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Abstract. We extend the work of Bellare, Boldyreva and Staddon on the system-
atic analysis of randomness reuse to construct multi-recipient encryption schemes
to the case where randomness is reused across different cryptographic primitives.
We find that through the additional binding introduced through randomness reuse,
one can actually obtain a security amplification with respect to the standard black-
box compositions, and achieve a stronger level of security. We introduce stronger
notions of security for encryption and signatures, where challenge messages can
depend in a restricted way on the random coins used in encryption, and show that
two variants of the KEM/DEM paradigm give rise to encryption schemes that
meet this enhanced notion of security. We obtain the most efficient signcryption
scheme to date that is secure against insider attackers without random oracles.
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1 Introduction

Signcryption is a cryptographic primitive that aims to simultaneously provide the guar-
antees of public-key encryption and signature schemes [17], i.e., confidentiality, in-
tegrity, authentication and possibly non-repudiation, whilst offering efficiency gains.
One trivial way to obtain the signcryption functionality—if one is not interested in sav-
ing computational power or bandwidth—is to use a black-box combination of the two
primitives. This approach was systematically studied by An, Dodis and Rabin [2], by
looking at Encrypt-then-Sign (EtS), Sign-then-Encrypt (StE) and Encrypt-and-Sign
(EaS) compositions. The former two constructions are natural sequential composi-
tions of the two primitives, whereas EaS is a parallel composition using a commitment
scheme to enforce the necessary binding. A well-known, albeit surprising, result in [2]
is that the interaction between the signature and encryption primitives can work against
the security of the composition, making it impossible to achieve the strongest levels of
security, even when the underlying encryption and signature schemes are themselves
strongly secure. For example, in an StE construction an attacker knowing the secret
key of the receiver is always able to forge valid signcryptions simply by decrypting
and re-encrypting the contents of a legitimately generated ciphertext, regardless of the
security guarantees provided by the underlying signature scheme: this translates into a
trivial break of unforgeability against insider attackers in the signcryption setting.
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One general approach to obtaining efficiency gains in cryptography is to reuse ran-
domness across instantiations of various cryptographic algorithms. This technique can
allow for significant savings in processing load and bandwidth, as partial results (and
even ciphertext elements) can be shared between multiple instances of cryptographic
algorithms. For this reason, randomness reuse is frequently used in the context of batch
encryption operations where (possibly different) messages are encrypted to multiple
recipients, as recognized by Kurosawa [11] in the construction of multi-recipient en-
cryption schemes. Furthermore, randomness reuse is also used as an optimization tech-
nique, in an ad-hoc way, in the construction of signcryption schemes [17,16]. Neverthe-
less, this avenue must be pursued with caution, since randomness reuse may, of course,
hinder the security of the resulting cryptographic schemes.

Bellare et al. [3], building on the work of Kurosawa [11], systematically study the
problem of reusing randomness in multi-recipient encryption. The authors consider the
particular case of constructing such schemes by running multiple instances of a public-
key encryption (PKE) scheme, whilst sharing randomness across them. An interesting
result in this work is a general method for identifying PKE schemes that are secure
when used in this scenario. Schemes which satisfy the so-called reproducibility test
permit establishing the security for multiple recipients with randomness reuse through
a variant of the hybrid argument.

OUR CONTRIBUTIONS. In this paper we extend the work of Bellare et al. [3] to the case
where randomness is reused across different cryptographic primitives, and analyze the
security of signcryption schemes constructed by composing encryption and signature
schemes under randomness reuse. More in detail, our contributions are the following:

– We define a compatibility notion that establishes classes of signature and encryption
schemes that can be composed under randomness reuse to obtain correct signcryp-
tion schemes. We then identify security properties that are sufficient for the EtS and
StE compositions with randomness reuse to result in secure signcryption schemes.
In particular, we introduce the notion of randomness-dependent security for both
signatures and encryption schemes. Intuitively, security must be preserved when
the messages chosen by attackers are allowed to depend (in a restricted way) on the
implicit randomness input to the underlying cryptographic algorithms. We believe
these security notions may be of independent interest in the study of the role of ran-
domness in cryptographic security and, particularly, in the generic analysis of ran-
domness reuse optimizations for scenarios where multiple (possibly heterogenous)
cryptographic operations are carried out in a batch procedure (e.g., optimizing the
overall performance of a server continuously carrying out key agreement, signature
and encryption operations).

– We find that through the additional binding that is established via the reuse of ran-
domness, it is possible to achieve full insider security. Our results hold in the dy-
namic multi-user setting, although in some cases we require adversaries to register
the full key pairs of all users created for the attack. This is usually called the reg-
istered key model [13] and it captures natural restrictions in many PKI settings.
This is a security amplification with respect to the equivalent compositions without
randomness reuse, in which it is not possible to achieve this level of security, even
starting from underlying schemes providing the same security guarantees we
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require for our results. In other words, our results depend in an essential way on
reusing randomness, and it is not the case that a standard composition of randomness-
dependent secure signature and encryption schemes trivially yields a comparable
result. In this respect, our work generalizes independent work in the same direction
presented in [13], and that we contextualize in Section 2.

– We identify a set of simple and natural properties of KEMs and DEMs that suf-
fice to ensure that PKE schemes constructed from both variants of the KEM/DEM
composition paradigm proposed in [9,10] fall within our framework. As a particular
case, when the Kurosawa–Desmedt [12] encryption scheme is composed with the
Boneh–Boyen signature scheme [6] in the StE construction, we obtain the most
efficient signcryption scheme to be proven insider secure in the standard model.
One caveat is that our results hold only in the registered key model. In compensa-
tion, our scheme offers non-repudiation, inherited from the StE construction, and
a combination of computational and communication (bandwidth) efficiency that
outperforms previous solutions.

STRUCTURE OF THE PAPER. In the next section we review the related work in more
detail (a more extensive discussion can be found in the full version of the paper). Then,
in Section 3 we settle notation by introducing the standard syntax, correctness and se-
curity definitions for signature, encryption and signcryption schemes. In Section 4 we
describe the properties that are sufficient for the EtS and StE compositions to yield se-
cure signcryption schemes under randomness reuse, and prove the corresponding com-
position theorems. Finally, in Section 5 we describe the potential instantiations of our
framework and compare our scheme with existing results.

2 Related Work
Matsuda et al. [13] and Chiba et al. [8] systematically study the construction of sign-
cryption schemes using compositions of standard cryptographic primitives, aiming to
obtain levels of efficiency and security that are comparable to the best concrete schemes
in the literature via generic constructions. Independently of our work, Matsuda et al. [13]
show how to perform compositions of tag-based KEMs and signature schemes to obtain
efficiency gains in an StE-like construction via randomness reuse. They also describe
a series of schemes that can be used to instantiate these constructions. The resulting
compositions are efficient and achieve full insider security, with the caveat that strong
unforgeability can only be proven in a slightly weaker model, where the adversary must
register the secret keys for the public keys it chooses to query to the signcryption oracle.
Our results have the same limitation.

The main differences between our work and the approach in [13] are the follow-
ing. Our results are more general in that they consider the composition of encryption
schemes and signature schemes under randomness reuse, rather than lower level prim-
itives. On one hand, this sets our results as natural extensions to the work by An et
al. [2] on signature and encryption compositions, and also of the work of Bellare et
al. [3], allowing us to establish a connection between the two results. On the other
hand, our results capture the ones included in [13] on randomness reuse for the con-
struction of signcryption schemes as particular cases, and cover a broader class of con-
structions. More precisely, our compatibility framework and security results apply to
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general encryption schemes, rather than those specifically constructed from tag-based
KEMs. This allows us to capture not only schemes constructed using a specific flavor
of tag-KEMs [13], but also encryption schemes constructed from other known variants
of the KEM/DEM paradigm [9,10], and even schemes that do not follow this paradigm.

Chiba et al. [8] propose the first fully secure signcryption schemes in the standard
model by using a variant of the StE construction that relies on a chosen-ciphertext-
secure tag-based KEM, a chosen-ciphertext-secure DEM that has a “one-to-one” prop-
erty, and a strongly unforgeable signature scheme. Such schemes are less efficient than
the one we propose, but are proven secure without the key registration requirement.

3 Preliminaries

NOTATION. We write a ← b to denote the algorithmic action of assigning the value
of b to the variable a. We use ⊥/∈ {0, 1}� to denote special failure symbol. If S is a
set, we write a←$ S for sampling a from S uniformly at random. If A is a probabilis-
tic algorithm we write a←$ A(i1, i2, . . . , in) for the action of running A on inputs
i1, i2, . . . , in with random coins, and assigning the result to a. Sometimes we runA on
specific coins r and write a← A(i1, i2, . . . , in; r).
GAMES. In this paper we use the code-based game-playing language [4]. Each game
has an Initialize and a Finalize procedure. It also has specifications of procedures to
respond to an adversary’s various queries. A game is run with an adversaryA as follows.
First Initialize runs and its outputs are passed toA. ThenA runs and its oracle queries
are answered by the procedures of the game. WhenA terminates, its output is passed to
Finalize which returns the outcome of the game. In each game, we restrict attention to
legitimate adversaries, which is defined specifically for each game. We use lists as data
structures to keep relevant state in the games. The empty list is represented by square
brackets [ ]. We denote by List← a : List the action of appending element a to the head
of a list List.

PUBLIC-KEY ENCRYPTION. A public-key encryption scheme E = (EGen,Enc,Dec) is
specified by three polynomial-time algorithms (in the length of their inputs) associated
with a message spaceM and a randomness spaceR.

– EGen(1λ) is the probabilistic key-generation algorithm, taking as input the security
parameter and returning a secret key sk and a public key pk.

– Enc(m, pk; r) is the probabilistic encryption algorithm. On input a message m ∈
M, a public key pk, and possibly some random coins r ∈ R, this algorithm outputs
a ciphertext c.

– Dec(c, sk) is the deterministic decryption algorithm. On input of a ciphertext c and
a key sk, this algorithm outputs a message m or failure symbol⊥.

The correctness of a public-key encryption scheme requires that for any λ ∈ N, any
(sk, pk)←$ EGen(1λ), any m ∈ M, and any random coins r ∈ R, we have that
Dec(Enc(m, pk; r), sk) = m.

The standard notion of security for a public-key encryption scheme considered here
is indistinguishability under chosen-ciphertext attacks (IND-CCA). We refer the inter-
ested reader to the full version of the paper for a formal definition.
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DIGITAL SIGNATURE. A signature scheme S = (SGen, Sign,Verify) is specified by
three polynomial-time algorithms with a randomness spaceR and a message spaceM.

– SGen(1λ) is the probabilistic key-generation algorithm which takes as input the
security parameter and returns a secret key sk and a public key pk.

– Sign(m, sk; r) is the probabilistic signature generation algorithm. On input a mes-
sage m, a secret key sk, and possibly some random coins r ∈ R, this algorithm
outputs a signature σ.

– Verify(m, σ, pk) is the deterministic signature verification algorithm. On input of
a signature σ, a message m and a public key pk, this algorithm outputs a boolean
value T or F.

The correctness of a signature scheme requires that for any λ ∈ N, anym ∈ {0, 1}�, any
(sk, pk)←$ SGen(1λ), and any r ∈ R, we have that Verify(Sign(m, sk; r),m, pk) = T.

The standard notion of security for a digital signature scheme considered in this
paper is strong existential unforgeability under chosen-message attacks (sUF-CMA).
We refer the interested reader to the full version of the paper for a formal definition.

SIGNCRYPTION. A signcryption scheme SC = (Gen, Signcrypt,Unsigncrypt) is spec-
ified by three polynomial-time algorithms associated with a message space M and a
randomness spaceR.

– Gen(1λ) is the probabilistic key-generation algorithm which takes as input the se-
curity parameter and returns a secret key sk and a matching public key pk. Unless
one wishes to signcrypt a message to oneself, two key pairs are required to sign-
crypt and unsigncrypt.

– Signcrypt(m, skS , pkR; r) is the probabilistic signcryption algorithm. On input a
message m ∈ M, the sender’s secret key skS , the receiver’s public key pkR, and
possibly some random coins r ∈ R, this algorithm outputs a signcryption c.

– Unsigncrypt(c, pkS , skR) is the deterministic unsigncryption algorithm. On input a
signcryption c, the sender’s public key pkS , and the receiver’s secret key skR, this
algorithm outputs a message m or failure symbol⊥.

The correctness of a signcryption scheme requires that for any m ∈ M, any λ ∈ N, any
(skS , pkS)←$ Gen(1λ), any (skR, pkR)←$ Gen(1λ), and any random coins r ∈ R,
we have Unsigncrypt(Signcrypt(m, skS , pkR; r), pkS , skR) = m. We consider here the
strong notion of confidentiality, introduced by [16], in which the adversary is allowed
to choose without restrictions pkS to query to the Unsigncrypt oracle. The adver-
sary may also choose the challenge key pair (skS , pkS), but the key pair is required
to be valid. Analogously to IND-CCA for encryption, LoR oracle can only be called
once. We refer to this model as dynamic multi-user indistinguishability against insider
chosen-ciphertext attacks (IND-iCCA).

Definition 1. A signcryption scheme is IND-iCCA secure if, for every legitimate PPT
adversary A, the following definition of advantage is negligible in λ

AdvIND-iCCA
SC,A (λ) := 2 · Pr[IND-iCCASC,A(1λ)⇒ T]− 1 ,

where game IND-iCCASC,A described in Figure 1.
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procedure Initialize(1λ):

(skR, pkR)←$ Gen(1λ)
b←$ {0, 1}
List← [ ]
Return (pkR)

procedure Finalize(b′):
Return (b = b′)

procedure LoR(m0,m1, (skS , pkS)):
c←$ Signcrypt(mb, skS , pkR)
List← (c, pkS) : List
Return c

procedure Unsigncrypt(c, pkS):
m← Unsigncrypt(c, pkS , skR)
Return m

Fig. 1. Game IND-iCCA for a signcryption SC = (Gen, Signcrypt,Unsigncrypt). An adversary
A is legitimate if: 1) it calls LoR once, with m0,m1 ∈ M and |m0| = |m1|, and a valid key
pair (skS, pkS); and 2) it does not query Unsigncrypt with (c, pkS) ∈ List.

We also define dynamic multi-user strong existential unforgeability against insider cho-
sen message attacks for authenticity, but in a slightly weaker model that obliges the
adversary to register a key pair (skR, pkR) before querying the Signcrypt oracle or
Finalize with pkR. For this purpose, a Key-Reg oracle is also available. This model
is called sUF-iCMA, for short.

Definition 2. A signcryption scheme is sUF-iCMA secure if, for every legitimate PPT
adversary A, the following definition of advantage is negligible in λ

AdvsUF-iCMA
SC,A (λ) := Pr[sUF-iCMASC,A(1λ)⇒ T] ,

where game sUF-iCMASC,A described in Figure 2.

procedure Initialize(1λ):

(skS , pkS)←$ Gen(1λ)
List← [ ]
List′ ← [ ]
Return pkS

procedure Signcrypt(m, pkR):
If (�, pkR) ∈ List′

c←$ Signcrypt(m, skS , pkR)
List← (c, pkR) : List
Return c

Else Return⊥

procedure Key-Reg(sk, pk):
If isValid(sk, pk)

List′ ← (sk, pk) : List′

Return T
Else Return F

procedure Finalize(c, pkR):
If (c, pkR) ∈ List Return F
If (skR, pkR) ∈ List′

m← Unsigncrypt(c, pkS , skR)
If m �=⊥ Return T

Return F

Fig. 2. Game sUF-iCMA for a signcryption SC = (Gen,Signcrypt,Unsigncrypt)

REMARK. We assume one can confirm the validity of a key pair using an efficient algo-
rithm isValid, which is usually the case for practical schemes. Under this assumption,
one could omit the key pair validity restriction in the adversary legitimacy definition
in the IND-iCCA security model, and require the signcryption algorithm to internally
check for sender key pair validity. This does not apply to the key registration oracle in
the unforgeability game, as this is conditioning the adversary to provide valid key pairs
for the receivers (note that this check cannot be done internally by the signcryption al-
gorithm). However, one could remove the validity check restriction in Finalize, and
require that the unsigncryption algorithm does check for receiver key pair validity.
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4 Compositions with Randomness Reuse

In this section we look at black-box compositions of signature and encryption under ran-
domness reuse. We describe properties that are sufficient for the encrypt-then-sign and
sign-then-encrypt constructions with shared randomness to yield secure signcryption
schemes, and prove the corresponding composition theorems. Our proposed framework
gives rise to signcryption schemes that attain full insider security in dynamic multi-user
models. We defer a discussion on instantiability to Section 5.

4.1 Composition-Enabling Properties

PARTITIONED SCHEMES, COMPATIBILITY, AND CONDITIONAL INJECTIVITY. The no-
tion of joint signature and encryption in the public-key setting with randomness reuse
implies that the signature and encryption algorithms share the same randomness space.
In order to clarify the concept and simplify the security proofs, we will restrict our
attention to partitioned schemes [7]. Furthermore, to enable composition under ran-
domness reuse, we also require the signature and encryption schemes to be compatible.
We formalize these notions next.

Definition 3 (Partitioned schemes). We say a signature scheme is partitioned, if its
signature space is composed of pairs (σ,R), where the signature generation algorithm
calculates R independently of the input message and keys. More precisely, we require
that experiment IndepS in Figure 3 returns T with probability 1 for all messages m0

and m1 in the appropriate space. Similarly, an encryption scheme is partitioned, if its
ciphertext space is composed of pairs (c,R) and experiment IndepE in Figure 3 returns
T with probability 1 for all messages m0 and m1 in the appropriate space.

Definition 4 (Compatibility). A signature scheme S and an encryption scheme E are
compatible if they are partitioned, share the same random spaceR, and the experiment
Compatibility in Figure 3 returns T with probability 1 for any messages m0 and m1

in the appropriate spaces.

test IndepS(m0,m1):

(sk0, pk0)←$ SGen(1λ)
(sk1, pk1)←$ SGen(1λ)
r ←$ R
(σ0,R0)← Sign(m0, sk0; r)
(σ1,R1)← Sign(m1, sk1; r)
Return (R0 = R1)

test IndepE(m0,m1):

(sk0, pk0)←$ EGen(1λ)
(sk1, pk1)←$ EGen(1λ)
r←$ R
(c0,R0)← Enc(m0, pk0; r)
(c1,R1)← Enc(m1, pk1; r)
Return (R0 = R1)

test CompatibilityS,E(m0,m1):

(sk0, pk0)←$ SGen(1λ)

(sk1, pk1)←$ EGen(1λ)
r ←$ R
(σ,R0)← Sign(m0, sk0; r)
(c, R1)← Enc(m1, pk1; r)
Return (R0 = R1)

Fig. 3. Partitioning and compatibility tests for a partitioned signature S = (SGen,Sign,Verify),
and a partitioned public-key encryption E = (EGen,Enc,Dec)

Finally, we also require the following injectivity properties in partitioned schemes,
which essentially state that, once the randomness dependent component R is fixed, and
for any fixed key pair, the signature generation and encryption algorithms become in-
jective mappings from the message space onto the signature and ciphertext spaces, re-
spectively. We observe that these properties can be relaxed to computational hardness
assumptions, and all our results still go through.
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Definition 5 (Conditional injectivity). We say a partitioned signature scheme is con-
ditionally injective if for all key pairs (sk, pk), all messages m and signatures (σ,R) in
the appropriate spaces, it holds that:

Sign(m, sk) = (σ,R) ∧ σ �= σ′ ⇒ Verify(m, (σ′,R), pk) = F.

We say a partitioned encryption scheme is conditionally injective if for all key pairs
(sk, pk), messages m and ciphertexts (c,R) in the appropriate spaces, it holds that:

Enc(m, pk) = (c,R) ∧ c �= c′ ⇒ Dec((c′,R), sk) �= m.

REPRODUCIBILITY. Following the approach of Bellare et al. [3], we introduce new
notions of reproducibility that allow identifying encryption and signature schemes for
which it is possible to prove that randomness reuse does not hurt the security of com-
positions.

Definition 6 (Reproducibility). We say that a signature scheme is reproducible if there
exists a deterministic polynomial-time reproduction algorithm RepS (resp. RepE ) tak-
ing a message, a secret key, and a value R such that experiment RepS (resp. RepE ) in
Figure 4 returns T with overwhelming probability for all messages m in the appropriate
space.

test RepS(m):

(sk, pk)←$ SGen(1λ)
r ←$ R
(σ,R)← Sign(m, sk; r)
σ′ ←$ RepS(m, sk,R)
Return (σ = σ′)

test RepE (m):

(sk, pk)←$ EGen(1λ)
r ←$ R
(c,R)← Enc(m, pk; r)
c′ ←$ RepE (m, sk,R)
Return (c = c′)

Fig. 4. Reproducibility test for a partitioned signature S = (SGen,Sign,Verify) with repro-
ducibility algorithm RepS , and a partitioned public-key encryption E = (EGen,Enc,Dec) with
reproducibility algorithm RepE

Intuitively, the schemes are reproducible if it is possible to reconstruct a valid signa-
ture (resp. ciphertext) without having explicit access to the random coins, but instead
having access to the secret key. We note that this property seems natural for encryption
schemes, where knowledge of the secret key may “compensate” for the lack of knowl-
edge of the implicit randomness. As for signature schemes, this property may seem
less natural, as the reproducibility algorithm should be able to produce valid signatures,
while having access to apparently less information than the signature generation algo-
rithm itself. However, one can easily see that if R = r, then a signature scheme is triv-
ially reproducible. Furthermore, Matsuda et al. [13] present various (standard model)
signature schemes that, not having this characteristic, are shown to be reproducible. We
note that our formalization defines reproducibility as a property of a single scheme, and
not as a property of a pair of schemes. We see this as an important definitional choice
in ensuring that our framework can be extended to reason about randomness reuse be-
tween other cryptographic primitives.
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4.2 Security under Randomness-Dependent Attacks

We introduce two new attack models, one for encryption and one for digital signatures.
In a nutshell, these models allow messages queried by the adversaries to the relevant
oracles to depend on the randomness component R, so this is provided to the adversary
in advance. These models are specific for partitioned schemes and aimed at proving se-
curity under randomness reuse. We defer considerations on the feasibility of achieving
this level of security to the following section.

SECURITY OF ENCRYPTION UNDER RANDOMNESS-DEPENDENT ATTACKS. We de-
fine a new security model for encryption, which we call “indistinguishability under
randomness-dependent chosen-ciphertext attacks” (IND-RDA). This new model is sim-
ilar to IND-CCA except that the adversary receives the R component for the challenge
in the beginning of the game. To capture this notion of security, rather than partitioning
the encryption algorithm, we simply encrypt the fixed all-zeros message at the begin-
ning of the game, in order to obtain a pair (r,R). Note that, since R is guaranteed not to
depend on the message, we have that reusing r to produce the challenge ciphertext will
yield a consistent security game definition.

Definition 7. A public-key encryption scheme is IND-RDA secure if, for every legiti-
mate PPT adversary A, the following definition of advantage is negligible in λ

AdvIND-RDA
E,A (λ) := 2 · Pr[IND-RDAE,A(1λ)⇒ T]− 1 ,

where game IND-RDAE,A described in Figure 5.

procedure Initialize(1λ):
b←$ {0, 1}
List← [ ]

(sk, pk)←$ EGen(1λ)
r ←$ R
(c, R)← Enc(0, pk; r)
Return (pk,R)

procedure LoR(m0,m1):
(c,R)← Enc(mb, pk; r)
List← (c, R) : List
Return (c,R)

procedure Dec(c, R):
m← Dec((c, R), sk)
Return m

procedure Finalize(b′):
Return (b = b′)

Fig. 5. Game IND-RDA for a partitioned public-key encryption E = (EGen,Enc,Dec). An ad-
versary A is legitimate if: 1) it calls LoR once, with m0,m1 ∈ M and |m0| = |m1|; and 2) it
never calls Dec on (c,R) ∈ List.

SECURITY OF SIGNATURES UNDER RANDOMNESS-DEPENDENT ATTACKS. We also
introduce a new security notion for partitioned signature schemes, which we call “strong
unforgeability under randomness-dependent chosen message attacks” (sUF-RDA). This
new model is similar to sUF-CMA, with the caveat that calls to the Sign oracle are done
in two steps. On a first interaction, the adversary obtains the randomness component
for the signature scheme, and in the next step it provides the message on which the full
signature is generated.

Definition 8. A digital signature scheme is sUF-RDA secure if, for every legitimate
PPT adversary A, the following definition of advantage is negligible in λ

AdvsUF-RDA
S,A (λ) := Pr[sUF-RDAS,A(1λ)⇒ T] ,

where game sUF-RDAS,A described in Figure 6.
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procedure Initialize(1λ):

(sk, pk)←$ SGen(1λ)
List← [ ]
flag ← F
Return (pkS)

procedure Sign(m):
If flag = T

(σ,R)← Sign(m, sk; r)
List← (m, (σ,R)) : List
flag ← F
Return (σ,R)

Else
r ←$ R
(σ,R)← Sign(0, sk; r)
flag ← T
Return (⊥,R)

procedure Finalize(m, (σ,R)):
If (m, (σ,R)) /∈ List ∧ Verify(m, (σ,R), pk)

Return T
Else Return F

Fig. 6. Game sUF-RDA for a partitioned signature S = (SGen,Sign,Verify)

It is clear that the security notion IND-RDA implies IND-CCA, and that sUF-RDA im-
plies sUF-CMA. On the other hand, it is easy to find counterexamples showing that
IND-CCA does not imply IND-RDA, nor does sUF-CMA imply sUF-RDA: simply con-
struct a scheme based on an encryption/signature algorithm that returns the secret key
when the input message is a fixed function of (e.g., equal to) the randomness com-
ponent. We note that such counterexamples can be constructed even if the underly-
ing schemes are reproducible, which shows reproducibility is not sufficient to imply
randomness-dependent security.

4.3 Secure Compositions under Randomness Reuse

Let a digital signatureS and a public-key encryption E be two compatible schemes, with
randomness space R. Our first construction, denoted EtS and described in Figure 7,
produces a signcryption scheme from E and S in an encrypt-then-sign composition
with randomness reuse. Conversely, in the StE construction, E and S are used in a
sign-then-encrypt composition as shown in Figure 8, also with randomness reuse. We
observe that we adopt the strategy proposed by An et al. [2] to achieve security in the
multi-user model, by always including the receiver’s public key in the signed data, and
always including the sender’s public key in the encrypted payload, so that it can be
checked for consistency upon decryption1.

Gen(1λ):

(sk1, pk1)←$ SGen(1λ)
(sk2, pk2)←$ EGen(1λ)
(sk, pk)← ((sk1, sk2), (pk1, pk2))
Return (sk, pk)

Signcrypt(m, skS , pkS , pkR):
(sk1, sk2)← skS
(pk1, pk2)← pkR
r←$ R
(c,R)← Enc((m, pkS), pk2; r)
(σ,R)← Sign((c, R, pkR), sk1; r)
ĉ← (c, σ,R)
Return ĉ

Unsigncrypt(ĉ, pkS , skR, pkR):
(pk1, pk2)← pkS
(sk1, sk2)← skR
(c, σ,R)← ĉ
(m, pk′S)← Dec((c, R), sk2)
If Verify((c,R, pkR), (σ,R), pk1) ∧

pkS = pk′S Return m
Return⊥

Fig. 7. EtS construction with randomness reuse

The following theorems state the security guarantees provided by these constructions.
The proofs can be found in the full version of this paper.

1 The overhead of encrypting the public key can be greatly reduced by encrypting its image
under a collision-resistant hash function, or using an efficient tag-based PKE as proposed
in [13].
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Gen(1λ):

(sk1, pk1)←$ SGen(1λ)

(sk2, pk2)←$ EGen(1λ)
(sk, pk)← ((sk1, sk2), (pk1, pk2))
Return (sk, pk)

Signcrypt(m, skS , pkS , pkR):
(sk1, sk2)← skS
(pk1, pk2)← pkR
r ←$ R
(σ,R)← Sign((m, pkR), sk1; r)
Return Enc((m, σ, pkS), pk2; r)

Unsigncrypt(ĉ, pkS , skR, pkR):
(pk1, pk2)← pkS
(sk1, sk2)← skR
(c, R)← ĉ
(m, σ, pk′S)← Dec((c,R), sk2)
If pkS = pk′S ∧

Verify(m, (σ,R), pk1)
Return m

Else Return⊥

Fig. 8. StE construction with randomness reuse

Theorem 1 (Security of the EtS construction). Suppose signature scheme S and en-
cryption scheme E are compatible and that S is conditionally injective. Then the fol-
lowing hold:
1) If E is reproducible and S is sUF-RDA secure, then the resulting EtS construction is
sUF-iCMA secure.
2) If S is reproducible and E is IND-CCA secure, then the resulting EtS construction is
IND-iCCA secure.

Theorem 2 (Security of the StE construction). Suppose signature scheme S and en-
cryption scheme E are compatible and that E is conditionally injective. Then the fol-
lowing hold:
1) If S is reproducible and E is IND-RDA secure, then the resulting StE construction is
IND-iCCA secure.
2) If E is reproducible, and S is sUF-CMA secure, then the resulting StE construction
is sUF-iCMA secure.

We note that we obtain chosen-ciphertext security and strong unforgeability, both against
insider attackers, even though this could not be achieved simultaneously by plain se-
quential composition without randomness reuse. The intuition behind the proofs of both
theorems is the following. All proofs require simulating challenge signcryptions with
shared randomness across encryption and signatures, and such signcryptions must em-
bed a challenge from a signature or encryption security game. If one tried to reduce
directly to the standard notions of security for signature and encryption, this proof strat-
egy would fail, as one needs to commit to challenge messages before having access to
the randomness associated with the challenge. For example, this means that one would
not be able to request a signature on a ciphertext which shares the same randomness,
as this randomness is totally hidden from us. The randomness-dependent attack models
fix this problem by allowing adversaries to have access to the randomness components
R in challenge encryptions and signatures before committing to a challenge message.
Having access to R, one can simulate signatures and encryptions using the reproducibil-
ity properties of the schemes. For example, when proving that the StE construction is
IND-iCCA secure by reducing to the IND-RDA property of the encryption scheme, one
constructs the challenge signcryption as follows. When the adversary provides two chal-
lenge messages (m0,m1), one first obtains R and then uses the reproducibility property
of S to simulate signatures σ0 and σ1 on the challenge messages. One then queries the
LoR oracle on the resulting message/signature pairs (m0||σ0,m1||σ1). The challenge
will then be guaranteed to be correctly simulated with randomness reuse. We note that
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key registration is required for the unforgeability proofs, as the secret keys required to
run the reproducibility algorithms must be provided by the adversary. This is not an
issue in the chosen-ciphertext security proofs, since the sender’s secret key must al-
ways be provided to the LoR oracle (i.e., this is the case even in the standard dynamic
multi-user model for signcryption).

REMARK. The proofs of the theorems actually establish a slightly stronger result than
that stated in the theorems. Indeed, the results would still go through if the randomness-
dependent security models are modified in line with the weaker notions of generalized
chosen-ciphertext security [2] and existential unforgeability. We have chosen not to
include the details in the presentation for the sake of clarity.

REMARK. Our constructions aim to minimize the overhead of the resulting signcryp-
tion scheme. For this reason, StE construction does not include the full signature inside
the ciphertext — notice that R is not included inside the ciphertext. We remark that by
including the full signature we could relax the security requirements of the signature to
weak unforgeability, whilst still achieving strong unforgeability for the resulting com-
posed signcryption scheme. This security amplification is accomplished by combining
the extra binding provided by the randomness sharing with the conditional injectivity
of the algorithms.

REMARK. The combination of randomness-dependent security and reproducibility for
encryption schemes may be of independent interest in the design of multi-recipient
encryption schemes with randomness reuse. Indeed, it is straightforward to show that
for schemes displaying both properties the techniques proposed by Bellare et al. [3] can
be adapted to prove security under a stronger model than that originally adopted. Recall
that in [3] the adversary can place parallel challenge queries of n message pairs to the
challenge oracle, and this will return n ciphertexts under n different public keys. The
returned ciphertexts share the same encryption randomness. Applying our techniques,
one can give extra power to the adversary in that it need not be restricted to making
parallel challenge queries, but may choose challenge messages adaptively after seeing
ciphertexts that share the same randomness. Note that security can even be proven in an
analogue of the key registration model, in which the adversary can choose some keys
maliciously.

5 Instantiating the Constructions

5.1 Security under Randomness-Dependent Attacks

One interesting aspect of our results is the requirement for a stronger security guarantee
from the underlying signature and encryption components, in order to obtain security
under randomness reuse. Concretely, this translates into the randomness-dependent at-
tack models we have introduced in the previous section and raises the obvious question
of how likely it is that off-the-shelf public-key encryption or signature schemes meet
this level of security. Although we have no positive results for signature schemes in
the standard model, we will show in this section that the class of encryption schemes
achieving randomness-dependent security is potentially large, simply by looking at
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KEM/DEM paradigms for constructing PKEs. In fact, the Kurosawa–Desmedt [12]
appears as a notably efficient example that falls within our general framework. This
observation allows to go beyond the efficiency levels both in terms of computational
load and bandwidth of the previously most efficient standard model constructions.

RDA-SECURE SIGNATURE SCHEMES. For signature schemes, and restricting our at-
tention to constructions whose security does not rely on random oracles, we found that
current signature schemes do not meet this level of security. The typical problem, which
occurs for example in the Boneh–Boyen signature scheme, is that the security proof
critically relies on the ability to postpone the release of the randomness-dependent sig-
nature component until after the adversary has provided the message to be signed. This
is a possible explanation for the lack of EtS-like constructions with randomness reuse
in the standard model. If we admit random oracles, then one can consider any determin-
istic signature scheme, and randomness reuse no longer makes much sense as an op-
timization. Luckily, a RDA-secure signature is only required for the EtS construction.
We therefore concentrate our attention on StE compositions, where the randomness-
dependent security requirement applies only to the underlying encryption scheme.

RDA-SECURE ENCRYPTION FROM THE KEM/DEM PARADIGM. The first formaliza-
tion of a KEM/DEM composition theorem was presented by Cramer and Shoup in their
seminal paper on chosen-ciphertext-secure public-key encryption [9]. To simplify our
discussion, we will restrict our attention to KEMs where the ciphertext is public-key
independent, i.e., where the user-specific components of the public key passed to en-
capsulation are not used to calculate the ciphertext c, but only in the calculation of the
secret key2 k. We observe that PKE constructed from KEM/DEM schemes such as the
ones we consider are naturally partitioned, and that the KEM ciphertext can be seen as
the R component of the PKE ciphertext.

The KEM/DEM composition theorem in [9] roughly goes as follows. One performs
a single game hop, modifying the IND-CCA game so that, rather than using the secret
key output by the KEM in the challenge ciphertext generation, one uses a random secret
key as input to the DEM. The definition of the decryption oracle is also modified con-
sistently with this change. The transition between the two games can then be reduced
to the KEM security assumption. The adversary’s advantage in the second game can
finally be reduced to the security of the DEM, as the secret key being used for data
encapsulation is totally unrelated to that output by the KEM.

The same proof strategy can easily be adapted to show that KEM/DEM composition
yields a RDA-secure PKE. To see this, observe that the KEM adversary constructed in
the proof outlined above is able to obtain the challenge ciphertext (i.e., the R component
in the PKE ciphertext) right at the beginning of the game, independently of the PKE ad-
versary’s actions. Furthermore, the DEM attacker constructed in the final step of the
proof can generate the KEM ciphertext for the challenge right at the beginning. We can
therefore conclude that the KEM/DEM construction initially proposed by Cramer and
Shoup achieves randomness dependent chosen-ciphertext security without any modifi-

2 Such schemes are common, and include those originally proposed by Cramer and Shoup [9].
Our results could be generalized to schemes that do not meet this constraint, by introducing a
notion of partitioned KEM schemes.
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cation. This result shows how our framework generalizes the results published in [13],
in which the authors define reproducibility over KEMs, and then prove security of a
signcryption scheme constructed from a KEM, a DEM and a signature scheme, in a
StE construction with randomness reuse across the KEM and the signature schemes.

REMARK. The authors in [13] actually present their results based on a notion of a tag-
based KEM that allows them to bind the sender’s public key to the KEM ciphertext,
rather than encrypting it together with the payload, but the KEM/DEM composition
theorem they rely on does not take advantage of this binding and is a particular case
of the one we describe above. Indeed, it is interesting that the tag-KEM/DEM compo-
sition paradigm proposed in [1] does not immediately yield RDA-secure schemes. The
problem here is that the tag-KEM ciphertext can only be obtained after the tag has been
defined, and this depends on the encrypted message in the hybrid construction of [1].

RDA-SECURE ENCRYPTION FROM WEAKENED KEY ENCAPSULATION. Hofheinz and
Kiltz [10] propose an alternative KEM/DEM composition framework in which the se-
curity of the KEM can be weakened, as long as the DEM scheme satisfies a stronger
notion of security known as one-time authenticated encryption. Such schemes can be
constructed using the encrypt-then-mac approach, but no length-preserving solutions
exist [10]. Interestingly this hybrid encryption paradigm preserves the independence be-
tween KEM and DEM components that allowed our extension to randomness-dependent
attacks to go through. Indeed, the proof for the composition theorem in [10] follows a
similar structure as that described above. This means that restricting our attention to
(weak) KEM schemes where ciphertexts are public key independent, we immediately
obtain partitioned and randomness-dependent chosen-ciphertext secure PKEs that can
be used to instantiate our signcryption constructions. Notably, the weak KEM that is
used in the very efficient Kurosawa–Desmedt encryption scheme [12] has this property.

5.2 Compatibility, Reproducibility, and Conditional Injectivity

Matsuda et al. [13] presented an extensive description of schemes that meet compati-
bility, reproducibility and conditional injectivity properties as required by the generic
constructions using a tag-based KEM, a signature and a DEM with randomness reuse.
Although the presentation is slightly different, all the schemes used to instantiate their
constructions can be used to instantiate our own. However, the Boneh–Boyen signa-
ture scheme [6] was not considered by [13] as a candidate for signcryption schemes
constructed under randomness reuse. We present a modified version of this signature
scheme in the following subsection that displays the necessary properties, which en-
ables us to use it in the instantiation of our construction. Additionally, the KEM/DEM
compositions we have described above, when using a public-key independent KEM and
a deterministic DEM which is one-to-one over the messages, also give suitable encryp-
tion schemes for instantiation.

5.3 An Efficient Instantiation

In this section we present a concrete instantiation of our results that, to the best of our
knowledge, is the most efficient signcryption providing full insider security without
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random oracles. The scheme instantiates our StE construction with randomness reuse
with the Kurosawa–Desmedt encryption scheme [12] and the Boneh–Boyen signature
scheme [6]. On the negative side, the scheme’s strong unforgeability is only proven un-
der the key registration restriction. On the other hand, the scheme offers non-repudiation
for free, which is inherited from the StE construction: the receiver obtains a valid sig-
nature on the recovered message.

THE KUROSAWA–DESMEDT ENCRYPTION SCHEME. We recall the encryption scheme
in [12]. Here, G is a cyclic group of prime order q in which the DDH assumption holds,
and g1, g2 ∈ G are two random distinct generators. Also, SKE is a one-time authen-
ticated symmetric-key encryption scheme. As referred in the previous section, SKE
cannot be assumed to be length-preserving, so we will assume a minimum overhead
of size |MAC|, corresponding to a MAC tag. The scheme also requires two hash func-
tions H1 : G → {0, 1}k and H2 : G x G → Zq , where the former must be a secure
key-derivation function (i.e., entropy smoothing), and the latter must be target collision
resistant. We have shown in the previous section that the Kurosawa–Desmedt encryp-
tion scheme is partitioned, that it is randomness-dependent chosen-ciphertext-secure
and that, when instantiated with a deterministic and one-to-one DEM it is conditionally
injective.

To be used in our constructions, we further require the scheme to be reproducible.
It is straightforward to show that the scheme satisfies this property. Given a ciphertext
(c,R) under an arbitrary public key, a secret key sk and a message m, the reproducibility
algorithm produces a randomness reusing encryption of m as follows. It first takes the
R = (R1,R2) and calculates a secret key k precisely as this is done in the decryption
algorithm using sk. It then encrypts the m under the DEM using k to obtain the required
ciphertext (c,R).

algorithm Gen:
w ←$ Zq, x←$ Zq

y ←$ Zq, z ←$ Zq

a← gw
1 gx

2 , b← gy
1 g

z
2

sk← (w,x, y, z)

pk← (a, b)

Return (sk, pk)

algorithm Enc(m, pk):
(a, b)← pk

r←$ Zq

R1 ← gr
1,R2 ← gr

2

s← H2(R1,R2)

K← H1(a
rbsr)

c← SKE.Enc(K,m)

R← (R1,R2)

Return (c, R)

algorithm Dec((c, R), sk):
(w, x, y, z)← sk

(R1, R2)← R

s← H2(R1,R2)

K← H1(R
w+ys
1 · Rx+zs

2 )

m← SKE.Dec(K, c)

Return m

Fig. 9. The Kurosawa–Desmedt encryption scheme [12]

THE BONEH–BOYEN SIGNATURE SCHEME. The Boneh–Boyen signature scheme [6]
is strongly unforgeable in the standard model. It relies on bilinear groups, and so we
briefly recall this notion below.

Definition 9. A bilinear group description Γ is a tuple (p,G1,G2,GT , e, g3, g4) where
G1, G2 and GT are groups of order p with efficiently computable group laws; g3 and g4
are generators of G1 and G2, respectively; and e is a bilinear pairing e : G1 x G2 →
GT satisfying the usual properties of bilinearity and non-degeneracy.

We present the signature scheme of [6] in Figure 10. Observe that we slightly mod-
ified the signature and verification algorithms to make the scheme compatible with
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Kurosawa–Desmedt encryption [12], i.e., so that signatures present the same R com-
ponent. Intuitively, we replace the randomness generation operation in the signature
algorithm so that, rather than sampling s directly, we obtain it from the R component
in a Kurosawa–Desmedt ciphertext. We therefore consider a group G of order q as
described by the Kurosawa–Desmedt encryption scheme, with two distinct generators
g1, g2 ∈ G.

We require an encoding function Map that takes a random element in group G onto
an element in the randomness space of the Boneh–Boyen signature scheme.3 This en-
coding function is fed with the first element in the Kurosawa–Desmedt R component
gr1. The second element gr2 is simply included as part of the signed message; we use
the standard approach of extending the Boneh–Boyen signature scheme to messages
of arbitrary length, introducing a collision-resistant hash function H : {0, 1}� → Zp.
We note that the apparent loss in efficiency in the signature scheme disappears when
one uses this version of the scheme in our StE construction. Also note that the sig-
nature scheme is reproducible. The reproduction algorithm proceeds identically to the
signature algorithm, except it skips the steps where r←$ Zq and R are computed.

algorithm Gen:
x←$ Zp, y ←$ Zp

u← gx
4 , v ← gy

4

z ← e(g3, g4)

sk← (x, y)

pk← (u, v, z)

Return (sk, pk)

algorithm Sign(m, sk):
(x, y)← sk

r ←$ Zq

R1 ← gr
1,R2 ← gr

2

s← Map(R1)

h← H(m,R2)

a← 1/(x + h + ys) mod p

σ ← ga
3

R← (R1,R2)

Return (σ,R)

algorithm Verify(m, (σ,R), pk):
(u, v, z)← pk

(R1,R2)← R

h← H(m, R2)

s← Map(R1)

If e(σ, u · gh
4 · vs) = z

Return T

Else Return F

Fig. 10. The Boneh–Boyen signature scheme [6] modified to be compatible with the Kurosawa–
Desmedt encryption scheme

We now discuss the security of the modified Boneh–Boyen signature scheme. It is
straightforward to show that this scheme remains strongly unforgeable provided that
the DDH problem is hard in group G and that Map is a one-to-one and efficiently
invertible mapping from G to Zp (the inversion algorithm is only used in the proof
of security). A closer look at the proof reveals that even weaker properties on Map
suffice. Indeed, the function only needs to be injective, efficiently invertible, and map
G to a sufficiently large fraction of Zp elements. To meet these requirements, we may
instantiate G as the group of points on an elliptic curve, where the DDH problem is
assumed to be hard. Standard point compression techniques [5] allow us to instantiate
Map with an injective encoding whose image corresponds to a sufficiently large fraction
of Zp values. More precisely, for carefully chosen elliptic curves, there exist injective
and efficiently invertible mappings from curve points into bit strings of length l, where
l is approximately the logarithm of the order of the group. Such encodings will have the
property we require when p is chosen to be sufficiently close to 2l.

3 As in the original scheme, in the unlikely event that s = −(x + h)/y, we simply sample a
new randomness. We omit this in Figure 10 for readability.
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The security proof of the modified Boneh–Boyen signature scheme can be found in
the full version of this paper. Intuitively, to reduce the security of the modified scheme
to the original version, one simulates signature queries by repeatedly querying the sig-
nature oracle, until one obtains a signature where the randomness value can be inverted
back into G. Furthermore, a valid forgery on the modified scheme will still constitute a
valid forgery on the original scheme.

COMPARISON. We present in Table 1 a comparison of our StE construction with ran-
domness reuse, when instantiated with the Kurosawa–Desmedt encryption scheme and
the Boneh–Boyen signature scheme, with previous signcryption constructions in var-
ious relevant parameters. We consider only signcryption schemes offering full insider
security in dynamic multi-user models, and not relying on random oracles. We present
results for the 80-bit security level. In addition to efficiency considerations, we also
present the underlying computational assumptions, whether key registration is required,
and whether the scheme offers non-repudiation by providing receiver’s with valid sig-
natures on the recovered messages.

For computational efficiency, we compare the number of exponentiations, multi-
exponentiations, and pairing computations (in this order), both in the signcryption and
unsigncryption operations. Clearly the new scheme matches the previously computa-
tionally more efficient solution from [14]. We also include the size of the random coins
required for the signcryption operation. Here, our scheme displays a saving of 50% over
previous solutions, due to the randomness reuse optimization. Finally, in terms of over-
head (i.e., the difference between ciphertext length and message length), our scheme
compares favorably with other solutions. The 160-bit overhead with respect to the so-
lutions in [8,13] can be explained by including a digest of the sender’s public key in the
payload, which must be calculated using a collision-resistant hash function. This might
be avoided by considering a tag-based variant of the encryption scheme as in [8,13],
although we have not considered this possibility.

Table 1. Comparison with signcryption schemes in the literature. We consider [14,15] also in-
stantiated with the BB signature scheme. We take |G| = |Zp| = |H| = 160 and |MAC| = 80
bits.

Scheme Assumptions Key Reg. Non-Rep. Computations Randomness Overhead
sc. usc. (bits) (bits)

[8] DBDH, q-SDH No Yes [4, 0, 0] [1, 1, 2] 320 640
[8] DBDH, q-SDH No Yes [3, 1, 0] [1, 1, 2] 320 720
[13] DBDH, co-CDH Yes Yes [4, 1, 0] [1, 1, 3] 320 640
[16] DBDH, q-SDH Yes No [3, 2, 0] [3, 1, 4] 480 800
[14] DDH, q-SDH No No [3, 1, 0] [0, 2, 1] 320 720
[15] DDH, q-SDH No No [4, 1, 0] [1, 2, 1] 320 800
New scheme DDH, q-SDH Yes Yes [3, 1, 0] [0, 2, 1] 160 720
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