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Abstract. We propose here a novel approach to acquire a multispectral
image and at the same time estimate the illuminant with the use of
a stereo camera. Two images of a scene: one normal RGB and one
filtered image with an appropriate optical filter selected from among
readily available filters placed in front of a lens of the stereo camera are
acquired. The spectral reflectance and/or color at each pixel on the scene
are estimated from the corresponding outputs in the two images. In the
mean time, the illuminant used during the image capture is estimated
using chromagenic illuminant estimation method. Experiments with the
simulated data show that this is a promising technique for simultaneous
multispectral imaging and the illuminant estimation. Today’s increasing
commercial availability of digital stereo cameras makes the proposed
solution a viable one for many applications.

1 Introduction

Multispectral imaging provides a solution to the limitations of conventional
three channel (usually RGB) color imaging like metamerism and environment
dependency. There are different types of multispectral imaging systems, most of
them are filter-based which use additional filters to expand the number of color
channels. The state-of-the art filter-based multispectral imaging systems [6,8,19]
acquire images in multiple shots. Their use is, therefore, limited to static scenes
only, thus making them less useful and less practical. Shrestha et al. [16,17] has
made a comprehensive study and proposed a practical and feasible 6-channel
multispectral imaging system with the use of a stereo camera. Depending upon
the sensitivities of the two cameras in the stereo system, one or two appropriate
optical filters are selected from among a set of readily available filters and placed
in front of one or both lenses of the stereo camera, so that they will modify
the sensitivities of one or two cameras to produce six channels (three each
contributed from the two cameras) in the visible spectrum so as to give optimal
estimation of the scene spectral reflectance and/or the color. This produces a
6-channel multispectral system.
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Color constancy is yet another important issue in color imaging. It is the
ability to account for the color of the light source which allows seeing the
color of an object more or less the same under different lighting conditions.
Human vision is said to be color constant as it has a natural tendency to
correct for the effects of the color of the light source. Computational color
constancy tries to emulate the color constancy in color imaging, and this is
one of the fundamental requirements in many color imaging and computer vision
applications. Computational color constancy models, in general, comprise of two
steps: illuminant estimation and color correction. The illuminant estimation is
the primary task in a computational color constancy algorithm. Knowing the
estimated illuminant, the effects of the color of the illuminant are corrected to
obtain the desired color constant image. Many methods have been proposed
for the illuminant estimation, and these methods are typically based on the
assumption of spatially uniform color of the light source across the scene. Some
example methods are gray-world, max-RGB, a gamut based algorithm, neural
networks, color-by-correlation, a Bayesian method. Yet another color constancy
algorithm, known as the chromagenic color constancy, has been proposed by
Finlayson et al. [4] that uses a special color filter which they named as chroma-
genic. This algorithm estimates the illuminant from two images: a normal RGB
and a filtered RGB, of a scene. The algorithm has registration problems and also
requires two shot images.

In this paper, we extend the multispectral imaging proposed by Shrestha
et al. [16, 17] by making the system capable of acquiring multispectral image
and at the same time estimating the illuminant under which the image has
been acquired. For this, instead of two, only one filter is used in front of one
of the lenses of the stereo camera. It thus acquires two images: one normal
RGB image and one filtered image, in a single shot. The 6-channel multispectral
image is estimated from these two images, and at the same time the illuminant is
estimated using the same two images. The proposed system is thus capable not
only of acquiring the multispectral image but also acquiring the normal RGB
image, and at the same time capable of estimating the illuminant under which
the images are taken. This gives users not only the flexibility to choose among
a normal RGB and a multispectral image, but also to obtain a color constant
image with the use of the estimated illuminant. The proposed system would
therefore be useful in many applications where multispectral images and color
constancy are applicable. We have performed experiments with the simulated
data and they produce promising results.

After this introduction, we present the proposed system along with the method
of multispectral imaging and the illuminant estimation in Section 2. We then
present the experiments and results in Section 3. The results will be discussed
next in Section 4, and finally we conclude the paper in Section 5.
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Fig. 1. Illustration of a propose
multispectral camera

The proposed system is constructed from a
stereo camera and an appropriate optical filter
in front of one of the lenses of the stereo
camera (Fig. 1). Either a commercial stereo
camera or two modern digital (RGB) cameras
joined in a stereoscopic configuration can be
used. An optimal filter is selected from the given set of filters through an
exhaustive search. Since only one filter needs to be selected, the computational
complexity is just O(n). We select a filter that produces minimum estimation
errors (spectral or color) with regards to both the multispectral output and
the color constancy output. We use here in this paper the minimum color
estimation error as the criteria for the multispectral output for more accurate
color reproduction, and use the most widely used median error [1, 7] for more
accurate illuminant estimation. However, depending on the application, spectral
estimation error criteria could also be used. Section 3.2 describes the filter
selection in the experiment in details.

The selected filter modifies the sensitivities of the filtered side of the camera
producing six channels (three each contributed from the two cameras) in the
visible spectrum. The system allows capturing two images, one normal RGB and
one filtered RGB images of a scene. Furthermore, knowing the geometry of the
stereo camera, not only the two images can be registered rather more precisely
but also 3D information of the scene can be obtained. However 3D acquisition is
beyond the scope of this paper. Among many registration techniques proposed
in the literature, the phase-only correlation method (POC) [18] could be the
one for precision registration. From the two registered images of a scene, the
multispectral image is obtained and at the same the illuminant is estimated.
The subsections below discuss the multispectral system model and the illuminant
estimation with the proposed system.

2.1 Multispectral System Model

In order to model the proposed multispectral system, let S = [sR, sG, sB] denotes
the matrix of spectral sensitivities of the three channels of the normal RGB
camera of the stereo camera, and similarly SF = [sFR, s

F
G, s

F
B] is the matrix of

the spectral sensitivities of the three channels of the filtered side of the stereo
camera. Let t is the spectral transmittance of the selected filter, L is the spectral
power distribution of the light source, and R is the spectral reflectance of the
surface captured by the camera. As there is always acquisition noise introduced
into the camera outputs, let n and nF denote the noise vectors corresponding
to the acquisition noise in the three channels of the normal and the filtered side
of the stereo camera respectively. The camera responses of the normal (C) and
the filtered (CF ) sides of the stereo camera are respectively given by:

C = S′Diag(L)R + n (1)

and CF = (SF )′Diag(L)R+ nF , (2)
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where X ′ denotes the transpose of the matrix X . The combined response

[
C
CF

]

of the two cameras gives six responses. The estimated reflectance (R̃) is obtained
for the corresponding original reflectance (R) from these camera responses for the
training and the test targets Ctrain and C respectively, using different spectral
estimation methods. Training targets are the database of surface reflectance
functions from which basis functions are generated and test targets are used
to validate the performance of the device. Among many estimation algorithms
proposed in the literature, we have investigated the performance of the proposed
system with four different estimation methods: Imai and Berns (IB) [9], Linear
Regression, Polynomial (PN) [3] and Neural Network (NN) [12]. These methods
are described in details by Shrestha et al. [17].

The estimated reflectances are evaluated using spectral as well as colori-
metric metrics. Two different metrics: GFC (Goodness of Fit Coefficient) and
RMS (Root Mean Square) error have been used as spectral metrics, and ΔE∗

ab

(CIELAB Color Difference) as the colorimetric metric. For the details on these
metrics also, we refer to Shrestha et al. [17].

2.2 Illuminant Estimation

The two images of a scene allow estimating the illuminant as well. We use the
chromagenic illuminant estimation method proposed by Finlayson et al. [4]. The
chromagenic algorithm is based on the first approximation that the image formed
by placing a colored filter in front of the camera is the same as changing the
illumination impinging on the scene. In other words, the responses of the camera
with and without the filter can be considered as the responses of a single surface
under two different illuminants. When the same surfaces are viewed under two
light sources, the corresponding camera responses, to a good approximation,
can be related by a linear transform [11]. Therefore, if C and CF denote the
unfiltered and the filtered camera responses respectively, then these responses
can be related by the following equation:

CF = MC, (3)

where M is a 3 × 3 linear transformation matrix. M depends on both the
illuminant and the filter used, and it can be computed as:

M = CFC+. (4)

The transformation matrix M can be described as the transform that maps, in
a least square sense, unfiltered to filtered responses of the camera under a given
illuminant. A linear model of illuminant change is not perfect and may result
in large estimation errors. More accurate mapping with a reduced estimation
error can be obtained with a convex relational model by expressing an RGB
image as a convex combination of the training RGBs for each training light in
turn. The chromagenic illuminant estimation method is, therefore, based on the
assumption that we know all possible illuminants a priori. The transforms Mi
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are different for different illuminants li; the matrix Mi is determined for each
of these illuminants. This property of chromagenic camera responses is used to
identify the illuminant in a scene, i.e., to solve the color constancy problem.
Let li(λ), i = 1, ...,m are the spectral power distributions of the possible known
illuminants, and rj(λ), i = 1, ..., n is the reflectances of the n representative real
world surfaces. For each illuminant i, we determine the camera responses without
and with the chromagenic filter: Ci, and CF

i respectively, which are 3×nmatrices
whose jth column contains the camera responses of the jth surface under the ith

illuminant. The transformation matrixMi for the i
th illuminant is obtained using

Eq. 4.
For a given test illuminant, we select an illuminant lest(λ) from all plausible

illuminants li as the estimated illuminant, which gives the minimum error:

est = argmin
i

(ei), i = 1, ...,m (5)

where ei is the fitting error that can be calculated as:

ei = ‖MiC − CF ‖, i = 1, ...,m. (6)

The illuminant estimation algorithms are evaluated using the same framework
as proposed by Hordley and Finlayson [7]. They recommended using the median
angular error over the mean root mean square (RMS) error. Angular error is
intensity independent and it has been widely used in the literature [1,7]. Let Clest

and Clact be the camera responses of a white reflectance under the estimated and
the actual illuminant respectively, then the angular error eang is calculated as:

eang = acos

(
CT

lact
Clest

‖Clact‖‖Clest‖

)
(7)

3 Experiments

Here we first discuss the experimental setup and then present three different
experiments and the results they produced: first the filter selection (Section 3.2),
then the multispectral imaging (Section 3.3) and finally the illuminant estimation
(Section 3.4).

3.1 Experimental Setup

The experimental setup comprises of a camera, filters, illuminants, reflectance
data and test targets. A modern digital stereo camera from Fujifilm: the Fujifilm
FinePix REAL 3D W1 (in short, Fujifilm 3D) has been used. Fig. 1 illustrates a
multispectral camera system constructed from this camera with a filter in front
of one of its lenses. The sensitivities of this camera as measured and used by
Shrestha et al. [16] has been used. The sensitivities of its left and right cameras
are shown in Fig. 2.
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Fig. 2. Spectral sensitivities of the Fujifilm
3D camera (Left - solid, Right - dotted)

To make the simulated multispec-
tral system more realistic, as much
as 4% normally distributed Gaussian
noise is introduced as a random shot
noise and 12-bit quantization noise
is incorporated by directly quantizing
the simulated camera responses after
the application of the shot noise. Sim-
ulated D50 illuminant, and the CIE
1964 10◦ color matching functions are
used for color computation as it is the
logical choice for each color checker
patches subtends more than 2◦ from
the lens position. In order to evaluate
the system, 63 patches of the Gretag Macbeth Color Checker DC has been
used as the training target; and 122 patches remained after omitting the outer
surrounding achromatic patches, multiple white patches at the center, and the
glossy patches in the S-column of the DC chart have been used as the test target.
The training patches have been selected using linear distance minimization
method (LDMM) proposed by Pellegri et al. [15]. A color whose associated
system output vector has maximum norm among all the target colors is selected
first. The method then chooses the colors of the training set iteratively based
on their distance from those already chosen; the maximum absolute difference
is used as the distance metric.

For the illuminant estimation, the 1995 Munsell surface reflectances (denoted
asR) and the illuminants: the 87 measured training illuminants (L87) and the 287
test illuminants (L287), all the data from Barnard et al. [1] have been used. 265
optical filters of three different types: exciter, dichroic, and emitter from Omega
are used. Transmittances of the filters available in the company website [14] have
been used. One supplier has been chosen as a one point solution for the filters,
and the Omega Optical Inc. has been chosen as they have a large selection of
filters and data is available online.

3.2 Experiment I: Filter Selection

As discussed in Section 2, an optimal filter that produces the minimum estima-
tion errors is selected. We have used the color estimation error (ΔE∗

ab) as the
criteria, and the filter that produces the minimum ΔE∗

ab by the multispectral
system and the minimum illuminant estimation (eang) error that lies within a
acceptable error threshold values is selected from a given set of filters through
exhaustive search.

For the illuminant estimation, the transformation matrices Mi, i = 1 . . . 87
are computed by imaging the whole surface reflectances, R under the training
illuminants L87, and they will be used to estimate the test illuminants. The test
illuminants are estimated using the chromagenic algorithm.
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Fig. 3. Selection of a filter (red circled) from a
set of 265 Omega filters

Depending on the application,
an appropriate threshold values
can be set for the color and
the illuminant estimation errors.
Here, as an illustration, we have
chosen the ΔE∗

ab < 1.25 and
eang < 2◦ as the threshold values.
Fig. 3 shows the XY plot of
estimation errors with the 265
Omega filters, with the color
estimation error along the X-axis
and the angular error along the
Y-axis. The filter selection algo-
rithm chooses the XF1078 filter
as shown in the figure. This filter
has been selected with all the
four spectral estimation methods
discussed above. Fig. 4 shows the
transmittance of the filter. This
filter is then used in the next two experiments for the multispectral imaging
and the illuminant estimation.

3.3 Experiment II: Multispectral Imaging

This experiment evaluates the proposed multispectral system constructed from
the Fujifilm 3D and the selected filter, the Omega XF1078. Fig. 5 shows the
normalized spectral sensitivities of the multispectral imaging system. The per-
formance of the system has been investigated with all four spectral estimation
methods (IM, LR, PN and NN) discussed in Section 2.1 and the results from
three evaluation metrics (GFC, RMS and ΔE∗

ab) are reported. Table 1 shows
the statistics (maximum/minimum, mean and standard deviation) of estimation
errors side-by-side for the 3-channel and the proposed 6-channel systems.
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Fig. 4. Transmittance of the Omega
XF1078 filter
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Fig. 5. Normalized spectral sensitivities of
the 6-channel multispectral system
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Table 1. Statistics of the estimation errors produced by the 6-channel system

IB LR PN NN IB LR PN NN

Min 0.890 0.889 0.898 0.889 0.910 0.900 0.902 0.880

Mean 0.990 0.990 0.990 0.990 0.996 0.996 0.996 0.996

STD 0.017 0.017 0.015 0.017 0.009 0.010 0.010 0.012

Max 0.151 0.152 0.148 0.151 0.126 0.132 0.132 0.136

Mean 0.031 0.031 0.029 0.031 0.021 0.020 0.020 0.021

STD 0.023 0.023 0.021 0.023 0.018 0.019 0.018 0.020

Max 16.052 16.174 13.631 16.035 4.926 4.592 4.561 5.666

Mean 3.486 3.542 3.552 3.484 1.153 1.130 1.196 1.050

STD 3.320 3.359 2.766 3.316 0.958 0.816 0.825 0.872

Metric
3-Channel System 6-Channel System

GFC

RMS

ΔE*
ab

The results show that the proposed 6-channel multispectral system outper-
forms the classic 3-channel system in terms of all the three metrics. We can also
see that the performance of the four spectral estimation methods are comparable.

3.4 Experiment III: Illuminant Estimation

In this experiment, we use the real images generated from hyperspectral images
of the eight natural scenes from Nascimento et al. [13]. The RGB images gener-
ated from the hyperspectral images using the Fujifilm3D camera and one of the
87 possible illuminant L87 are shown in Fig. 6. These hyperspectral images are
available online in 820×820×33 over 400-700nm bands in 10nm steps. However,
the real image contents are less than 820 × 820, but padded with zeros. Those
padded empty data are removed and only real image contents are used. From
these hyperspectral images, we obtain the unfiltered and the filtered versions of
each image for every test illuminant L287. The test illuminant is estimated in
each case with the chromagenic algorithms using the transformation matrices
Mi, i = 1 . . . 87 computed as discussed in Section 3.2. The median angular errors
produced by the chromagenic algorithms along with the gray world [2] and the
max-RGB [10] methods are given in Table 2. The results show significantly
better estimation of the illuminant with the proposed system compared to the
grayworld and max-RGB methods.

4 Discussion

The optimal filter used to construct the proposed system has been selected
by setting acceptable error threshold values for the color and the illuminant
estimation errors. As a further work, this selection could be made automatic
with a single combined metric. Our experiments here are based on simulated
images, and we assume that the two images are perfectly registered and there is
no occlusion. It would be interesting to work further on experimental validation
with real experiments taking into account the geometry of the stereo camera and
two images from slightly different perspectives.
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Scene #1 Scene #2 Scene #3 Scene #4 

    
Scene #5 Scene #6 Scene #7 Scene #8 

Fig. 6. The RGB images obtained from hyperspec-
tral images of the 8 natural scenes from Nascimento
et al. [13]

Table 2. Median angular er-
rors for the 8 images generated
from hyperspectral data of the
scenes

1 5.50 4.75 3.52
2 9.86 21.85 6.19
3 9.45 3.20 4.62
4 5.50 4.75 3.52
5 7.32 11.04 2.05
6 2.83 6.94 2.21
7 0.99 2.12 1.64
8 2.87 3.10 3.49

Average 5.54 7.22 3.40

Scene #
Gray 

World
Max     
RGB

Chromag.

The experimental results show that the 6-channel multispectral system out-
performs the 3-channel system significantly with all the four spectral estimation
methods. As an example, the 6-channel system produces mean ΔE∗

ab of 1.05
with the NN method, while the 3-channel system produces 3.484. Moreover, the
illuminant estimation with the chromagenic algorithm produces better results
than the gray world and the max RGB methods. Finlayson et al. [4] have
shown that the chromagenic based algorithms outperforms other color constancy
algorithms like neural network, LP gamut mapping, Bayesian method, and color
by correlation. The experimental results infer that simply selecting an optimal
filter from a set of available filters produces promising results not only in the
spectral and color reproduction from the multispectral imaging but also in the
illuminant estimation. The performance could be improved further by using
a set of a large number of filters, possibly from different manufacturers. The
performance could also be improved significantly by using a custom designed
filter [5].

The proposed system could be useful in digital color imaging where more
accurate color imaging is required, and in color vision and robotics where color
constant imaging is essential. Moreover, as the system is capable of acquiring
multispectral and 3D images, it could also be used in multispectral imaging, for
example, of culture and heritage.

5 Conclusion

This paper proposes a system capable of acquiring both a normal RGB image
as well as a 6-channel multispectral image in a single shot, and at the same time
capable of estimating the illuminant under which the image has been acquired.
The system can be constructed from a off-the-shelf commercial stereo camera and
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a filter. An optimal filter could either be selected from a set of available filers or
custom designed. This allows a user flexibility to capture a color constant RGB
image or a multispectral image or both. The system could be useful in many
color imaging applications and computer vision.
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