
The List of Clusters Revisited

Eric Sadit Tellez and Edgar Chávez

Universidad Michoacana de San Nicolás de Hidalgo, México
sadit@lsc.fie.umich.mx, elchavez@fismat.umich.mx

Abstract. One of the most efficient index for similarity search, to fix ideas think
in speeding up k-nn searches in a very large database, is the so called list of clus-
ters. This data structure is a counterintuitive construction which can be seen as
extremely unbalanced, as opposed to balanced data structures for exact search-
ing. In practical terms there is no better alternative for exact indexing, when
every search return all the incumbent results; as opposed to approximate sim-
ilarity search. The major drawback of the list of clusters is its quadratic time
construction.

In this paper we revisit the list of clusters aiming at speeding up the construc-
tion time without sacrificing its efficiency. We obtain similar search times while
gaining a significant amount of time in the construction phase.

1 Introduction

Many pattern recognition and data mining tasks can be stated in terms of proximity
searching. In its more general abstraction, the similarity searching problem consist on
find a set of items following a given constraint over an involved query, using a distance
function as the only information source available, that is, the internal object structure
cannot be used. Under this statement of the problem, it is possible to design and created
fast proximity searching structures, called proximity indexes. Those indexes are general
enough to be used careless of the specific description of a database.

Unfortunately, most of these indexes are not capable to scale on the growth of the
databases, such that only a few hundred of thousand items can be handled even on
modern hardware. This issue is particularly noticeable when objects are defined on high
intrinsic dimensional spaces, as described by Chavez and Navarro [1].

Unlike exact searching, the performance of the indexes depends heavily on the data,
and the complexity bounds cannot be established without considering the intrinsic di-
mensionality of the data collection.

The above dependency have been documented thoroughly in the literature, including
several books and surveys [2,1,3]. This condition is called the curse of dimensionality
(CoD), that in practice imply that a clever index cannot outperform a sequential scan if
the data is intrinsically high dimensional.

From a practical point of view, we can classify the indexes as effective on a specific
range over the intrinsic dimensionality line. A long standing index, with asymptotic
optimal performance on the number of computed distances, is AESA [4,5] which can
be seen as a pivot-based index using all the database objects as pivots. Nevertheless, in
practice AESA is restricted to very small datasets, since it has a quadratic dependance
on the size of the database, for both preprocessing time and memory requirements.
Also, a hidden complexity is present even on query time, i.e. O(n2) basic operations
(arithmetic and logical) are required (additional to the computed distances). In general,

J.A. Carrasco-Ochoa et al. (Eds.): MCPR 2012, LNCS 7329, pp. 187–196, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

188 E. Sadit Tellez and E. Chávez

pivot based indexes with linear number of pivots such as LAESA [5] can trade speed
at query time for the size of the index. One way to obtain a good speed/space tradeoff
is by using a compact index such as the Fixed Queries Array (FQA) [6], or the Fixed
Queries Trie [7].

Another way to cope with the space usage is the technique of the List of Clusters [8],
which is faster than LAESA or the FQA for any practical space bounds, specially when
the data is high dimensional. Table 1 compares complexities among search-efficient
indexes, here ρ is the number of bits used to represent a distance, m the number of
centers in the LC, � the number of pivots used by LAESA, and α is a fixed value
between 0 and 1 that depends on the intrinsic dimension of the database. Summarizing,
indexes that allow fast searches are highly expensive at the preprocessing step and/or in
memory requirements.

Table 1. Complexities of the most faster proximity searching algorithms for a fixed dimensional-
ity dataset

method preprocessing searching memory
distances distances

List of clusters (LC) O(n2) O(nα) O(n log n+mρ) bits
AESA O(n2) O(1) O(n2ρ) bits
Linear AESA (LAESA) O(n�) O(nα) O(n�ρ) bits

In this paper we propose a new index for metric searching allowing fast searches, us-
ing O(nα) distances per query, and O(n log n+mρ) bits of space, and a preprocessing
time of O(nmα), with α ≤ 1. Our index is inspired on the LC data structure, and use a
similar searching procedure hence it can be plug into applications already using the LC
without modification.

The key difference of or approach is in the construction phase. The LC have a quadratic
construction time which prevents its usage in large databases, probably in the same
way AESA cannot be used in practice. With our proposal it is possible to index large
databases. Furthermore our index can be built in parallel, making efficient use of mod-
ern hardware. So, our approach is faster to build than the original LC with a very small
penalty in the searching complexity, that makes the index capable to deal with complex
search pattern analysis and data mining procedures even on very large datasets.

1.1 Preliminaries

A metric space is a pair (U, d), with U a set and d(·, ·) a distance function d : U ×U →
R

+ with the usual metric properties, ∀u, v, w ∈ U , d(u, v) ≥ 0 with d(u, v) = 0 ⇐⇒
u = v, d(u, v) = d(v, u), and d(u,w)+d(w, v) ≥ d(u, v). These properties are known
as strict positiveness, symmetry, and the triangle inequality, respectively. A database S
is a finite subset of U , S ⊆ U of size n = |S|. Proximity search can be formulated in
terms of two operations, namely

– k nearest neighbor query. Retrieve the k closer elements of a query q in S. k-nn(q)=
{u | d(q, u) ≤ d(q, v) ∀ v ∈ S} subject to | k-nn(q)| = k. Ties are arbitrarily bro-
ken.

– range r query. Obtain all the objects in S which distance to q is within the range r,
i.e. (q, r)d = {u ∈ S | d(q, u) ≤ r}.

The List of Clusters Revisited 189

1.2 Pivot Based Indexes

The purpose of an index is to avoid a sequential scan. The pivot trick consist in filtering
the database S by using repeatedly the triangle inequality to bound the distance from
an object to the query. A set of distinguished points P = {p1, p2, · · · , pm} ⊆ U (the
pivots) are used to define a filtering distance, always bounded from above by the original
distance d. Let D(u, v) = max1≤i≤m |d(u, pi)−d(v, pi)|. Using the triangle inequality,
it is inmediate D(u, v) ≤ d(u, v) and hence it implies (q, r)d ⊆ (q, r)D . Notice that D
is a well known metric, i.e. the Minkowski’s ∞ norm. Nevertheless, it is well known
that the pivot space cannot be easily indexed with a vector space index, since P has a
very large dimensionality. Chavez and Navarro [1] nicely survey pivot indexes and its
core properties.

The index retrieve (q, r)D using only m distance computations, just distances to the
pivots. When the intrinsic dimension of the data set is high, the CoD implies that even
a significant increase in the number of pivots (say to the limits of the available memory
to store the distance matrix), barely decreases (q, r)D \ (q, r)d. For easier instances
of metric spaces the decrease may be significant, implying that a pivot based index
will have a single parameter for the end user, i.e., if the time to get an answer is not
satisfactory, then she simple increases the number of pivots.

The above simple rule can be used as long as the cost of obtaining (q, r)D and the
amount of memory used to maintain the distances is bounded. A plain table of � pivots
is neither efficient for processing (q, r)D nor efficient in space usage. In a tree data
structure as the Fixed Height Fixed Queries tree [9] the time is sublinear but this comes
with the overhead of maintaining pointers in addition to the �n distances. Other pivot
based tree data structures, like the Vantage Point tree (VPT) [10] or the Burkhard-
Keller tree (BKT) [11], cannot use more pivots because they can only represent as
much distances as the path length (the sum of the paths from every node to the root).
One interesting alternative is the Fixed Queries Array (FQA) [6] which uses a few bits
per pivot, and a logarithmic penalty over a tree data structure.

The limit in the number of pivots usable for indexing is the size of the database
(unless pivots outside the database are used for indexing). Taking all the objects in the
database is precisely what the AESA algorithm does [4,5]. This algorithm is optimal
because the number of distance computations to obtain the nearest neighbor search
is O(1) for a fixed dataset. The algorithm is useful only for small databases because
storing O(n2ρ) bits for distances is fairly unpractical.

1.3 Compact Partition Indexes

Another approach to proximity searching consist in partitioning the database in com-
pact regions. Most of the compact partitioning indexes in the literature are hierarchical,
with a recursive rule as follows: A set of centers c1, c2, · · · , cm ∈ S is selected per
node, such that every ci is the center of a Ti subtree. The set of centers are used to
partition the database such that each Ti is spatially compact. For example, u ∈ Ti if
i = argmin1≤j≤m d(u, cj). The covering radius cov(ci) = maxu∈Ti d(ci, v) is stored
for each node. This construction is applied recursively. A query (q, r)d is solved recur-
sively starting from the root node. If d(q, ci) ≤ r then ci ∈ (q, r)d, and Ti must be
explored if |d(q, ci)− cov(ci)| ≤ r.

In general the recursion can be stopped at any level, and objects below that level in
each node are stored together in a bucket. In this type of indexes there is not a simple

190 E. Sadit Tellez and E. Chávez

recipe as in the case of pivot indexing. Chavez and Navarro [1], surveys a great variety
of compact partition indexes, and its common behavior.

The List of Clusters. A surprising data structure is the List of Clusters (LC). Using
a linear amount of identifiers, is able to outperform all other indexes, specially when
the data is high dimensional. The LC unbalances a tree data structure until it resem-
bles a linked list. This strategy contrasts with that followed on exact searching; where
achieving balance is a paramount and a myriad of balancing algorithms exist. In the
case of approximate searching, an unbalanced structure has be proven to be useful. The
drawback of the approach is a quadratic construction time and have the same origin of
its unmatched performance.

Let explore with more detail the construction and the searching algorithm for the
LC, as introduced by Chavez and Navarro [8]. Define IS,c,cov(c) = {u ∈ S \ {c} |
d(c, u) ≤ cov(c)} as the bucket of internal elements, which lie inside center ball of c,
and ES,c,cov(c) = {u ∈ S | d(c, u) > cov(c)} as the rest of the elements (the external
ones). Now the process is repeated recursively inside E. The construction procedure
returns a list of triplets (ci, ri, Ii) (center,radius,bucket) and it is shown in algorithm 1.

ALGORITHM 1. The construction algorithm of the LC. The operator :: is the list constructor. It
is not hard to remove the tail recursion to make it iterative.
Input: The set of objects to be indexed, m.
Output: The list of clusters.
Build(S)
1: if S = ∅ then
2: return empty list
3: end if
4: Select c ∈ S
5: Select a radius cov(c)
6: I ← {u ∈ S \ {c}, d(c, u) ≤ cov(c)}
7: E ← S \ I
8: return (c, cov(c), I)::Build(E)

Please note that the number of centers in the algorithm 1 is unknown beforehand.
There are two possible parameters, the number of objects inside a ball, or the radius
of the ball. This defines in a intrinsic way the number of centers. As proposed in the
original paper, we select the number of centers, i.e. n/m, as a simple way to select the
required parameters.

The searching procedure is described in algorithm 2. When the intrinsic dimension-
ality of the data is high, then most of the balls need examination. To bound the searching
complexity in [8] the authors used probabilistic arguments to show the complexity of
the searching, showing it must be O(nα) distance computations, for some α ≤ 1 which
depend on the distribution of the data.

1.4 Our Contribution

This paper introduces a simple and effective metric index, the Reverse Nearest Neighbor
List of Clusters (Rev-LC). The preprocessing time of Rev-LC is way smaller than the

The List of Clusters Revisited 191

c3 r3

r2

c2

c1
r1

(a) The influence zones of three
centers taken in this order: c1, c2,
c3.

c

q1

q2

q3

r

r

(b) The three cases of query
ball versus center ball.

I

(c2,r2)(c1,r1) (c3,r3)

E E E

I I

(c) The list arrangement for the data structure.

Fig. 1. Illustrations of the LC’s data structure and the querying procedure. In all figures cov(ci) =
ri. The cases of querying are showin in figure 1(b), the case depicted by q1 requires to consider
the current bucket and the rest of centers. For q2 we can prune the search inside the rest of the
partitions. For q3 we can avoid considering the current bucket.

ALGORITHM 2. The searching algorithm. The main loop (line 2) visits triples in the order
found at L.
Input: The list of clusters L, the query (q, r)d.
Output: The result set R.
1: Let R← ∅
2: for all (c, cov(c), I) ∈ L do
3: Let dcq = d(c, q)
4: R← R ∪ {c} if dcq ≤ r
5: if dcq ≤ cov(c) + r then
6: for all u ∈ I do
7: R← R ∪ {u} if d(u, q) ≤ r
8: end for
9: end if

10: stop loop if dcq < cov(c)− r
11: end for

LC in most cases. The central idea is to select the centers beforehand (say m of them)
instead of obtaining them in the recursive construction of the list.

Our construction time is in worst case O(nm), but it is likely to achieve O(nmα)
for some α ≤ 1.

Since all the centers are selected beforehand, once certain order is established, popu-
lating the balls around each center can be done in parallel. This particular feature make
the index suitable for taking advantage of modern hardware. We conducted a thorough
experimentation to demonstrate the efficiency of the new index.

192 E. Sadit Tellez and E. Chávez

2 Revisiting the List of Clusters

The searching algorithm depicted in figure 1(b) can work with any partition of the
database. It should be clear that if we have an arbitrary partition in the mathematical
sense, i.e. S = ∪Ii and Ii ∩ Ij = ∅, then querying each one of the partition elements Ii
is equivalent to searching the entire database S. The key is to avoid buckets not being
relevant to the query. As pointed out in [1] in this schema we can fit most of the indexes,
the difference consists on the rule to discard partition elements.

If we want to reduce the O(n2) construction complexity of the LC then we need to
examine the origin of the problem. Please notice that in the LC, illustrated in figure 1,
the next center is selected from the unassigned objects, and that the tail recursion is
responsible for the quadratic behavior.

A solution is to choose m centers beforehand and define a Dirichlet domain, just as
if it where a GNAT [12] of one level with very large arity. For convenience, we unzip
LC’s triplets into its three components, i.e. the centers C = c1, c2, · · · , cm, the buckets
I = I1, I2, · · · , Im, and the covering radii COV = cov(c1), cov(c2), · · · , cov(cm). In
order to simplify algorithms, both I and COV are indexed with its entry number i, and
with the corresponding ci center.

ALGORITHM 3. Construction of the Rev-LC
Input: The number of centers, m.
Output: The Rev-LC index, i.e. C, I’s, and COV .
1: C is initialized selecting m random centers from S
2: for all i = 1 to m do
3: Ii ← ∅
4: COVi ← 0
5: end for
6: for all u ∈ S \ C do
7: Let ci to be the nearest neighbor of u in C (ties are arbitrarily broken).
8: Ii ← Ii ∪ {u}
9: COVi ← max {COVi, d(ci, u)}

10: end for

The construction of Rev-LC is depicted by algorithm 3. If we assume no ties for
the nearest neighbors (NN), an alternative succinct definition is Ic = {u ∈ {S \ C} |
NN(u,C) = c}, and COVc = max {d(ci, u) | u ∈ Ic}, i.e., buckets are populated
with the reverse neighbors of each c ∈ C.

The searching procedure is very similar to the original LC since the discarding rule
is the same. We can apply the searching algorithm 2, only avoiding the last condition
(line 10). This is because the Rev-LC divides S into m regions, contrary to the recursive
binary division of the LC.

Assuming C is large enough to resemble the distribution of S, and that the value
of cov(ci) on average corresponds to an small percentile of the cumulative distribution
function of the distances, we would have the same performance conditions of the LC,
and hence theorem 1 also holds.

Theorem 1 (Chavez and Navarro [8]). The number of distance computations per-
formed by the (R-)LC to solve some query is O(nα) for some α ≤ 1.

The List of Clusters Revisited 193

Notice that to follow this theorem we require m = O(nβ), for some β < 1, and in fact,
close to 1, such that n/m = O(n1−β) is quite small, and enough to produce compact
buckets (in the radii sense). Nevertheless, the resulting α is basically larger than that
exposed by the LC. Based on this theorem, we can produce the following conclusion
about the construction of the Rev-LC.

Theorem 2. The preprocessing cost of the Rev-LC is O(nmα+m3/n) for some α ≤ 1.

Proof. From algorithm 3, the preprocessing cost for very high intrinsic dimensional
datasets requires O(nm −m2) distance computations, which is a very pessimistic as-
sumption. For the construction we need n − m nearest neighbor searches over C. We
can use the Rev-LC index for this smaller set. By theorem 1, we need n nearest neighbor
searches in the smaller set C with cost O(mα). The additional O(m3/n) term comes
from the construction of of the Rev-LC index for C, but this time using a sequential
search to retrieve the NN and using the same proportion of centers. �
Please notice that the term m3/n should be small enough, i.e. m3/n < nm/2, follows
that n/m >

√
2. If γ = n/m this can be expressed as n3/(nγ3) � n2/(2γ), yielding

to a simplified formulae n2/γ3 � n2/(2γ).
Even if γ = O(1) the cost would be small enough. For example, if γ = 12 (i.e.

a suggested value of the bucket size for high intrinsic dimensional data sets according
to [8]), we obtain that n2/1728 � n2/24. Thus, the O(m3/n) overhead is negligible,
we can take only the significant term O(nmα) as the processing time for building the
Rev-LC index for S.

The parallelization of the construction is straightforward, unlike the LC algorithm.
A simple modification of the algorithm 3 is required at line 6, here we must search the
nearest neighbor in C in parallel, line 7. Finally, the rest of the lines inside the loop
must be serialized. We call this version of the algorithm as Parallel Rev-LC (PRev-LC).

3 Description of Datasets

Due to space restrictions we show only experiments for synthetic datasets, showing the
performance as a function of the dimension of the data and the size of the database.

It is worth noticing that even if our datasets are vector spaces, we are not using the
coordinates to discard elements. We use the distance as a black box. This allows to work
with the data disregarding its representation, all we need is a distance function to index
the data.

We use six databases of randomly generated vectors in the unitary hypercube are
used. We generate n = 106 random vectors of 4, 8, 12, 16, 20, and 24 dimensions.
We averaged two hundred nearest neighbor queries in the plots. Each query object is a
randomly generated vector of the dimension of the dataset.

4 Experiments

All the algorithms were written in C#, with the Mono framework1. Algorithms and
indexes are available as open source software in the natix project2. The experimentation

1 http://www.mono-project.org
2 http://www.natix.org

http://www.mono-project.org
http://www.natix.org

194 E. Sadit Tellez and E. Chávez

was executed in a four quad-core Intel Xeon 2.40 GHz workstation with 32 GiB of
RAM, running CentOS Linux. The entire databases and indexes are maintained in main
memory and without exploiting any parallel capabilities of the workstation, excepting
for the PRev-LC. On the parallel version, the setup was left to the default configuration
of the parallel tasks of the mono framework.

We present an experimental comparison of our Rev-LC index against the LC, in both
preprocessing and querying time. As it is customary we count the number of distances
computed in each one of them to compare. We also measured the total time elapsed in
the construction.

4.1 Construction Time

We selected a cheap distance for testing the construction. Since we will count the num-
ber of distance computations this is a fair benchmark. Our choice is a four dimensional
dataset of one million vectors. The results are reported in table 2. The time to build the
LC is more than twice larger than the Rev-LC for n/m of 1024 and 128, this grows to
17.5 times for n/m = 16, it is evident the advantage of our method. The parallel al-
gorithm (PRev-LC) have the faster preprocessing times, it runs close to 10 times faster
than the LC for n/m = 1024, and more than 46 times faster for n/m = 16.

Table 2. Construction time for random vectors of dimension 4 and n = 106

method n/m m preprocessing time
seconds human readable

LC 1024 976 331.13 5 min 31.13 sec.
LC 128 7812 2056.5 34 min 16.52 sec.
LC 16 62500 16163.16 4 hours 29 min.
Rev-LC 1024 976 168.65 2 min 48.65 sec.
Rev-LC 128 7812 895.41 14 min 55.41 sec.
Rev-LC 16 62500 920.61 15 min 20.61 sec.
PRev-LC 1024 976 35.50 35.50 sec.
PRev-LC 128 7812 327.57 5 min 27.57 sec.
PRev-LC 16 62500 348.11 5 min 48.11 sec.

4.2 Search Performance

In the figure 2, the number of distance computations to retrieve the nearest neighbor in
different intrinsic dimensional datasets is shown. The LC have fixed bucket size while
the Rev-LC has a fixed number of centers, m. Each plot title is the bucket size (or the
expected bucket size in the case of Rev-LC), and its number of centers (in this order).

From figure 2 we learn that there is a small penalty in the Rev-LC when compared to
the LC. The number of distances is shown in figures 2(b) and 2(d), for LC and Rev-LC
respectively. We must notice that the behavior of the Rev-LC is more faithful to the
LC for larger m (smaller n/m values), this is an effect of Theorem 1. Furthermore, the
real time behavior is more tight than the cost driven on counting distance computations.
Nevertheless, we must encourage that the Rev-LC never reaches the performance of the
LC, but this can be improved by increasing the number of centers, and hence we can
make the difference as small as desired. In addition, the faster preprocessing step makes
the Rev-LC and PRev-LC a competitive real option for large datasets.

The List of Clusters Revisited 195

 1000

 10000

 100000

 1e+06

4 8 12 16 20 24

co
m

pu
te

d
di

st
an

ce
s

dimension

Database's review (n=106)

16-62500
32-31250
64-15625
128-7812
256-3906
512-1953
1024-976

(a) LC’s review of the database

 0.001

 0.01

 0.1

 1

4 8 12 16 20 24

av
g.

 s
ea

rc
h

tim
e

(s
ec

on
ds

)

dimension

Search time (n=106)

16-62500
32-31250
64-15625
128-7812
256-3906
512-1953
1024-976

(b) LC’s search time

 1000

 10000

 100000

 1e+06

4 8 12 16 20 24

co
m

pu
te

d
di

st
an

ce
s

dimension

Database's review (n=106)

16-62500
32-31250
64-15625
128-7812
256-3906
512-1953
1024-976

(c) Rev-LC’s review of the database

 0.001

 0.01

 0.1

 1

 10

4 8 12 16 20 24

av
g.

 s
ea

rc
h

tim
e

(s
ec

on
ds

)

dimension

Search time (n=106)

16-62500
32-31250
64-15625
128-7812
256-3906
512-1953
1024-976

(d) Rev-LC’s search time

Fig. 2. Behavior of the Rev-LC and the LC for the nearest neighbor search for increasing intrinsic
dimension

5 Conclusions and Future Work

We presented a new index for general metric spaces. This index uses a similar searching
algorithm of the well known List of Clusters. The key difference is a better construc-
tion time and the trivial parallelization of the index. This last feature makes the index
suitable to exploit better the available power of modern hardware.

There is also immediate use for metric join operations as the one described in [13].
In addition, a dynamic index, i.e that supporting insertions and deletions, seems to be
simpler to implement for the Rev-LC than for the LC, since the invariant is easier to
maintain. Also, the dynamic Rev-LC promises to be useful even on highly transactional
environments. Finally, we are working on the parallelization of the searching process
too, trying to maximize the exploitation of the parallel capabilities available in modern
multicore architectures.

References

1. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquı́n, J.L.: Searching in metric spaces. ACM
Comput. Surv. 33(3), 273–321 (2001)

2. Samet, H.: Foundations of Multidimensional and Metric Data Structures, 1st edn. The Mor-
gan Kaufman Series in Computer Graphics and Geometic Modeling. Morgan Kaufmann
Publishers, University of Maryland at College Park (2006)

196 E. Sadit Tellez and E. Chávez

3. Hjaltason, G.R., Samet, H.: Index-driven similarity search in metric spaces (survey article).
ACM Trans. Database Syst. 28(4), 517–580 (2003)

4. Vidal Ruiz, E.: An algorithm for finding nearest neighbours in (approximately) constant av-
erage time. Pattern Recognition Letters 4, 145–157 (2005)

5. Micó, M.L., Oncina, J., Vidal, E.: A new version of the nearest-neighbour approximating
and eliminating search algorithm (aesa) with linear preprocessing time and memory require-
ments. Pattern Recogn. Lett. 15, 9–17 (1994)

6. Chávez, E., Marroquin, J., Navarro, G.: Fixed queries array: A fast and economical data
structure for proximity searching. Multimedia Tools and Applications (MTAP) 14(2), 113–
135 (2001)

7. Chávez, E., Figueroa, K.: Faster Proximity Searching in Metric Data. In: Monroy, R., Arroyo-
Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 222–
231. Springer, Heidelberg (2004)

8. Chávez, E., Navarro, G.: A compact space decomposition for effective metric indexing. Pat-
tern Recogn. Lett. 26, 1363–1376 (2005)

9. Baeza-Yates, R., Navarro, G.: Fast approximate string matching in a dictionary. In: Proc.
5th International Symposium on String Processing and Information Retrieval (SPIRE),
pp. 14–22. IEEE CS Press (1998)

10. Uhlmann, J.: Satisfying general proximity/similarity queries with metric trees. Information
Processing Letters 40(4), 175–179 (1991)

11. Burkhard, W., Keller, R.: Some approaches to best-match file searching. Communications of
the ACM 16(4), 230–236 (1973)

12. Brin, S.: Near neighbor search in large metric spaces. In: Proceedings of the 21th Interna-
tional Conference on Very Large Data Bases, VLDB 1995, pp. 574–584. Morgan Kaufmann
Publishers Inc., San Francisco (1995)

13. Paredes, R., Reyes, N.: Solving similarity joins and range queries in metric spaces with the
list of twin clusters. J. of Discrete Algorithms 7, 18–35 (2009)

	The List of Clusters Revisited
	Introduction
	Preliminaries
	Pivot Based Indexes
	Compact Partition Indexes
	Our Contribution

	Revisiting the List of Clusters
	Description of Datasets
	Experiments
	Construction Time
	Search Performance

	Conclusions and Future Work
	References

