142), 1–6 (2011) (in Japanese); IT 2011-07-14

11. Iwata, T.: Security Evaluation Report of HyRAL. In: Technical Report of CRYP-
TREC, Investigation Reports Related to Cryptographic Techniques in FY 2010
(2011) (in Japanese)

12. Knudsen, L.R.: Cryptanalysis of LOKI. In: Matsumoto, T., Imai, H., Rivest, R.L.
(eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 22–35. Springer, Heidelberg (1993)

http://www.cryptrec.go.jp/english/index.html
http://www.cryptrec.go.jp/english/report.html
http://www.cryptrec.go.jp/english/topics/cryptrec_20101001_callforattack.html
http://www.cryptrec.go.jp/english/topics/cryptrec_20101001_callforattack.html
http://dx.doi.org/10.1109/IPTC.2010.179

Cryptanalysis of 256-Bit Key HyRAL via Equivalent Keys 273

13. Knudsen, L.R.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.)
FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

14. Lai, X.: Higher Order Derivatives and Differential Cryptanalysis. In: Blahut,
R.E., Massey, J.L. (eds.) Communications and Cryptography: Two Sides of One
Tapestry, pp. 227–233. Kluwer Academic Publishers, Norwell (1994)

15. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

16. Matsui, M.: The First Experimental Cryptanalysis of the Data Encryption Stan-
dard. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer,
Heidelberg (1994)

17. Shibayama, N., Igarashi, Y., Kaneko, T., Hangai, S.: Impossible Differential Attack
on HyRAL. In: Forum on Information Technology, L-022 (2010) (in Japanese)

18. Shibayama, N., Igarashi, Y., Kaneko, T., Hangai, S.: On Impossible Differential
of HyRAL Using MDS Characteristic. In: The 2010 IEICE Engineering Sciences
Society Conference, A-7-8 (2010) (in Japanese)

19. Shibayama, N., Igarashi, Y., Kaneko, T., Hangai, S.: Security Evaluation of HyRAL
against Saturation Cryptanalysis. In: The 33rd Symposium on Information Theory
and its Applications, SITA 2010, 10.1 (2010) (in Japanese)

20. Shibayama, N., Igarashi, Y., Kaneko, T., Hangai, S.: Higher Order Differential
Attack on HyRAL. IEICE Tech. Rep. 110(443), 341–347 (2011) (in Japanese);
ISEC 2010-123

21. Shibayama, N., Igarashi, Y., Kaneko, T., Hangai, S.: Security Evaluation of HyRAL
against Saturation Cryptanalysis (II). IEICE Tech. Rep. 111(123), 103–109 (2011)
(in Japanese); ISEC 2011-19

22. Shibayama, N., Kaneko, T., Hangai, S.: New Saturation Characteristics of HyRAL.
IEICE Tech. Rep. 111(455), 53–60 (2012) (in Japanese); ISEC 2011-81

23. Taga, B., Tanaka, H.: Higher Order Differential Characteristics of HyRAL. In: The
2011 Symposium on Cryptography and Information Security, 2B2-2, SCIS 2011
(2011) (in Japanese)

24. Takagi, Y., Igarashi, Y., Kaneko, T.: Security Evaluation of HyRAL against Differ-
ential Attack. In: The 2010 Symposium on Cryptography and Information Security,
1D1-2, SCIS 2010 (2010) (in Japanese)

25. Yamaguchi, Y., Shibayama, N., Kaneko, T.: Higher Order Differential Property of
HyRAL (II). In: The 2012 Symposium on Cryptography and Information Security,
1C3-4, SCIS 2012 (2012) (in Japanese)

26. Yamaguchi, Y., Igarashi, Y., Kaneko, T.: Higher Order Differential Property of
HyRAL. In: The 63rd Joint Conference of Electrical and Electronics Engineers in
Kyushu, 02-1A-06 (2010) (in Japanese)

27. Youm, H.Y., Song, J.H., Lee, S.Y.: Security Analysis of HyRAL. In: Technical Re-
port of CRYPTREC, Investigation Reports Related to Cryptographic Techniques
in FY 2010 (2011)

274 Y. Asano, S. Yanagihara, and T. Iwata

A Details of f1, . . . , f8 Functions

We present the details of the specification of f1, . . . , f8 functions that were omit-
ted from Sect. 2.

f1, . . . , f8 functions are permutations over {0, 1}32. For a given input I =
(x1, x2, x3, x4) ∈ {0, 1}32, fi function generates the output as follows.

1. Let (x1, x2, x3, x4)← Ti(x1, x2, x3, x4).
2. Let (x1, x2, x3, x4)← (S(x1), S(x2), S(x3), S(x4)).
3. Compute (o1, o2, o3, o4) by

⎛
⎜⎜⎝
o1
o2
o3
o4

⎞
⎟⎟⎠←

⎛
⎜⎜⎝
0x03 0x03 0x02 0x01

0x01 0x02 0x02 0x02

0x07 0x03 0x01 0x02

0x07 0x04 0x05 0x03

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝
x1

x2

x3

x4

⎞
⎟⎟⎠⊕

⎛
⎜⎜⎝
0x11

0x22

0x44

0x88

⎞
⎟⎟⎠ ,

where the arithmetic is over GF(28) defined by the irreducible polynomial
p(x) = x8 + x4 + x3 + x+ 1.

4. The output is O = (o1, o2, o3, o4).

Ti function is defined in Table 6. The S-box S is the composition of an affine
mapping over GF(2) and the inversion over GF(28). Table 7 shows the input
and output of the S-box. The values are in hexadecimal form. The input x is
regarded as two hexadecimal digits, and if the first digit is i and the last is j,
then the output is a value written in the i-th row and j-th column. For example,
S(0x12) = 0x06.

Table 6. Ti function

i Ti(x1, x2, x3, x4)

1 (x1, x2, x3, x4)
2 (x2, x3, x4, x1)
3 (x3, x4, x1, x2)
4 (x4, x1, x2, x3)
5 (x4, x3, x2, x1)
6 (x3, x2, x1, x4)
7 (x2, x1, x4, x3)
8 (x1, x4, x3, x2)

Table 7. S-box S

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 5e d3 af 36 43 a6 49 33 93 3b 21 91 df 47 f4

1 b6 70 06 d0 81 82 fa a1 10 b5 3c ba 97 85 b7 79

2 ed 5c ca 05 87 bf 24 4c 51 ec 17 61 22 f0 3e 18

3 a7 64 13 ab e9 09 25 54 2d 31 69 f5 37 67 fe 1d

4 0b 28 a3 2f e4 0f d4 da 1b fc e6 ac 53 04 27 a9

5 94 8b d5 c4 90 6b f8 9d c5 db ea e2 ae 63 07 7a

6 5b 23 34 38 03 8c 46 68 cd 1a 1c 41 7d a0 9c dd

7 08 4e e3 d7 1e b3 50 5d c6 0e ad cf d6 eb 0d b1

8 fb 7c c3 2e 65 48 b8 8f ce e7 62 d2 12 4a c8 26

9 a5 8e 3d 76 86 57 bc bd 11 75 71 78 1f ef e0 0c

a de 6a 6d 32 84 72 8a d8 f9 dc 9a 89 9f 88 14 2a

b 9b 9e d9 95 b9 a4 02 f7 96 73 56 be 7f 80 7e 83

c 00 01 f6 8d 7b d1 52 cb b0 e1 c7 e5 29 c0 4f e8

d 58 3f cc fd ee b2 40 ff 99 2b 5f 60 aa 4b b4 74

e 2c 45 6c 92 66 42 39 f3 77 bb 19 59 20 6f 35 f2

f c1 0a 15 98 a2 c2 44 30 55 4d c9 a8 5a f1 6e 3a

	Cryptanalysis of 256-Bit Key HyRAL via Equivalent Keys
	Introduction
	Specification of HyRAL
	Existence of Equivalent Keys
	Derivation of Equivalent Keys
	Equivalent Key Derivation Algorithm
	Time Complexity of the Algorithm

	Deriving Equivalent Keys
	Discussions
	Summary
	Details of f1,…,f8 Functions

