Cryptanalysis of 256-Bit Key HyRAL via Equivalent Keys

Yuki Asano, Shingo Yanagihara, and Tetsu Iwata
Nagoya University, Japan
\{y_asano,s_yanagi\}@echo.nuee.nagoya-u.ac.jp,
iwata@cse.nagoya-u.ac.jp

Abstract

HyRAL is a blockcipher whose block size is 128 bits, and it supports the key lengths of $128,129, \ldots, 256$ bits. The cipher was proposed for the CRYPTREC project, and previous analyses did not identify any security weaknesses. In this paper, we consider the longest key version, 256-bit key HyRAL, and present the analysis in terms of equivalent keys. First, we show that there are $2^{51.0}$ equivalent keys (or $2^{50.0}$ pairs of equivalent keys). Next, we propose an algorithm that derives an instance of equivalent keys with the expected time complexity of $2^{48.8}$ encryptions and a limited amount of memory. Finally, we implement the proposed algorithm and fully verify its correctness by showing several instances of equivalent keys.

Keywords: Cryptanalysis, blockcipher, HyRAL, equivalent key.

1 Introduction

HyRAL is a blockcipher whose block size is 128 bits, and it supports the key lengths of $128,129, \ldots, 256$ bits [6|7]8]. The overall structure of HyRAL is the Generalized Feistel Structure with four branches, and 128-bit key HyRAL consists of 24 rounds, and 129-, 130-, .., 256-bit key HyRAL consist of 32 rounds. The CRYPTREC project, running in Japan, is maintaining the e-Government recommended ciphers list, which was first established in 2003, and the list is planned to be revised in 2013 [3]. A call for algorithms was announced in 2009, and HyRAL is one of the proposed algorithms for the call [6]. The security of HyRAL against various attacks has been evaluated. The security against differential attacks [2] and linear attacks [15|16] is analyzed in 6|9|24, impossible differential attacks [1] is analyzed in [17|18], saturation attacks [5] and higher order differential attacks [13|14 is analyzed in $19|20| 21|22| 23|25| 26$, and boomerang attacks is analyzed in [10. [27] also presents security analyses against various attacks, and so far, no security weaknesses have been identified. Therefore, identifying a security weakness of this cipher is of interest from a cryptanalytic view point.

For a blockcipher $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ of k-bit keys and an n-bit block, two distinct keys $K, K^{\prime} \in\{0,1\}^{k}$ that satisfy $E_{K}(M)=E_{K^{\prime}}(M)$ for all $M \in\{0,1\}^{n}$ are called equivalent keys [12]. In this paper, out of the 129 key lengths supported in the specification of HyRAL, we consider the longest key

[^0](C) Springer-Verlag Berlin Heidelberg 2012
version, 256-bit key HyRAL, and present the analysis in terms of equivalent keys. We show the following three results.

- First, we show that there are $2^{51.0}$ equivalent keys (or $2^{50.0}$ pairs of equivalent keys).
- Next, we propose an algorithm that derives an instance of equivalent keys with the expected time complexity of $2^{48.8}$ encryptions and a limited amount of memory.
- Finally, we implement the proposed algorithm and fully verify its correctness by showing several instances of equivalent keys.

The first result is obtained by an analysis of the differential characteristic of the particular component in the cipher called the Key Generation Algorithm, which we write KGA. KGA is used twice in the cipher, and their outputs are xor'ed to generate round keys. We show that, for KGA, there exist differential characteristics of probability higher than 2^{-128}, and hence the output differences collide with probability higher than 2^{-256}. Equivalent keys are obtained as the result of this internal collision. In general, the existence of equivalent keys directly implies the theoretical cryptanalysis of the cipher, as the time complexity of the brute-force attack becomes less than the time complexity implied by its key length.

The second result is the main technical contribution of this paper. We develop an algorithm to generate the input of KGA that follows the differential characteristic. The core of the algorithm is to derive the input of KGA that satisfies conditions on the 64-bit intermediate variables. More precisely, it inverts the 5 round Generalized Feistel Structure that has a feed forward at the input of the 5th round, where there are conditions that the xor of three 32-bit input variables of the 5 th round is fixed to some constant, and that the xor of three 32 -bit output variables of the 5 th round is also fixed to some constant.

We obtain the third result by making use of a supercomputer system. It is well known that obtaining concrete instances of equivalent keys implies that we obtain collisions on the Davies-Meyer compression function based on the blockcipher. It is also easy to obtain collisions on the Merkle-Damgård hash function based on the compression function. Therefore, the existence of equivalent keys limits the use of the cipher in the widely deployed hash function mode.

With respect to the status of HyRAL in the CRYPTREC project, we note that the results of this paper were reported to the project [11], and it was announced in June 2011 that, based on the results, HyRAL did not proceed to the second round evaluation process [4].

2 Specification of HyRAL

We first define notation used throughout this paper. For an integer $n \geq 0$, $\{0,1\}^{n}$ is the set of n-bit strings. For two bit strings X and Y of the same length, $X \oplus Y$ is their xor. For integers $n, m \geq 0$ and a bit string $X \in\{0,1\}^{n m}$, $(X[1], \ldots, X[m]){ }^{n} \quad X$ is the partitioning operation into n-bit strings, i.e., $X[1], \ldots, X[m]$ are unique n-bit strings such that $(X[1], \ldots, X[m])=X$.

Fig. 1. The overall structure of 256 -bit key HyRAL

Outline of 256-Bit Key HyRAL. HyRAL is a blockcipher whose block size is 128 bits, and it supports the key lengths of $128,129, \ldots, 256$ bits. This paper deals with the 256 -bit key version only, and the specifications of other key lengths are in 6|718.

The overall structure of 256 -bit key HyRAL is shown in Fig. 1 The inputs are a key $K \in\{0,1\}^{256}$ and a plaintext $M \in\{0,1\}^{128}$, and the output is a ciphertext $C \in\{0,1\}^{128}$. 256-bit key HyRAL consists of the Key Generation Algorithm (KGA), the Key Assignment Algorithm (KAA), and the Data Processing Algorithm (DPA). KGA is used twice by changing the internal constants, and they are respectively denoted KGA_{1} and KGA_{2}. For given $K \in\{0,1\}^{256}$ and $M \in\{0,1\}^{128}$, the encryption proceeds as follows.

1. Let $\left(O K_{1}, O K_{2}\right) \stackrel{128}{\leftarrow} K$. That is, let $O K_{1}$ be the most significant 128 bits of K, and $O K_{2}$ be the least significant 128 bits.
2. We then run KGA_{1} and KGA_{2} with $O K_{1}$ and $O K_{2}$, respectively, to generate $\left(Y_{4}, Y_{5}, Y_{6}, Y_{7}\right) \leftarrow \mathrm{KGA}_{1}\left(O K_{1}\right)$ and $\left(Z_{4}, Z_{5}, Z_{6}, Z_{7}\right) \leftarrow \mathrm{KGA}_{2}\left(O K_{2}\right)$, where $Y_{i}, Z_{i} \in\{0,1\}^{128}$.
3. Let $\left(K M_{1}, K M_{3}, K M_{2}, K M_{4}\right) \leftarrow\left(Y_{4} \oplus Z_{4}, Y_{5} \oplus Z_{5}, Y_{6} \oplus Z_{6}, Y_{7} \oplus Z_{7}\right)$, where $K M_{i} \in\{0,1\}^{128}$. We write $\left(K M_{1}, K M_{3}, K M_{2}, K M_{4}\right)=K M$.
4. Next, we run KAA with $K M$ to generate $\left(R K_{1}, \ldots, R K_{9}, I K_{1}, \ldots, I K_{6}\right) \leftarrow$ $\mathrm{KAA}(K M)$, where $R K_{i}, I K_{i} \in\{0,1\}^{128}$.
5. Finally, we run DPA with $\left(R K_{1}, \ldots, R K_{9}, I K_{1}, \ldots, I K_{6}\right)$ and the plaintext M to generate the ciphertext $C \leftarrow \operatorname{DPA}\left(R K_{1}, \ldots, R K_{9}, I K_{1}, \ldots, I K_{6}, M\right)$, and then C is returned.

In KAA, $\left(K M_{1}, K M_{3}, K M_{2}, K M_{4}\right)$ are first parsed into 32 -bit strings, and then $\left(R K_{1}, \ldots, R K_{9}, I K_{1}, \ldots, I K_{6}\right)$ are generated by taking their linear

Fig. 2. KGA_{1} and KGA_{2}
combinations. The overall structure of DPA is the 32 round Generalized Feistel Structure with four branches. Further details of KAA and DPA are not necessary in order to present the results of this paper, and their specifications can be found in 6678.

The Key Generation Algorithms KGA_{1} and $\mathrm{KGA}_{2} . \mathrm{KGA}_{1}$ and KGA_{2} are shown in Fig. 2. For the input $O K_{1} \in\{0,1\}^{128}, \mathrm{KGA}_{1}$ outputs $\left(Y_{4}, Y_{5}, Y_{6}, Y_{7}\right) \in$ $\{0,1\}^{512}$. Similarly, KGA_{2} takes $O K_{2} \in\{0,1\}^{128}$ and outputs $\left(Z_{4}, Z_{5}, Z_{6}, Z_{7}\right) \in$ $\{0,1\}^{512}$. KGA_{1} and KGA_{2} internally use G_{1} and G_{2} functions, which are keyless permutations over $\{0,1\}^{128}$. KGA_{1} and KGA_{2} differ only in the internally used constants. The following 128 -bit constants, CST_{1} and CST_{2}, are used in KGA_{1} and KGA_{2}, respectively, where the prefix 0 x indicates that the value is in the hexadecimal form.

$$
\left\{\begin{array}{l}
\mathrm{CST}_{1}=0 \mathrm{xf} 9251 \mathrm{a} 2365 \mathrm{~cd} 3 \mathrm{c} 2 \mathrm{e} 8066 \mathrm{cbbbfe316b7b} \\
\mathrm{CST}_{2}=0 \times 5 \mathrm{de} 28625656 \mathrm{~b} 71 \mathrm{ff} 9 \mathrm{ffb} 1 \mathrm{e} 12 \mathrm{eef} 127 \mathrm{f} 5
\end{array}\right.
$$

G_{1} and G_{2} Functions. G_{1} and G_{2} functions are shown in Fig. 3.
G_{1} and G_{2} functions take $\left(X_{1}^{(1)}, X_{2}^{(1)}, X_{3}^{(1)}, X_{4}^{(1)}\right) \in\{0,1\}^{128}$ as the input, and output $\left(X_{1}^{(5)}, X_{2}^{(5)}, X_{3}^{(5)}, X_{4}^{(5)}\right) \in\{0,1\}^{128}$. They consist of four rounds of the Generalized Feistel Structure with four branches. G_{1} function internally uses f_{1}, f_{2}, f_{3}, and f_{4} functions, and G_{2} function internally uses f_{5}, f_{6}, f_{7}, and f_{8} functions.
f_{1}, \ldots, f_{8} Functions. f_{1}, \ldots, f_{8} functions are keyless permutations over $\{0,1\}^{32}$. They take a 32 -bit string as the input and generate a 32 -bit string as the output. The structure of f_{i} function is the SP-network, and a detailed specification is presented in Appendix A.

Fig. 3. G_{1} function (left) and G_{2} function (right)

3 Existence of Equivalent Keys

Overall Strategy. We make use of the differential cryptanalysis of Biham and Shamir [2] to show the existence of equivalent keys.

Let $\left(O K_{1}, O K_{2}\right) \in\{0,1\}^{256}$ be the key. Let $\Delta O K_{1}$ be the input difference for KGA_{1} and $\left(\Delta Y_{4}, \Delta Y_{5}, \Delta Y_{6}, \Delta Y_{7}\right)$ be the corresponding output difference. Similarly, let $\Delta O K_{2}$ and $\left(\Delta Z_{4}, \Delta Z_{5}, \Delta Z_{6}, \Delta Z_{7}\right)$ be the input and output differences of KGA_{2}, respectively. We have

$$
\begin{equation*}
\left(\Delta Y_{4}, \Delta Y_{5}, \Delta Y_{6}, \Delta Y_{7}\right)=\mathrm{KGA}_{1}\left(O K_{1}\right) \oplus \mathrm{KGA}_{1}\left(O K_{1} \oplus \Delta O K_{1}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\Delta Z_{4}, \Delta Z_{5}, \Delta Z_{6}, \Delta Z_{7}\right)=\mathrm{KGA}_{2}\left(O K_{2}\right) \oplus \mathrm{KGA}_{2}\left(O K_{2} \oplus \Delta O K_{2}\right) \tag{2}
\end{equation*}
$$

If the two output differences collide and

$$
\begin{equation*}
\left(\Delta Y_{4}, \Delta Y_{5}, \Delta Y_{6}, \Delta Y_{7}\right)=\left(\Delta Z_{4}, \Delta Z_{5}, \Delta Z_{6}, \Delta Z_{7}\right) \tag{3}
\end{equation*}
$$

holds, we see that the differences are canceled by the xor operation and the input difference ($\Delta K M_{1}, \Delta K M_{3}, \Delta K M_{2}, \Delta K M_{4}$) of KAA becomes null. Therefore, if
(3) holds, we have the following equivalent keys.

$$
\left(K, K^{\prime}\right)=\left\{\begin{array}{l}
\left(\left(O K_{1}, O K_{2}\right),\left(O K_{1} \oplus \Delta O K_{1}, O K_{2} \oplus \Delta O K_{2}\right)\right) \tag{4}\\
\left(\left(O K_{1} \oplus \Delta O K_{1}, O K_{2} \oplus \Delta O K_{2}\right),\left(O K_{1}, O K_{2}\right)\right) \\
\left(\left(O K_{1} \oplus \Delta O K_{1}, O K_{2}\right),\left(O K_{1}, O K_{2} \oplus \Delta O K_{2}\right)\right) \\
\left(\left(O K_{1}, O K_{2} \oplus \Delta O K_{2}\right),\left(O K_{1} \oplus \Delta O K_{1}, O K_{2}\right)\right)
\end{array}\right.
$$

In this paper, these are counted as four equivalent keys (or two pairs of equivalent keys).

Since KGA_{1} and KGA_{2} are the same algorithms except for the internally used constants, we may regard them identically as long as we consider their differential characteristics. In what follows, let $\mathrm{KGA} \in\left\{\mathrm{KGA}_{1}, \mathrm{KGA}_{2}\right\}$ be the Key Generation Algorithm. We next analyze the differential characteristic of KGA.

Differential Characteristic of KGA. We regard one round of G_{1} and G_{2} functions as one round of KGA. Then KGA is a function that consists of 20 rounds in total. For $r=1,2, \ldots, 20$, we write $f_{i}^{(r)}$ for f_{i} function used in the r-th round.

Let $\Delta O K \in\{0,1\}^{128}$ be the input difference of KGA and $\left(\Delta Y_{4}, \Delta Y_{5}, \Delta Y_{6}\right.$, $\left.\Delta Y_{7}\right) \in\{0,1\}^{512}$ be the corresponding output difference.

For $r=1,2, \ldots, 20$, let $\Delta X^{(r)}=\left(\Delta X_{1}^{(r)}, \Delta X_{2}^{(r)}, \Delta X_{3}^{(r)}, \Delta X_{4}^{(r)}\right) \in\{0,1\}^{128}$ be the input difference of the r-th round, and $\Delta Z^{(r)}=\left(\Delta Z_{1}^{(r)}, \Delta Z_{2}^{(r)}, \Delta Z_{3}^{(r)}\right.$, $\left.\Delta Z_{4}^{(r)}\right) \in\{0,1\}^{128}$ be its output difference. A differential characteristic is a tuple

$$
\left(\left(\Delta X^{(1)}, \Delta Z^{(1)}\right), \ldots,\left(\Delta X^{(20)}, \Delta Z^{(20)}\right)\right)
$$

of the input and output differences of each round, that satisfies the following conditions: First, it corresponds with the input and output differences of KGA , and hence we have $\Delta X^{(1)}=\Delta O K, \Delta Z^{(8)}=\Delta Y_{4}, \Delta Z^{(12)}=\Delta Y_{5}$, $\Delta Z^{(16)}=\Delta Y_{6}$, and $\Delta Z^{(20)}=\Delta Y_{7}$. Second, for $r=1,2, \ldots, 20$, we have $\left(\Delta X_{2}^{(r)}, \Delta X_{3}^{(r)}, \Delta X_{4}^{(r)}\right)=\left(\Delta Z_{1}^{(r)}, \Delta Z_{2}^{(r)}, \Delta Z_{3}^{(r)}\right)$. Third, for $r \in\{4,8,12,16\}$, we have $\Delta X^{(r+1)}=\Delta Z^{(r)} \oplus \Delta O K$, and for $r \in\{1,2, \ldots, 19\} \backslash\{4,8,12,16\}$, we have $\Delta X^{(r+1)}=\Delta Z^{(r)}$.

For a differential characteristic $\left(\left(\Delta X^{(1)}, \Delta Z^{(1)}\right), \ldots,\left(\Delta X^{(20)}, \Delta Z^{(20)}\right)\right)$, its probability is defined as

$$
\mathrm{DCP}^{\mathrm{KGA}}\left(\left(\Delta X^{(1)}, \Delta Z^{(1)}\right), \ldots,\left(\Delta X^{(20)} \Delta Z^{(20)}\right)\right)=\prod_{1 \leq r \leq 20} \mathrm{DP}^{f_{i}^{(r)}}\left(\Delta I_{i}^{(r)}, \Delta O_{i}^{(r)}\right)
$$

where $\Delta I_{i}^{(r)}=\Delta X_{2}^{(r)} \oplus \Delta X_{3}^{(r)} \oplus \Delta X_{4}^{(r)}$ is the input difference of $f_{i}^{(r)}, \Delta O_{i}^{(r)}=$ $\Delta X_{1}^{(r)} \oplus \Delta Z_{4}^{(r)}$ is the corresponding output difference, and the differential probability $\mathrm{DP}^{f_{i}}\left(\Delta I_{i}, \Delta O_{i}\right)$ of f_{i} function for the input difference ΔI_{i} and the output difference ΔO_{i} is defined as

$$
\mathrm{DP}^{f_{i}}\left(\Delta I_{i}, \Delta O_{i}\right)=\frac{\#\left\{I \mid f_{i}(I) \oplus f_{i}\left(I \oplus \Delta I_{i}\right)=\Delta O_{i}\right\}}{2^{32}}
$$

For a given differential characteristic, we say that f_{i} function is active if its input difference is non-zero. In KGA, there are $20 f_{i}$ functions and hence the maximum number of active f_{i} functions is 20 . In the following lemma, we show that there exists a differential characteristic with only four active f_{i} functions.

Lemma 1. For KGA, there exists a differential characteristic with four active f_{i} functions.

Proof. Let $\delta \in\{0,1\}^{32}$ be any non-zero bit string. Let $\Delta O K=(\delta, \delta, \delta, \delta)$ be the input difference of KGA, and ($\Delta Y_{4}, \Delta Y_{5}, \Delta Y_{6}, \Delta Y_{7}$) be the output difference, where $\Delta Y_{4}=(\delta, \delta, 0,0), \Delta Y_{5}=(0,0,0, \delta), \Delta Y_{6}=(\delta, \delta, \delta, \delta)$, and $\Delta Y_{7}=$ $(0,0,0,0)$. Consider the differential characteristic given in Table 1 which is also shown in Fig. [4 Then one can verify that there are four active f_{i} functions, which are $f_{1}^{(1)}, f_{7}^{(6)}, f_{3}^{(11)}$, and $f_{5}^{(16)}$.

We see that the input and output differences of active f_{i} functions in the differential characteristic of Lemma 1 are both δ. Under the condition that both the input and output differences are the same, we have counted the number of active f_{i} functions for the 15 non-zero input differences, which are $(0,0,0, \delta),(0,0, \delta, 0)$, $(0,0, \delta, \delta), \ldots,(\delta, \delta, \delta, \delta)$. The results are summarized in Table 2

From the table, we see that the number of active f_{i} functions of Lemma is the minimum among the 15 differential characteristics.

Differential Probability of f_{i} Function. For f_{i} function, let $\mathrm{DP}^{f_{i}}(\delta)$ be the probability that both the input and output differences of f_{i} function are δ, i.e.,

$$
\operatorname{DP}^{f_{i}}(\delta)=\mathrm{DP}^{f_{i}}(\delta, \delta)=\frac{\#\left\{I \mid f_{i}(I) \oplus f_{i}(I \oplus \delta)=\delta\right\}}{2^{32}}
$$

The probability of the differential characteristic in Lemma 1 depends only on δ, and we write the probability as $\mathrm{DCP}^{\mathrm{KGA}}(\delta)$, which is given as

$$
\mathrm{DCP}^{\mathrm{KGA}}(\delta)=\mathrm{DP}^{f_{1}}(\delta) \times \mathrm{DP}^{f_{3}}(\delta) \times \mathrm{DP}^{f_{5}}(\delta) \times \mathrm{DP}^{f_{7}}(\delta)
$$

We present the following lemma with respect to $\mathrm{DCP}^{\mathrm{KGA}}(\delta)$.
Lemma 2. There exists non-zero $\delta \in\{0,1\}^{32}$ such that $\mathrm{DCP}^{\mathrm{KGA}}(\delta)>2^{-128}$.
Proof. For all the $\left(2^{32}-1\right)$ possible values $0 x 00000001, \ldots, 0 x f f f f f f f f$ of nonzero $\delta \in\{0,1\}^{32}$, we computed the value of $\mathrm{DCP}^{\mathrm{KGA}}(\delta)$. The results are summarized in Table 3. From the table, we see that there exist 89938 values of δ such that $\mathrm{DCP}^{\mathrm{KGA}}(\delta)>2^{-128}$.

We note that, for $\delta=0 \operatorname{xd} 7 \mathrm{~d} 7 \mathrm{~d} 0 \mathrm{~d} 7$, we have

$$
\begin{equation*}
\mathrm{DP}^{f_{1}}(\delta)=2^{-25}, \mathrm{DP}^{f_{3}}(\delta)=2^{-26}, \mathrm{DP}^{f_{5}}(\delta)=2^{-26}, \text { and } \mathrm{DP}^{f_{7}}(\delta)=2^{-26} \tag{5}
\end{equation*}
$$

Table 1. The differential characteristic and active f_{i} functions of Lemma 1

r	Input diff. $\Delta X^{(r)}$	Output diff. $\Delta Z^{(r)}$	Active f_{i} function
1	$(\delta, \delta, \delta, \delta)$	$(\delta, \delta, \delta, 0)$	f_{1}
2	$(\delta, \delta, \delta, 0)$	$(\delta, \delta, 0, \delta)$	
3	$(\delta, \delta, 0, \delta)$	$(\delta, 0, \delta, \delta)$	
4	$(\delta, 0, \delta, \delta)$	$(0, \delta, \delta, \delta)$	
5	$(\delta, 0,0,0)$	$(0,0,0, \delta)$	
6	$(0,0,0, \delta)$	$(0,0, \delta, \delta)$	f_{7}
7	$(0,0, \delta, \delta)$	$(0, \delta, \delta, 0)$	
8	$(0, \delta, \delta, 0)$	$(\delta, \delta, 0,0)$	
9	$(0,0, \delta, \delta)$	$(0, \delta, \delta, 0)$	
10	$(0, \delta, \delta, 0)$	$(\delta, \delta, 0,0)$	
11	$(\delta, \delta, 0,0)$	$(\delta, 0,0,0)$	f_{3}
12	$(\delta, 0,0,0)$	$(0,0,0, \delta)$	
13	$(\delta, \delta, \delta, 0)$	$(\delta, \delta, 0, \delta)$	
14	$(\delta, \delta, 0, \delta)$	$(\delta, 0, \delta, \delta)$	
15	$(\delta, 0, \delta, \delta)$	$(0, \delta, \delta, \delta)$	
16	$(0, \delta, \delta, \delta)$	$(\delta, \delta, \delta, \delta)$	f_{5}
17	$(0,0,0,0)$	$(0,0,0,0)$	
18	$(0,0,0,0)$	$(0,0,0,0)$	
19	$(0,0,0,0)$	$(0,0,0,0)$	
20	$(0,0,0,0)$	$(0,0,0,0)$	

Table 2. The number of active f_{i} functions for a given input difference

Input diff. $\triangle O K$	Number	Input diff. $\triangle O K$	Number
(0,0,0, δ)	9	($\delta, 0,0, \delta)$	10
$(0,0, \delta, 0)$	9	$(\delta, 0, \delta, 0)$	10
$(0,0, \delta, \delta)$	10	$(\delta, 0, \delta, \delta)$	7
$(0, \delta, 0,0)$	9	$(\delta, \delta, 0,0)$	10
$(0, \delta, 0, \delta)$	10	$(\delta, \delta, 0, \delta)$	7
$(0, \delta, \delta, 0)$	10	$(\delta, \delta, \delta, 0)$	7
$(0, \delta, \delta, \delta)$	7	$(\delta, \delta, \delta, \delta)$	4
$(\delta, 0,0,0)$	9		

Table 3. Examples of δ that satisfies $\mathrm{DCP}^{\mathrm{KGA}}(\delta)>2^{-128}$ and the number of such δ

DCP ${ }^{\text {KGA }}(\delta)$	Example of δ	Number
2^{-103}	0xd7d7d0d7	1
2^{-104}	0xc5c5d254	1
2^{-105}	0x4e4ec554	1
2^{-106}	$0 x 3 c 3 c f 4 f f$	8
2^{-107}	$0 x 6161 \mathrm{f} 9 \mathrm{~d} 9$	1
2^{-108}	$0 x 054 d 9797$	34
2^{-109}	$0 x 0101019 a$	157
2^{-110}	$0 x 0159591 a$	1579
2^{-111}	$0 x 0101 \mathrm{e} 818$	7685
2^{-112}	$0 x 01010520$	80471

Existence of Equivalent Keys. We are now ready to present our main result of this section. Fix any δ such that $\mathrm{DCP}^{\mathrm{KGA}}(\delta)>2^{-128}$. For randomly chosen $O K_{1} \in\{0,1\}^{128}$, (11) is satisfied for

$$
\left\{\begin{array}{l}
\Delta O K_{1}=(\delta, \delta, \delta, \delta) \tag{6}\\
\Delta Y_{4}=(\delta, \delta, 0,0), \Delta Y_{5}=(0,0,0, \delta), \Delta Y_{6}=(\delta, \delta, \delta, \delta), \Delta Y_{7}=(0,0,0,0)
\end{array}\right.
$$

with at least a probability of $\mathrm{DCP}^{\mathrm{KGA}}(\delta)$. This implies that at least $2^{128} \times$ $\mathrm{DCP}^{\mathrm{KGA}}(\delta)$ values of $O K_{1} \in\{0,1\}^{128}$ satisfy (11). Similarly, at least $2^{128} \times$ $\mathrm{DCP}^{\mathrm{KGA}}(\delta)$ values of $O K_{2} \in\{0,1\}^{128}$ satisfy (2) for

$$
\left\{\begin{array}{l}
\Delta O K_{2}=(\delta, \delta, \delta, \delta) \tag{7}\\
\Delta Z_{4}=(\delta, \delta, 0,0), \Delta Z_{5}=(0,0,0, \delta), \Delta Z_{6}=(\delta, \delta, \delta, \delta), \Delta Z_{7}=(0,0,0,0)
\end{array}\right.
$$

If we fix a value of $\left(O K_{1}, O K_{2}\right) \in\{0,1\}^{256}$ that satisfies (11), (6), (2), and (7), we see that (3) is also satisfied, and hence we obtain four equivalent keys (or two pairs of equivalent keys) of (4). From Table 3 and by eliminating the duplications,
the number of equivalent keys can be derived as

$$
\frac{4 \times\left(2^{50} \times 1+2^{48} \times 1+2^{46} \times 1+2^{44} \times 8+\cdots+2^{32} \times 80471\right)}{4} \geq 2^{51.0}
$$

and the number of pairs is the half of $2^{51.0}$, which is $2^{50.0}$.
From the discussions above, we obtain the following theorem.
Theorem 1. In 256-bit key HyRAL, there exist $2^{51.0}$ equivalent keys (or $2^{50.0}$ pairs of equivalent keys).

4 Derivation of Equivalent Keys

From the result of the previous section, we know that there are $2^{51.0}$ equivalent keys in 256 -bit key HyRAL. In this section, we consider the problem of deriving a concrete instance of equivalent keys.

4.1 Equivalent Key Derivation Algorithm

As in the previous section, let $\mathrm{KGA} \in\left\{\mathrm{KGA}_{1}, \mathrm{KGA}_{2}\right\}$. Recall that one round of G_{1} and G_{2} functions are regarded as one round of KGA, and hence KGA is a function that consists of 20 rounds in total. Let $O K \in\left\{O K_{1}, O K_{2}\right\}$ be the input of KGA, and let $\left(K_{1}, K_{2}, K_{3}, K_{4}\right) \stackrel{32}{\leftarrow} O K \in\{0,1\}^{128}$ be its partition into 32-bit strings. Similarly, let CST $\in\left\{\mathrm{CST}_{1}, \mathrm{CST}_{2}\right\}$ be the constant used in KGA, and let $\left(C_{1}, C_{2}, C_{3}, C_{4}\right) \stackrel{32}{\leftarrow} \mathrm{CST} \in\{0,1\}^{128}$ be its partition into 32 -bit strings. KGA is the function that consists of 20 rounds in total, and we write the input and output strings of $f_{i}^{(r)}$ as $I_{i}^{(r)} \in\{0,1\}^{32}$ and $O_{i}^{(r)} \in\{0,1\}^{32}$, respectively, where $r=1,2, \ldots, 20$ and $f_{i}^{(r)}$ is f_{i} function used in the r-th round. Figure 5 shows the first 8 rounds of KGA.

We consider the case of $\delta=0 \operatorname{xd} 7 \mathrm{~d} 7 \mathrm{~d} 0 \mathrm{~d} 7$. For $i \in\{1,3,5,7\}$, let \mathcal{I}_{i} be a list of $I_{i} \in\{0,1\}^{32}$ that satisfies $f_{i}\left(I_{i}\right) \oplus f_{i}\left(I_{i} \oplus \delta\right)=\delta$. From (5), \mathcal{I}_{1} consists of 128 elements, and each of $\mathcal{I}_{3}, \mathcal{I}_{5}$, and \mathcal{I}_{7} consists of 64 elements, and we may thus write down the lists as $\mathcal{I}_{1}=\left\{I_{1}[0], \ldots, I_{1}[127]\right\}, \mathcal{I}_{3}=\left\{I_{3}[0], \ldots, I_{3}[63]\right\}$, $\mathcal{I}_{5}=\left\{I_{5}[0], \ldots, I_{5}[63]\right\}$, and $\mathcal{I}_{7}=\left\{I_{7}[0], \ldots, I_{7}[63]\right\}$.

Now if we can derive ($K_{1}, K_{2}, K_{3}, K_{4}$) that satisfies

$$
I_{1}^{(1)} \in \mathcal{I}_{1}, I_{7}^{(6)} \in \mathcal{I}_{7}, I_{3}^{(11)} \in \mathcal{I}_{3}, \text { and } I_{5}^{(16)} \in \mathcal{I}_{5}
$$

then this implies that we have derived $O K$ that satisfies (11) and (6), or (2) and (7).

It is easy to obtain $\left(K_{1}, K_{2}, K_{3}, K_{4}\right)$ that satisfies one of the four conditions, $I_{1}^{(1)} \in \mathcal{I}_{1}$, since this is simply $\left(K_{1}, K_{2}, K_{3}, K_{4}\right)$ such that $K_{2} \oplus C_{2} \oplus K_{3} \oplus C_{3} \oplus K_{4} \oplus$ $C_{4} \in \mathcal{I}_{1}$. In the following lemma, we show that one can derive ($K_{1}, K_{2}, K_{3}, K_{4}$) that satisfies two of the four conditions, namely, one can derive ($K_{1}, K_{2}, K_{3}, K_{4}$) such that both $I_{1}^{(1)} \in \mathcal{I}_{1}$ and $I_{7}^{(6)} \in \mathcal{I}_{7}$ are satisfied.

Fig. 5. The first 8 rounds of KGA

Lemma 3. For arbitrarily fixed $\tilde{K}_{1}, I_{1}^{(1)}, I_{8}^{(5)}$, and $I_{7}^{(6)}$, where $\tilde{K}_{1}=K_{1} \oplus K_{3}$, the corresponding value of $\left(K_{1}, K_{2}, K_{3}, K_{4}\right)$ can be derived.

Proof. Since $I_{1}^{(1)}$ and $I_{8}^{(5)}$ are fixed, $O_{1}^{(1)}=f_{1}\left(I_{1}^{(1)}\right)$ and $O_{8}^{(5)}=f_{8}\left(I_{8}^{(5)}\right)$ are also fixed. To simplify the notation, let $\tilde{C}_{1}, \ldots, \tilde{C}_{5}$ be the fixed constants defined as $\tilde{C}_{1}=C_{1} \oplus C_{3} \oplus C_{4} \oplus O_{1}^{(1)}, \tilde{C}_{2}=C_{1} \oplus C_{3} \oplus I_{1}^{(1)} \oplus O_{1}^{(1)}, \tilde{C}_{3}=C_{1} \oplus C_{4} \oplus I_{1}^{(1)} \oplus O_{1}^{(1)}$, $\tilde{C}_{4}=C_{2} \oplus C_{3} \oplus C_{4}$, and $\tilde{C}_{5}=C_{1} \oplus C_{2} \oplus O_{1}^{(1)} \oplus I_{7}^{(6)}$. We also let $\tilde{K}_{2}=K_{1} \oplus K_{3} \oplus K_{4}$ and $\tilde{K}_{3}=K_{1} \oplus K_{4}$.

First, $I_{1}^{(1)}$ has to satisfy $I_{1}^{(1)}=K_{2} \oplus C_{2} \oplus K_{3} \oplus C_{3} \oplus K_{4} \oplus C_{4}$, which is equivalent to

$$
\begin{equation*}
K_{2}=I_{1}^{(1)} \oplus C_{2} \oplus K_{3} \oplus C_{3} \oplus K_{4} \oplus C_{4} \tag{8}
\end{equation*}
$$

Next, since $I_{2}^{(2)}=\tilde{K}_{2} \oplus \tilde{C}_{1}$, we have

$$
\begin{equation*}
O_{2}^{(2)}=f_{2}\left(\tilde{K}_{2} \oplus \tilde{C}_{1}\right) \tag{9}
\end{equation*}
$$

Similarly, since $I_{3}^{(3)}$ can be written as $I_{3}^{(3)}=\tilde{K}_{1} \oplus \tilde{C}_{2} \oplus O_{2}^{(2)}$ by using (8), we obtain

$$
\begin{equation*}
O_{3}^{(3)}=f_{3}\left(\tilde{K}_{1} \oplus \tilde{C}_{2} \oplus O_{2}^{(2)}\right) \tag{10}
\end{equation*}
$$

Besides, since $I_{4}^{(4)}$ can be written as $I_{4}^{(4)}=\tilde{K}_{3} \oplus \tilde{C}_{3} \oplus O_{2}^{(2)} \oplus O_{3}^{(3)}$ by using (8), we obtain

$$
\begin{equation*}
O_{4}^{(4)}=f_{4}\left(\tilde{K}_{3} \oplus \tilde{C}_{3} \oplus O_{2}^{(2)} \oplus O_{3}^{(3)}\right) \tag{11}
\end{equation*}
$$

Now since the input of the 5 th round is $\left(C_{1} \oplus O_{1}^{(1)}, C_{2} \oplus O_{2}^{(2)}, C_{3} \oplus O_{3}^{(3)}, C_{4} \oplus O_{4}^{(4)}\right)$ and $I_{8}^{(5)}$ is fixed,

$$
\begin{equation*}
I_{8}^{(5)}=\tilde{C}_{4} \oplus O_{2}^{(2)} \oplus O_{3}^{(3)} \oplus O_{4}^{(4)} \tag{12}
\end{equation*}
$$

has to be satisfied. Furthermore, since $I_{7}^{(6)}$ is fixed, $I_{7}^{(6)}=C_{1} \oplus C_{3} \oplus C_{4} \oplus O_{1}^{(1)} \oplus$ $O_{3}^{(3)} \oplus O_{4}^{(4)} \oplus O_{8}^{(5)}$ needs to be satisfied, which is equivalent to

$$
\begin{equation*}
\tilde{C}_{5} \oplus O_{2}^{(2)} \oplus I_{8}^{(5)}=O_{8}^{(5)} \tag{13}
\end{equation*}
$$

by using (12).
At this point, since $\tilde{C}_{5}, I_{8}^{(5)}$, and $O_{8}^{(5)}$ are all fixed, $O_{2}^{(2)}$ that satisfies (13) is uniquely determined. As we have now fixed $O_{2}^{(2)}, \tilde{K}_{2}$ that satisfies (9) is also uniquely determined, which is $\tilde{K}_{2}=f_{2}^{-1}\left(O_{2}^{(2)}\right) \oplus \tilde{C}_{1}$. We also see that since $O_{2}^{(2)}$ is now fixed and \tilde{K}_{1} is a fixed constant, $O_{3}^{(3)}$ that satisfies (10) is now uniquely fixed. Upon fixing both $O_{2}^{(2)}$ and $O_{3}^{(3)}$, we obtain unique $O_{4}^{(4)}$ that satisfies (12), and for these fixed $O_{2}^{(2)}, O_{3}^{(3)}$, and $O_{4}^{(4)}$, we obtain the corresponding \tilde{K}_{3}, which is $\tilde{K}_{3}=f_{4}^{-1}\left(O_{4}^{(4)}\right) \oplus \tilde{C}_{3} \oplus O_{2}^{(2)} \oplus O_{3}^{(3)}$.

Finally, we obtain $\left(K_{1}, K_{2}, K_{3}, K_{4}\right)$ as $\left(K_{1}, K_{2}, K_{3}, K_{4}\right) \leftarrow\left(\tilde{K}_{1} \oplus \tilde{K}_{2} \oplus \tilde{K}_{3}, \tilde{K}_{1} \oplus\right.$ $\left.\tilde{K}_{3} \oplus I_{1}^{(1)} \oplus \tilde{C}_{4}, \tilde{K}_{2} \oplus \tilde{K}_{3}, \tilde{K}_{1} \oplus \tilde{K}_{2}\right)$.

We are now ready to present the basic version of our equivalent key derivation algorithm based on Lemma 3,

1. Fix arbitrarily $I_{1}^{(1)}$ and $I_{7}^{(6)}$ that satisfy $I_{1}^{(1)} \in \mathcal{I}_{1}$ and $I_{7}^{(6)} \in \mathcal{I}_{7}$.
2. Fix arbitrarily $I_{8}^{(5)}$ and \tilde{K}_{1}.
3. Derive $\left(K_{1}, K_{2}, K_{3}, K_{4}\right)$ by using Lemma 3
4. Compute $I_{3}^{(11)}$ from $\left(K_{1}, K_{2}, K_{3}, K_{4}\right)$ by following the specification of 256 bit key HyRAL, and proceed to Step 5 if $I_{3}^{(11)} \in \mathcal{I}_{3}$ is satisfied. Otherwise return to Step 2.
5. Compute $I_{5}^{(16)}$ from $\left(K_{1}, K_{2}, K_{3}, K_{4}\right)$ by following the specification of 256 -bit key HyRAL, and output $\left(K_{1}, K_{2}, K_{3}, K_{4}\right)$ and halt if $I_{5}^{(16)} \in \mathcal{I}_{5}$ is satisfied. Otherwise return to Step 2.
If we assume that $I_{3}^{(11)}$ and $I_{5}^{(16)}$ are independently and uniformly distributed random strings over $\{0,1\}^{32}$, then the probability that both $I_{3}^{(11)} \in \mathcal{I}_{3}$ and $I_{5}^{(16)} \in \mathcal{I}_{5}$ are satisfied is $\left(64 / 2^{32}\right)^{2}=2^{-52}$, since there are 64 elements in each of \mathcal{I}_{3} and \mathcal{I}_{5}. Therefore, we may expect that the algorithm returns $\left(K_{1}, K_{2}, K_{3}, K_{4}\right)$ after trying 2^{52} values of $\left(I_{8}^{(5)}, \tilde{K}_{1}\right)$.

4.2 Time Complexity of the Algorithm

In the basic algorithm presented in Sect. 4.1, the test $I_{3}^{(11)} \in \mathcal{I}_{3}$ is executed for 2^{52} different values of $\left(I_{8}^{(5)}, \tilde{K}_{1}\right)$. This test of $I_{3}^{(11)} \in \mathcal{I}_{3}$ is the main cost in the time complexity of the algorithm, and the following lemma can be used in the actual implementation.
Lemma 4. For arbitrarily fixed $\tilde{K}_{1}, I_{1}^{(1)}, O_{1}^{(1)}, I_{8}^{(5)}, I_{7}^{(6)}$, and $O_{7}^{(6)}$, the corresponding value of $I_{3}^{(11)}$ can be derived by seven computations of f_{i} functions.
Proof. $I_{3}^{(11)}$ can be derived by the following steps.

1. $O_{8}^{(5)} \leftarrow f_{8}\left(I_{8}^{(5)}\right)$
2. $O_{2}^{(2)} \leftarrow \tilde{C}_{5} \oplus I_{8}^{(5)} \oplus O_{8}^{(5)}$
3. $\tilde{K}_{2} \leftarrow f_{2}^{-1}\left(O_{2}^{(2)}\right) \oplus \tilde{C}_{1}$
4. $O_{3}^{(3)} \leftarrow f_{3}\left(\tilde{K}_{1} \oplus \tilde{C}_{2} \oplus O_{2}^{(2)}\right)$
5. $O_{4}^{(4)} \leftarrow \tilde{C}_{4} \oplus I_{8}^{(5)} \oplus O_{2}^{(2)} \oplus O_{3}^{(3)}$
6. $O_{6}^{(7)} \leftarrow f_{6}\left(C_{1} \oplus C_{2} \oplus C_{4} \oplus O_{1}^{(1)} \oplus O_{2}^{(2)} \oplus O_{4}^{(4)} \oplus O_{8}^{(5)} \oplus O_{7}^{(6)}\right)$
7. $O_{5}^{(8)} \leftarrow f_{5}\left(C_{1} \oplus C_{2} \oplus C_{3} \oplus O_{1}^{(1)} \oplus O_{2}^{(2)} \oplus O_{3}^{(3)} \oplus O_{8}^{(5)} \oplus O_{7}^{(6)} \oplus O_{6}^{(7)}\right)$
8. $O_{1}^{(9)} \leftarrow f_{1}\left(I_{1}^{(1)} \oplus O_{2}^{(2)} \oplus O_{3}^{(3)} \oplus O_{4}^{(4)} \oplus O_{7}^{(6)} \oplus O_{6}^{(7)} \oplus O_{5}^{(8)}\right)$
9. $O_{2}^{(10)} \leftarrow f_{2}\left(\tilde{K}_{2} \oplus \tilde{C}_{1} \oplus O_{3}^{(3)} \oplus O_{4}^{(4)} \oplus O_{8}^{(5)} \oplus O_{6}^{(7)} \oplus O_{5}^{(8)} \oplus O_{1}^{(9)}\right)$
10. $I_{3}^{(11)} \leftarrow \tilde{K}_{1} \oplus C_{1} \oplus C_{3} \oplus I_{1}^{(1)} \oplus O_{1}^{(1)} \oplus O_{2}^{(2)} \oplus O_{4}^{(4)} \oplus O_{8}^{(5)} \oplus O_{7}^{(6)} \oplus O_{5}^{(8)} \oplus O_{1}^{(9)} \oplus O_{2}^{(10)}$

We see that the above steps run with seven computations of f_{i} functions.
In the proof of Lemma 4, one can run Steps 1, 2, and 3 without using \tilde{K}_{1}. Therefore, one possible implementation is to search 2^{52} values of $\left(I_{8}^{(5)}, \tilde{K}_{1}\right)$ by searching 2^{20} values of $I_{8}^{(5)}$, and for each value of $I_{8}^{(5)}$, we first run Steps 1, 2, and 3 and then search all the 2^{32} possible values of \tilde{K}_{1}. Then the main cost of running the algorithm becomes 5×2^{52} computations of f_{i} functions assuming that 2^{26} computations of f_{i} functions can be ignored.

In order to derive both $O K_{1}$ and $O K_{2}$, we need to run the algorithm twice by changing the constant $\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$, and hence the time complexity of the algorithm is 10×2^{52} computations of f_{i} functions, which amount to running $2^{48.8}$ encryption functions as there are $96 f_{i}$ functions in the encryption function of 256 -bit key HyRAL. We note that the memory requirement of the algorithm is small.

Table 4. Summary of the implementation. The "Cores" column indicates the number of cores used in running the program

	System	Queue name	Cores	Search range of $I_{8}^{(5)}$	$\begin{aligned} & \text { Number of } \\ & \left(I_{8}^{(5)}, \tilde{K}_{1}\right) \end{aligned}$	Running time
$O K_{1}$	HX600	h1024	1024	0x00000000, ..., 0x0000ffff	2^{48}	8h 48min 56s
		h1024	1024	0x00010000, ..., 0x0001ffff	2^{48}	8h 28 min 4s
OK_{2}	FX1	f1024	1024	0x00000000, ..., 0x0003ffff	2^{50}	50h 36min 2 s
	FX1	f512	512	0x00040000, .., 0x0007ffff	2^{50}	92h 24 min 15 s
	HX600	h256	256	0x00080000, ..., 0x0009ffff	2^{49}	67 h 42 min 47 s
		h256	256	0x000a0000, .., 0x000bffff	2^{49}	67 h 29 min 1 s
		h256	256	0x000c0000, .., 0x000dffff	2^{49}	67 h 34 min 55 s
		h256	256	0x000e0000, .., 0x000fffff	2^{49}	67 h 29 min 57 s

5 Deriving Equivalent Keys

We have implemented our algorithm in Sect. 4.2 on a supercomputer system. The systems we used are the server systems called HX600 and FX1. HX600 has 96 nodes, which are equivalent to 384 CPUs or 1536 cores, it has a total of 6 TB of memory, and the CPU is AMD Opteron 8380 (4 cores, 2.5 GHz). FX1 has 768 nodes, which are equivalent to 768 CPUs or 3072 cores, it has 24 TB of memory, and CPU is SPARC64 VII (4 cores, 2.52 GHz). We used C language for the implementation of the algorithm, and MPI library for the message passing library for the parallel process execution.

The values of $\delta, I_{1}^{(1)}$, and $I_{7}^{(6)}$ that were used in the implementation are $\delta=0 \mathrm{xd} 7 \mathrm{~d} 7 \mathrm{~d} 0 \mathrm{~d} 7, I_{1}^{(1)}=0 \mathrm{x} 17170 \mathrm{c} 17$, and $I_{7}^{(6)}=0 \mathrm{x} 1717292 \mathrm{~b}$. For deriving $O K_{1}$, we searched 2^{17} values of $I_{8}^{(5)}$, and for each value of $I_{8}^{(5)}$, we searched all the 2^{32} possible values of \tilde{K}_{1}. The program was divided into two programs by halving the search range of $I_{8}^{(5)}$, and a total of 2^{49} values of $\left(I_{8}^{(5)}, \tilde{K}_{1}\right)$ were tested. For deriving $O K_{2}$, we searched 2^{20} values of $I_{8}^{(5)}$, and for each value of $I_{8}^{(5)}$, we searched all the 2^{32} possible values of \tilde{K}_{1}. The program was divided into six programs depending on the range of $I_{8}^{(5)}$, and a total of 2^{52} values of $\left(I_{8}^{(5)}, \tilde{K}_{1}\right)$ were tested. The summary of the implementation is in Table 4.

As a result, we have successfully derived one value of $O K_{1}$ and three values of $O K_{2}$. The values, together with the corresponding values of $I_{8}^{(5)}$ and \tilde{K}_{1}, are in Table 5

Table 5. Results of running the algorithm in Sect. 4.2

$O K_{1}$	0x2fd918837136d461f4bc99938907dd0b $\left(I_{8}^{(5)}=0 \times 00014 \mathrm{~b} 73, \tilde{K}_{1}=0 \times d b 658110\right)$
OK_{2}	0xa20ed0f467141b2a3b038abb5f61d59e ($\left.I_{8}^{(5)}=0 \times 0005 \mathrm{~b} 394, \tilde{K}_{1}=0 \mathrm{x} 990 \mathrm{~d} 5 \mathrm{a} 4 \mathrm{f}\right)$
	0xe3a1902aa60b6c3582a9131527d43b2f ($\left.I_{8}^{(5)}=0 \times 000 f 8 \mathrm{a} 7 \mathrm{f}, \tilde{K}_{1}=0 \times 6108833 \mathrm{f}\right)$
	0x3218a5b25828a0b7d2122283894cc63b ($\left.I_{8}^{(5)}=0 \times 000 f 9953, \tilde{K}_{1}=0 \times 000 a 8731\right)$

For $\delta=0 \mathrm{xd} 7 \mathrm{~d} 7 \mathrm{~d} 0 \mathrm{~d} 7, \Delta O K_{1}=\Delta O K_{2}=(\delta, \delta, \delta, \delta)$, and $O K_{1}$ and $O K_{2}$ in Table [5. $\left(K, K^{\prime}\right)$ in (4) are all equivalent keys, which can be verified by the reference code available in [6].

6 Discussions

The existence of equivalent keys generally implies that the cipher is theoretically cryptanalyzed, as the time complexity of the brute-force attack becomes less than the time complexity implied by its key length. As there are $2^{50.0}$ pairs of equivalent keys in 256 -bit key HyRAL, the search space of the brute-force attack is reduced from 2^{256} to $2^{256}-2^{50.0}$. Although the fraction of equivalent keys, $2^{51.0}$, compared to 2^{256} is small, as a practical implication of identifying equivalent keys, in the rest of this section, we discuss well known observations that one can obtain collisions on the Davies-Meyer compression function based on 256-bit key HyRAL, and on the Merkle-Damgård hash function based on the compression function.

The Davies-Meyer Compression Function. Let $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a blockcipher with k-bit keys and an n-bit block. The Davies-Meyer compression function $h:\{0,1\}^{n+k} \rightarrow\{0,1\}^{n}$, one of the standard constructions of a compression function, is defined as $h(H, M)=E_{M}(H) \oplus H$.

Let E be 256-bit key HyRAL. If we let $\left(M, M^{\prime}\right)$ be one of the equivalent keys $\left(K, K^{\prime}\right)$ in (4), then for any $H \in\{0,1\}^{128}$, we have $h(H, M)=h\left(H, M^{\prime}\right)$. Therefore, for each equivalent keys (K, K^{\prime}) in (4), one can generate 2^{128} different collisions $\left((H, M),\left(H, M^{\prime}\right)\right)$ on h.

The Merkle-Damgård Hash Function. Let $h:\{0,1\}^{n+k} \rightarrow\{0,1\}^{n}$ be a compression function. The Merkle-Damgård hash function $\mathcal{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ is the construction of a hash function from h, and is defined as follows. Let $H_{0} \in\{0,1\}^{n}$ be a fixed initial value. For an input string $M \in\{0,1\}^{*}$, let $\tilde{M} \in\{0,1\}^{m n}$ be the padded string in a standard and appropriate way, and let $\left(M_{1}, M_{2}, \ldots, M_{m}\right) \stackrel{n}{\leftarrow} \tilde{M}$ be its partition into n-bit strings. The hash value $\mathcal{H}(M)$ is $H_{m} \in\{0,1\}^{n}$, where $H_{i} \leftarrow h\left(H_{i-1}, M_{i}\right)$ for $i=1,2, \ldots, m$.

Let E be 256 -bit key HyRAL, h be the Davies-Meyer compression function based on E, and \mathcal{H} be the Merkle-Damgård hash function based on h. Let $M, M^{\prime} \in\left\{K, K^{\prime}\right\}^{m}$ be bit strings such that $M \neq M^{\prime}$, where $\left(K, K^{\prime}\right)$ is any equivalent keys in (4). Assume that the standard padding is used, e.g., appending a bit " 1 " and then bits " 0 " followed by the encoding of the length of the input, then we have $\mathcal{H}(M)=\mathcal{H}\left(M^{\prime}\right)$ and hence we obtain a collision on \mathcal{H}.

For example, for $m=3,\left(M, M^{\prime}\right)=\left((K, K, K),\left(K^{\prime}, K^{\prime}, K^{\prime}\right)\right),\left(\left(K, K, K^{\prime}\right)\right.$, $\left.\left(K^{\prime}, K^{\prime}, K\right)\right),\left(\left(K, K^{\prime}, K\right),\left(K^{\prime}, K, K^{\prime}\right)\right)$, and $\left(\left(K, K^{\prime}, K^{\prime}\right),\left(K^{\prime}, K, K\right)\right)$ all satisfy $\mathcal{H}(M)=\mathcal{H}\left(M^{\prime}\right)$. Similarly, when M and M^{\prime} are m blocks in length, we obtain 2^{m-1} different collisions.

7 Summary

We presented the analysis of 256-bit key HyRAL in terms of equivalent keys. We showed that there are $2^{50.0}$ pairs of equivalent keys, leading to the theoretical cryptanalysis of the cipher as a blockcipher with 256 -bit keys. We also developed the algorithm to derive an instance of equivalent keys, and demonstrated that we were able to derive concrete instances with the current computing environment.

Acknowledgments. The experiment in Sect. 5 was conducted using a supercomputer system at Information Technology Center, Nagoya University. The authors would like to thank Hideki Ando for advice on the experiment. This work was supported in part by CRYPTREC and in part by MEXT KAKENHI, Grant-in-Aid for Young Scientists (A), 22680001.

References

1. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31 Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12-23. Springer, Heidelberg (1999)
2. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J. Cryptology 4(1), 3-72 (1991)
3. Cryptography Research and Evaluation Committees (CRYPTREC), http://www.cryptrec.go.jp/english/index.html
4. Cryptography Research and Evaluation Committees (CRYPTREC): CRYPTREC Report, Report of the Scheme Committee (2010) (in Japanese), http://www.cryptrec.go.jp/english/report.html
5. Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher SQUARE. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149-165. Springer, Heidelberg (1997)
6. Hirata, K.: Submission Documents of HyRAL to the CRYPTREC Project (2010), http://www.cryptrec.go.jp/english/topics/
cryptrec_20101001_callforattack.html
7. Hirata, K.: The 128bit Block Cipher HyRAL (Hybrid Randomization Algorithm): Common Key Block Cipher. In: Proceedings of the 2010 International Symposium on Intelligence Information Processing and Trusted Computing, IPTC 2010, pp. 9-14. IEEE Computer Society, Washington, DC (2010), http://dx.doi.org/10.1109/IPTC.2010.179
8. Hirata, K.: The 128bit Blockcipher HyRAL. In: The 2010 Symposium on Cryptography and Information Security, 1D1-1, SCIS 2010 (2010) (in Japanese)
9. Igarashi, Y., Takagi, Y., Kaneko, T.: Security Evaluation of HyRAL against Linear Cryptanalysis. In: The 2010 Symposium on Cryptography and Information Security, 1D1-3, SCIS 2010 (2010) (in Japanese)
10. Inoue, T., Kaneko, T.: Security Evaluation of HyRAL against Boomerang Attack. IEICE Tech. Rep. 111(142), 1-6 (2011) (in Japanese); IT 2011-07-14
11. Iwata, T.: Security Evaluation Report of HyRAL. In: Technical Report of CRYPTREC, Investigation Reports Related to Cryptographic Techniques in FY 2010 (2011) (in Japanese)
12. Knudsen, L.R.: Cryptanalysis of LOKI. In: Matsumoto, T., Imai, H., Rivest, R.L. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 22-35. Springer, Heidelberg (1993)
13. Knudsen, L.R.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196-211. Springer, Heidelberg (1995)
14. Lai, X.: Higher Order Derivatives and Differential Cryptanalysis. In: Blahut, R.E., Massey, J.L. (eds.) Communications and Cryptography: Two Sides of One Tapestry, pp. 227-233. Kluwer Academic Publishers, Norwell (1994)
15. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386-397. Springer, Heidelberg (1994)
16. Matsui, M.: The First Experimental Cryptanalysis of the Data Encryption Standard. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1-11. Springer, Heidelberg (1994)
17. Shibayama, N., Igarashi, Y., Kaneko, T., Hangai, S.: Impossible Differential Attack on HyRAL. In: Forum on Information Technology, L-022 (2010) (in Japanese)
18. Shibayama, N., Igarashi, Y., Kaneko, T., Hangai, S.: On Impossible Differential of HyRAL Using MDS Characteristic. In: The 2010 IEICE Engineering Sciences Society Conference, A-7-8 (2010) (in Japanese)
19. Shibayama, N., Igarashi, Y., Kaneko, T., Hangai, S.: Security Evaluation of HyRAL against Saturation Cryptanalysis. In: The 33rd Symposium on Information Theory and its Applications, SITA 2010, 10.1 (2010) (in Japanese)
20. Shibayama, N., Igarashi, Y., Kaneko, T., Hangai, S.: Higher Order Differential Attack on HyRAL. IEICE Tech. Rep. 110(443), 341-347 (2011) (in Japanese); ISEC 2010-123
21. Shibayama, N., Igarashi, Y., Kaneko, T., Hangai, S.: Security Evaluation of HyRAL against Saturation Cryptanalysis (II). IEICE Tech. Rep. 111(123), 103-109 (2011) (in Japanese); ISEC 2011-19
22. Shibayama, N., Kaneko, T., Hangai, S.: New Saturation Characteristics of HyRAL. IEICE Tech. Rep. 111(455), 53-60 (2012) (in Japanese); ISEC 2011-81
23. Taga, B., Tanaka, H.: Higher Order Differential Characteristics of HyRAL. In: The 2011 Symposium on Cryptography and Information Security, 2B2-2, SCIS 2011 (2011) (in Japanese)
24. Takagi, Y., Igarashi, Y., Kaneko, T.: Security Evaluation of HyRAL against Differential Attack. In: The 2010 Symposium on Cryptography and Information Security, 1D1-2, SCIS 2010 (2010) (in Japanese)
25. Yamaguchi, Y., Shibayama, N., Kaneko, T.: Higher Order Differential Property of HyRAL (II). In: The 2012 Symposium on Cryptography and Information Security, 1C3-4, SCIS 2012 (2012) (in Japanese)
26. Yamaguchi, Y., Igarashi, Y., Kaneko, T.: Higher Order Differential Property of HyRAL. In: The 63rd Joint Conference of Electrical and Electronics Engineers in Kyushu, 02-1A-06 (2010) (in Japanese)
27. Youm, H.Y., Song, J.H., Lee, S.Y.: Security Analysis of HyRAL. In: Technical Report of CRYPTREC, Investigation Reports Related to Cryptographic Techniques in FY 2010 (2011)

A Details of f_{1}, \ldots, f_{8} Functions

We present the details of the specification of f_{1}, \ldots, f_{8} functions that were omitted from Sect. 2 .
f_{1}, \ldots, f_{8} functions are permutations over $\{0,1\}^{32}$. For a given input $I=$ $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in\{0,1\}^{32}, f_{i}$ function generates the output as follows.

1. Let $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \leftarrow T_{i}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$.
2. Let $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \leftarrow\left(S\left(x_{1}\right), S\left(x_{2}\right), S\left(x_{3}\right), S\left(x_{4}\right)\right)$.
3. Compute ($o_{1}, o_{2}, o_{3}, o_{4}$) by

$$
\left(\begin{array}{l}
o_{1} \\
o_{2} \\
o_{3} \\
o_{4}
\end{array}\right) \leftarrow\left(\begin{array}{llll}
0 \mathrm{x} 03 & 0 \mathrm{x} 03 & 0 \mathrm{x} 02 & 0 \mathrm{x} 01 \\
0 \mathrm{x} 01 & 0 \mathrm{x} 02 & 0 \mathrm{x} 02 & 0 \mathrm{x} 02 \\
0 \mathrm{x} 07 & 0 \mathrm{x} 03 & 0 \mathrm{x} 01 & 0 \mathrm{x} 02 \\
0 \mathrm{x} 07 & 0 \mathrm{x} 04 & 0 \mathrm{x} 05 & 0 \mathrm{x} 03
\end{array}\right) \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) \oplus\left(\begin{array}{c}
0 \mathrm{x} 11 \\
0 \mathrm{x} 22 \\
0 \mathrm{x} 44 \\
0 \mathrm{x} 88
\end{array}\right),
$$

where the arithmetic is over $\operatorname{GF}\left(2^{8}\right)$ defined by the irreducible polynomial $p(x)=x^{8}+x^{4}+x^{3}+x+1$.
4. The output is $O=\left(o_{1}, o_{2}, o_{3}, o_{4}\right)$.
T_{i} function is defined in Table 6. The S-box S is the composition of an affine mapping over $\mathrm{GF}(2)$ and the inversion over $\mathrm{GF}\left(2^{8}\right)$. Table 7 shows the input and output of the S-box. The values are in hexadecimal form. The input x is regarded as two hexadecimal digits, and if the first digit is i and the last is j, then the output is a value written in the i-th row and j-th column. For example, $S(0 \times 12)=0 \times 06$.

Table 6. T_{i} function
Table 7. S-box S

i	$T_{i}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
1	$\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
2	$\left(x_{2}, x_{3}, x_{4}, x_{1}\right)$
3	$\left(x_{3}, x_{4}, x_{1}, x_{2}\right)$
4	$\left(x_{4}, x_{1}, x_{2}, x_{3}\right)$
5	$\left(x_{4}, x_{3}, x_{2}, x_{1}\right)$
6	$\left(x_{3}, x_{2}, x_{1}, x_{4}\right)$
7	$\left(x_{2}, x_{1}, x_{4}, x_{3}\right)$
8	$\left(x_{1}, x_{4}, x_{3}, x_{2}\right)$

[^0]: F. Bao, P. Samarati, and J. Zhou (Eds.): ACNS 2012, LNCS 7341, pp. 257-274 2012.

