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Abstract. In component-based software development, applications are
decomposed, e.g., into functional and non-functional components which
have to be composed to a working system. The composition of non-
functional behavior from different non-functional domains such as se-
curity, reliability, and performance is particularly complex. Finding a
valid composition is challenging because there are different types of in-
terdependencies between concerns, e.g. mutual exclusion, conflicts, and
ordering restrictions, which should not be violated.

In this paper we formalize a set of interdependency types between
non-functional actions realizing non-functional behavior. These interde-
pendencies can either be specified explicitly or implicitly by taking action
properties into account. This rich set of interdependencies can then be
used to ease the task of action composition by validating compositions
against interdependency constraints, proposing conflict resolution strate-
gies, and by applying our guided composition procedure. This procedure
proposes next valid modeling steps leading to conflict-free compositions.

Keywords: Feature Interaction, NFC Composition, Model-driven
development, Web Services.

1 Introduction

Non-functional behavior — in contrast to functional behavior — does not pro-
vide consumable business functionality. The execution of non-functional be-
havior rather improves the quality of a software system by satisfying certain
non-functional attributes. For example, an encryption algorithm is a behavior
which can be executed in order to support confidentiality. Functional behav-
ior is often encapsulated by the main language constructs of the underlying
programming platform such as operations or classes in case of object-oriented
languages whereas non-functional behavior is hard to modularize by these con-
structs. Hence, language extensions have been introduced such as aspect-oriented
programming which offers aspects to complement the deficiency of modularizing
crosscutting concerns.
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In [15] and [16], we introduced a model-driven approach for composing non-
functional concerns in web services. This approach supports web services (black
box view) and composite web services (gray box view) as well as the specification
and enforcement of non-functional concerns. It is based on a well-defined pro-
cess with different phases: requirements specification, action definition, action
composition, action-to-service mapping, action-to-middleware-service mapping,
and generation of NFC enforcement code. In our approach, the non-functional
behavior is represented by non-functional actions (NFAs), defined in the action
definition phase, which are supporting certain non-functional attributes defined
in the requirements specification phase. Non-functional behavior is often non-
orthogonal, i.e., when there are multiple actions activated simultaneously, a cer-
tain execution order has to be respected (cf. Beauvois [I]). More generally, there
are different types of interdependencies (aka. interactions as motivated by [14],
[11], [4]) between NFAs, e.g., mutual exclusion, data dependencies, and ordering
restrictions. These interdependencies are constraints upon the execution of be-
havior. Consequently, a set of NFAs should constitute a well-defined execution
order which can be defined in the action composition phase. The action compo-
sitions can then be mapped to web services in the mapping phase and related to
concrete middleware services implementing the runtime behavior of NFAs. This
allows to generate code for enforcing the composition at runtime.

In our previous works, we have already defined the modeling framework for the
black and gray box view and provided a runtime environment based on proxies
to enforce the models at runtime. In this paper, we complement this work by
adding tool support to the complex task of action composition. This composition
is modeled by domain experts; however, knowledge from different non-functional
domains is required in order to understand the impact of different NFAs. This
knowledge should be captured by a reusable model and provided to the domain
experts. The contributions of this paper are thus more specifically:

— Defining a formal interdependency model that helps to identify invalid com-
position definitions at design time.
— Enriching this model by discovery of cross-domain interdependencies through
analysis of the data impact of NFAs.
— Using the interdependency model to provide support for composing NFAs
by:
e visualizing constraint violations in the composition,
e suggesting conflict resolution strategies for violated constraints,
e introducing a guided modeling procedure.

The structure of the paper is as follows. In Section 2l our interdependency model
is introduced and additional properties are described which can be used to dis-
cover implicit interdependencies. Section [3] describes our solution for modeling
conflict-free compositions of non-functional behavior. In Sectiond] the implemen-
tation of the modeling tool is described. Furthermore, our approach is evaluated
by instantiating it in the web services context. Section [l analyzes related work
and Section [0] concludes this paper.



82 B. Schmeling et al.

2 Formalizing the Interdependency Model

2.1 Tasks and Actions

Let A be a set of NFAs, and let 7 be tasks each executing an NFA. We define
executes C T x A as the relation defining which task executes which action. In
contrast to actions, tasks are part of a specific execution context (i.e., a process)
and therefore have a well-defined execution order. This relation can be compared
to the relation between BPMN [12] service tasks and the services called by these
tasks. More details of the composition model can be found in Section 3.1l

2.2 Interdependencies

We define 7 := mutex U requires U precedes as the set of interdependencies
between actions and tasks. More specifically it is:

— requires = {(z1,22) € (Ax A)U (7T x T) | Execution of z; requires the
execution of x5}

— precedes = {(x1,22) € (Ax A)U(T xT) | If 21 and z2 are both executed,
x1 has to be executed before x2}

— mutex = {(z1,72) € (A x A) U (7 x T) | Execution of z; excludes the
execution of xo}

From a given set of interdependencies, further interdependencies can be in-
ferred by symmetry and transitivity. Mutez is symmetric, i.e., mutex(x1,x2) —
mutex(xa, x1). Requires and precedes are both transitive, i.e., precedes(xy, z2) A
precedes(xa, x3) — precedes(x1,x3) (where x1,z9,23 € AU T). In addition to
these interdependencies, there are also action properties that play an important
role for the composition. These properties can be categorized into data-related
properties and control-flow-related properties (not in the scope of this paper).

2.3 Data Dependencies

Let A be a set of actions and D be a set of data items (which can be of complex
type) and a € A and d € D. Then, P := {read, add, remove, modi fy} is the set
of binary relations between actions and data which we call impact types (because
they define the impact on data) with the following semantics:

— read = {(a,d) € A x D | a reads data item d}

add = {(a,d) € Ax D | a adds data to data item d}

— remove = {(a,d) € A x D | a removes data item d}

— modify = {(a,d) € Ax D | a modifies (and reads) data item d}

Let a and b be actions accessing data item d and let a be executed directly before
b, i.e., there is no other action ¢ # a, b accessing d executed between a and b.
Then, there are 16 possible combinations of impact types to be analyzed. We
found 10 combinations that cause or might cause conflicts w.r.t. their impact on
data as shown in Table [
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Table 1. Conflicting combinations of impact types: — conflict, (—) potential conflict,
+ no conflict, (+) warning, R = reverse order also in conflict. Subscripted numbers
indicate the number of the enumeration item which explains the respective conflict.

read(b,d) add(b,d) remove(b,d) modify(b,d)

read(a,d) + - + +
add(a,d) + Br G5 +
remove(a,d) - + Tz T r

modify(a,d) () - (HRr) (1ax)

1. remove(a,d) Aread(b,d) Data d is removed by a before b is able to read it.

2. read(a,d) A add(b,d) Data d is read by a before b adds it. Either d exists
before execution of a which would lead to duplicated data by the execution
of b, or d has to be added by b because it does not exist, so a would read
non-existing data.

3. modify(a,d) A add(b,d) Data d is modified by a before b adds it. This
combination is similar to 2] because Ya € A.modify(a,d) — read(a,d).

4. modify(a,d) Aread(b,d) Data d is modified by a before b can read it. This
might be a potential conflict because ¢ modifies the data which causes a
state change from d; to ds. It depends which state b expects. If b expects d
to be in state dy, this combination is a conflict.

5. add(a,d) A remove(b,d) Data d is added by a and then removed by b. Re-
moving data directly after adding it makes no sense, but does not cause
problems at runtime.

6. add(a,d)Aadd(b,d) Data d is added by action a and b and hence duplicated.
7. remove(a,d) A remove(b,d) Data d is removed by action a and b. After
execution of a, data d does not exist anymore; hence b cannot remove it.

8. modify(a,d) A remove(b,d) Data d is modified by a and then removed by
b. Removing data directly after modifying it makes no sense, but does not
cause problems at runtime.

9. remove(a,d) Amodify(b,d) Data d is removed by action a and then modified
by b. This is similar to [Il because Ya € A.modify(a,d) — read(a,d).

10. modify(a,d) Amodify(b,d) Data d is modified by a and then modified again
by b. As modify also reads data, this is similar to [l

We will discuss strategies for resolving these conflicts in the following. Since the
strategies can only be applied when the execution order of actions is already
known, we assume tasks x and y executing conflicting actions a and b which
access the same data item d such that x is executed before y and there is no task
z between them which also accesses d. The first five conflict situations are resolv-
able by inverting the execution order of tasks z and y because the reverse order
causes no data conflicts as can be seen in Table[Il For those combinations, we add
the precedes interdependency to the set of interdependencies, i.e., precedes(y, )
in this case. All other combinations cannot be resolved by reordering because the
inverse order might also cause conflicts. Those conflicts can be resolved either
by removing one of the tasks or by executing them exclusively, i.e., by executing
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either = or y depending on some condition. For all those combinations, we add
mutez to the set of the existing interdependencies, i.e., mutex(z,y) in this case.

3 Towards Conflict-Free Action Compositions

3.1 The Composition Model

For the composition of actions, we use a subset of BPMN2 [I2]. A model in
BPMN2 is a set of nodes and transitions between them. We define our simplified
process model as follows. A non-functional activity is a directed graph containing
all process elements. We define activity := (N, E) with the following semantics:

N :={z|node(z)} = {z|z is process node}
& ={(z, y)|transition(z,y)}
={(x,y) € N x N|there is a transition from x to y}
start :={x|z is the start node of the process}
end :={z|z is an end node of the process}
T :={z|task(z)} = {x|x is task node} C N
G :={z|gateway(z)} = {z|z is gateway node} C N
XOR :={z|gw_xor(x)} = {z|z is xor gateway} C G
OR :={z|gw_or(z)} = {z|z is or gateway} C G
AND :={z|gw_and(x)} = {z|z is and gateway} C G
M :=(T,XOR,0OR, AND, start, end)
M is a tuple of sets My, Mj... and each node n is exactly in one of its set elements:

(Vi,j < [M|)M; " M; =0 for i # j, and (Vn € N')(3i)n € M;. Moreover, there
is exactly one start node: |start| = 1.

3.2 Identifying Constraint Violations

To identify violations of the given interdependency constraints, we have to check
a non-functional activity against each individual interdependency. For each in-
terdependency ¢ = (a,b) € Z, the occurrence and order of actions (or tasks) a
and b in the same execution path can lead to constraint violations depending on
the given type. Hence, all possible execution paths through the process graph
have to be analyzed. The number of those paths depends on the control flow
of the process, more specifically on the number of OR and XOR gateways and
the number of outgoing sequence flows per gateway. Presuming all gateways are
used in sequence and out : G — N is a function that calculates the number of
outgoing sequence flows for each gateway, the number of possible paths for a
given number of XOR and OR gateways, respectively, in the worst case is:

pathsxor: H (out(x)) pa,thsor = H (20“t(95))

TEXOR zeOR
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Obviously, the number of possible paths for OR is much higher than that of
XOR. Let k be the number of all outgoing sequence flows from OR gateways and
traverse be a function which traverses all possible paths, then the complexity of
this function can be estimated using the O-Notation: traverse € O(2*) resulting
in exponential runtime complexity. Since there are already existing methods
for searching defined spaces for possible solutions, we decided to leverage those
solutions. We make use of the declarative Prolog language because it provides
very efficient ways to do depth-first search with backtracking.

3.3 Using Prolog to Find Violations and Counter Examples

In order to use Prolog for constraint checking, we have to import our BPMN
models into Prolog. This can be achieved by transforming activities into a fact
data base which contains a set of predicates. Hence, the following predicates
have been defined: start(z), end(x), task(z), gw_zor(z), gw_or(z), gw_and(z),
node(x), transition(z,y), and executes(z, a). The last predicate defines that the
task node z of the process executes action a. We distinguish between tasks and
actions in order to cope with processes in which different task nodes execute the
same action. The constraints given by the interdependency model form the rules
that should apply to the fact base. However, the challenge for defining these
rules was that the violation of some rule should not result in a simple boolean
true or false decision, but should also provide some counter examples to give the
modeler of non-functional activities constructive feedback.

With its backtracking concepts, Prolog allows for obtaining all values for which
a certain predicate evaluates to true. Therefore, we defined a predicate with pa-
rameters A, B, X, Y, and P for each interdependency type so that the predicates
are true if and only if P is a counter example for the respective interdependency
regarding the actions A and B which are executed in nodes X and Y, respec-
tively. Within a query, Prolog distinguishes between constants and variables:
If a variable is used for a certain parameter of a predicate, Prolog will search
for values of this variable fulfilling the predicate whereas constant parameters
restrict the search space. We may assume to have a constant list of interdepen-
dencies between actions and tasks. In case of an action interdependency, we can
just apply the appropriate predicate for the respective interdependency type to
constants for A and B and variables X, Y, and P for Prolog to yield possible
counter examples as solutions for X, Y, and P. In case of a task interdependency,
the procedure is analogous, but then we use the task constants for X and Y.

Regarding the structural representation of counter examples, we introduced
the following concepts of paths in BPMN processes: A Plain Graph Path
(PGP) from X to Y is a simple path from X to Y in the BPMN process graph
as known from graph theory of directed graphs. It is represented as the list of
nodes contained in the path. A Block Path (BP) is a PGP where nodes between
opposite gateways are left out. BPs can only exist between two nodes if they
have the same parent node. The term parent node refers to a tree representation
of the BPMN process nodes in which the parent node of each node is the gateway
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in which it is contained, or, if it is not contained in any gateway, an imaginary
root node. For each pair of nodes X, Y with the same parent node, there is
exactly one BP between these nodes if a PGP from X to Y exists. A Block
Execution Path (BEP) is a BP where each gateway node is replaced with a
pair (X, P). X is the replaced gateway node itself, and P is a list of BEPs that
are executed in parallel starting from the gateway X. BEPs respect gateway
semantics, e.g., the number of paths starting from an XOR gateway is always
1. A BEP is therefore an appropriate representation of a concrete execution of
the BPMN process. Particularly, BEPs are used to represent counter examples
in the aforementioned rules. A BEP is called complete if it begins with a start
node and ends with an end node. Specifically, we defined the following rules for
the interdependency types, each starting with ce as an abbreviation for counter
example. Lets assume that P is a complete BEP, then it is:

— ce_conflicts(A,B,X,Y, P) is true if P contains both X and Y which in
turn execute the actions A and B, respectively.

— ce_precedes(A, B, X,Y, P) is true if both action A and action B are executed
in P, but task Y which executes B is in that path not guaranteed to be
preceded by another task which executes A. X is just any task executing A
in this path. Intuitively, this predicate is true if action A is not guaranteed
to be executed before B. This is the case if B appears sequentially before the
first A, or if A and B are executed in parallel paths of the same gateway.

— ce_requires(A, B, XY, P) is true if A is executed by X in P, but there is
no task executing B. By convention, we set Y to 0.

Each of the predicates can be used to obtain counter examples by defining con-
stants for A and B and using variables for X, Y, and P for which Prolog will
try to find instances which make the predicate true. For that purpose, Prolog
iterates over all complete BEPs and tasks X, Y executing A, B and returns the
first combination fulfilling the respective predicate. If no counter example exists,
no solution will be found.

3.4 Conflict Resolution

After identifying interdependency violations in a non-functional activity, strate-
gies for solving these conflicts should be defined. Let us assume that (a,b) € 7 is
a violated task or action interdependency. Table 2] shows the different strategy
classes. The difference between rearrange and mowve is that with rearrange an
action will not move from one execution branch to another. As can be seen in
the table, all resolution strategies might impose new conflicts. To avoid these
undesired side effects we analyzed under which conditions a certain strategy can
be applied safely. Due to space limitations we only give a short example for the
remove action strategy. Before remove action can be applied safely to action a,
for instance, we just have to check if there is a requires interdependency from
any other action to a. In general, we distinguish both safe and potentially unsafe
strategies.
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Table 2. Resolution strategies: Interdependency conflicts solved and introduced

Resolution Strategy Solves Might Introduce
Remove Action Mutex, Prec Req

Insert Action Req, Prec  Prec, Mutex
Rearrange Action Prec Prec

Move Action All All

Transform Gateway — All All

3.5 Conflict-Free Composition Procedure

As we have seen in the previous subsection, it is complex to provide a valida-
tion mechanism with automatic conflict resolution. Mostly, some kind of human
intervention is required at some point. It is even harder to propose a complete
conflict-free activity because of the possibly small sets of given interdependen-
cies. In order to combine the power of our validation approach with the ability of
human non-functional domain experts to compose activities, we propose to use
a guided modeling procedure. The idea is that a composition tool can be used
to model a start event and the tool then proposes the next valid steps leading
always to correct processes w.r.t. interdependency constraints. For that purpose,
we had to extend our Prolog implementation in the following way: It should take
a predefined set of candidate actions and the BPMN node from where to insert
the next action as input. The output should be a list of valid actions which,
when inserted at this point, would not cause any interdependency violation.

The concrete process for obtaining a list of valid actions A to be proposed for
insertion at a certain position consists of the following steps: (1) Virtually extend
the current (incomplete) BPMN process by adding a placeholder task x at the
position where the user wants to insert a new element. Also, for each node of the
process without an outgoing edge, add an edge to the end event which is newly
created if necessary. This allows to have a complete BPMN process enclosed by
a start and an end event which our Prolog program is able to process. (2) Send
a query to Prolog to obtain all actions I which would violate a constraint if
they were executed by x. This query is based on the Prolog model of the BPMN
process such as used during validation and, additionally, on the Prolog model
of all interdependencies relevant for the BPMN process. These are expressed in
terms of a list of Prolog facts based on Prolog predicates precedes, requires,
and con flicts, each having two parameters defining the actions or tasks between
which the respective interdependency exists. The query also contains the list of
candidate actions C' to be tested at the position of z. (3) Our Prolog program
then consecutively assumes z to execute each of the candidate actions and re-
turns the list I of them for which at least one of the defined interdependencies
is violated. (4) The actions A := C'\ I are proposed to the user for insertion at
the specified position. As, by definition of the proposed actions A, the obtained
process after insertion of one of them would never result in a new constraint
violation, we state that this composition technique considerably facilitates the
definition of conflict-free compositions.
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4 Running Example and Implementation

In [I5] and [16], we introduced a new methodology for composing non-functional
concerns in web services. This methodology proposes an engineering process
with different phases. These phases are in general (with slight modifications)
applicable to all kinds of software systems since they do not assume any concrete
technology. However, the mapping phase is web-service-specific because actions
and activities are mapped to concrete web services. In the following, we will
use web services as a concrete technology for applying our abstract approach
in order to show the instantiation of the interdependency model and to prove
the applicability of the conflict detection and our solution strategy. Thereby,
we will adhere to a part of the modeling procedure from our previous works as
presented in the introduction, namely requirements definition, action definition,
and action composition. For each of these phases — and also for the action-to-
service mapping which is not in the focus of this paper — a separate editor has
been implemented within the Eclipse IDE using the Graphiti frameworkl.

Let us assume an enterprise which has transformed its IT assets into a set
of commercial web services. We further assume these web services have been
implemented in different programming languages, e.g., due to constraints in-
troduced by some legacy systems. During the development of the web service,
non-functional concerns have been ignored on purpose: they should be strictly
separated from the business functionality of the services. Hence, depending on
the respective features the service provides, different non-functional requirements
have been identified. For example, since the services are commercial, authenti-
cation and authorization are required to restrict the access to the services only
to registered customers. To bill the customers based on the service usage, an
accounting mechanism is required as well as support for non-repudiation and
integrity of the messages. Furthermore, the company decided to log messages in
the early introduction phase and to monitor the response time of their services.
Another requirement is that the response time should be as low as possible.

The security, billing/accounting, performance, monitoring/logging, and gen-
eral web service experts of the company transform the requirements into non-
functional actions capable of fulfilling the requirements. The security expert
knows how to support the security requirements and defines the following ac-
tions using our action editor: Authenticate (for authenticity), Authorize, and
VerifySignature (for non-repudiation and integrity). Having defined those ac-
tions, the security expert identifies possible interdependencies between them. He
defines that Authenticate has to precede Authorize and that Authorize requires
Authenticate. Furthermore, he uses XPath [5] expressions to describe the data
items of the SOAP message which the actions have an impact on, e.g., Authen-
ticate will read the UsernameToken which is part of the Security XML tag of
the SOAP message header. A summary of all actions which have been defined
by all experts can be found in Table Bl Table @ (Column 1) summarizes all in-
terdependencies that have been discovered by the experts. In the example, one

!http://eclipse.org/, http://www.eclipse.org/graphiti/
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Table 3. Actions and their impact

Action Expert Impact (XPath)

Authenticate Security Read(/Header/Security /UsernameToken)

Authorize Security Read(/Header/Security /UsernameToken)

VerifySignature Security Read(/Header/Security /BinarySecurityToken,
/Security /Signature)

RemSecHeaders Security Remove(/Header/Security)

Log Log/Mon. Read(/Message//*)

StartTimer Log/Mon. None

StopTimer Log/Mon. None

ReadFromCache Perform. Read(/Body//*)
RemoteAccounting Acc./Bill. Read(/Body//*)
LocalAccounting  Acc./Bill. Read(/Body//*)
RemAllHeaders General Remove(/Header//*)

can see that most of the interdependencies are only discovered between actions
defined by the same expert. Cross-concern interdependencies are only defined by
the accounting expert who knows that due to legal issues he has to prove that a
service invocation has really been caused by a certain customer. Cross-concern
interdependencies are generally hard to identify because the experts have to
understand and analyze all actions of all non-functional domains.

Table 4. Explicitly defined & implicit interdependencies

Explicit Interdependencies Implicit Interdependencies
precedes(Authenticate, Authorize) precedes(Authenticate, RemAllHeaders)
requires(Authorize, Authenticate) precedes(Authorize, RemAllHeaders)
precedes(StartTimer, StopTimer) precedes(VerifySignature, RemAllHeaders)
requires(StopTimer, StartTimer) precedes(Log, RemAllHeaders)

requires(LocalAccounting, VerifySignature) precedes(Log, RemSecHeaders)
requires(RemoteAccounting, VerifySignature) mutex(RemSecHeaders, RemAllHeaders)
mutex(RemoteAccounting, LocalAccounting)

precedes(Authenticate, RemSecHeaders)

precedes(Authorize, RemSecHeaders)

precedes(VerifySignature, RemSecHeaders)

In the next modeling phase, the non-functional activity is created with the
composition editor (shown in Figure [I]) by importing the action definition and
dragging the available actions from the palette into the activity. An action is
executed by a special BPMN task (the arrow symbol) and additional gateways
and sequence flow elements can be used to define the control flow.

When a concrete execution order at the task level is given, the previously
defined interdependencies can be enriched by additional task interdependencies
derived from the data dependencies: Possible data conflicts are identified by an
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Fig. 1. Composition Editor: Conflict detection and resolution

intersection of the XPath expressions defining the data items that are affected
by an action (shown in Table [B]). If there is at least one node that both ex-
pressions have in common, the impact types are compared to each other. If, for
instance, in the given process a task executing the RemAllHeaders action pre-
cedes another task executing an action accessing parts of the message header,
there is a remove-read conflict between the two tasks. This data conflict can be
resolved by introducing a precedes constraint upon these tasks. Another data
conflict can be found when looking at the RemAllHeaders and the RemSecuri-
tyHeaders actions. The latter removes a subset of the data that RemAllHeaders
removes. This is a remove-remove conflict which can be solved by introducing a
mutex interdependency between the tasks executing those actions. The inferable
interdependencies have been collected in Table @] (Column 2).

Validation for a completely modeled action composition can be started by
pushing the Validate button in the composition editor. Internally, the process
and interdependency data, which is saved as an Ecore model, is transformed into
Prolog facts and processed by our Prolog program. A list of all problems is shown
in the problems view: a violation of precedes between Authorize and Authenticate,
a violation of muter between the accounting actions, and two requires violations
due to the lack of VerifySignature. The selected problem is highlighted (see
Figure [Il). Moreover, so-called quick fixes are available via the context menu of
each problem. In our example, the modeler can for example remove one of the
tasks that are executing mutual exclusive actions or introduce an XOR gateway.

In the approach presented above the modeler gets feedback only when he
triggers the validation. However, it is usually better to avoid those mistakes
already during the modeling process. This is supported by our guided modeling
procedure. Using this procedure, the user starts modeling and a context pad
shows all available actions he can add next as shown in Figure Pl In the Graphiti-
based context pad, the next valid actions are shown, e.g., after choosing the
LocalAccounting action, the RemoteAccounting action is not available anymore
except in another branch of an XOR gateway.
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Fig. 2. Composition Editor: Guided composition proposes next valid actions

5 Related Work

5.1 General Approaches

The feature interaction problem, originally from the telecommunications domain,
can also be found in object-oriented and component-oriented systems. For exam-
ple, Pulvermiiller et al. [I3] define features as observable behaviors that can be of
functional or non-functional nature. They distinguish unintended and intended
feature interactions and interactions with positive and with negative effect. The
feature interaction problem is similar to that of interdependencies between NFAs
and also defines similar types of interactions.

Beauvois [I] defines composition constraints for interweaving execution se-
quences when composing non-orthogonal concerns. The author generates a sched-
uler from these constraints which is responsible for capturing all valid execution
sequences in a dynamic way. The functional behavior as well as the compo-
sition constraints are described using an extension of hierarchical finite state
machines. Beauvois describes constraints in form of state machines by describ-
ing the valid execution sequences explicitly whereas we use purely declarative
constraints which fosters reuse and flexibility.

Sanen et al. [I4] provide a conceptual model for concern interactions. They
define a set of interaction types which we extended for our approach. Further-
more, they developed a prototype that automatically generates rules out of this
model in order to improve concern interaction understanding. Those rules are
used to build an expert system to support software engineers during develop-
ment. The input to that expert system is a component composition specification
and the output is a list of interactions and solution tactics. The authors do not
further specify how this interaction list is then processed by a tool or which solu-
tion tactics are generated. They also do not provide interaction types to specify
execution ordering (e.g., there is no precedes interaction).

In the context of data dependencies, various works exist in the area of concur-
rent data management. In one of the earliest, Bernstein [2] gives hints on when
the order of instructions modifying or reading data matters: Three conditions are
identified, namely flow dependence, anti-dependence (mirrored flow dependence),
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and output dependence, which have all influenced our data dependency consid-
erations of Table [Il Bernstein et al. [3] have shaped terms related to database
management systems such as serializability and recoverability. However, this and
related works are mainly about interleaving multiple concurrent transactions in a
serializable manner at runtime whereas in our approach, we aim at ordering data-
accessing actions at design time.

5.2 AOP Approaches

Shaker and Peters [I7] use UML class and statechart diagrams for modeling
core concerns (functional) and aspects (non-functional). In addition, they pro-
vide a statechart weaving language for weaving the functional and non-functional
behavior. The authors present a static analysis of their design model which pro-
duces a list of potential core-aspect and aspect-aspect interactions. The verifica-
tion is done on the woven model. The authors focus more on the static analysis
and verification of their design model whereas in our approach we also provide
resolution strategies and the guided-modeling procedure.

Nagy et al. [I1] analyze problems and requirements for the composition of
multiple aspects that match at the same join point. Furthermore, they pro-
pose a general declarative model for defining constraints upon possible aspect
compositions and show how this model can be applied to AspectJ [I0] and Com-
pose™ [6]. The main requirements they identified are that it should be possible
to specify the execution order of aspects and to define conditional dependen-
cies. There are three types of constraints, namely the pre (an aspect has to be
executed before another), the cond (an aspect is executed depending on the
outcome of another aspect), and the skip constraint (an aspect execution might
be skipped). The constraints are then used to generate a set of concrete valid
execution orders. The problem with this strategy is that the set of valid orders
strongly depends on the quality and quantity of interdependencies. The lower
the quantity of interdependency information, the higher the number of possible
execution orders being generated. To overcome this complexity, our approach
is rather supportive and still involves human interaction. This is comparable to
business process modeling which is also done by human experts. However, in our
approach the interdependencies can also be enriched by the use of data impact
properties.

Katz [9] describes different categories (impact types) of aspects in terms of
semantic transformations of state graphs of the base systems: spectative (read-
only), regulative, and invasive (modify) ones. He defines syntactical identification
procedures to determine the category of an aspect. The main goal of introduc-
ing categories is to simplify proofs of correctness, e.g., w.r.t. liveness and safety
properties. Our approach also aims for the correctness, but mainly on the cor-
rectness of the composition of aspects (NFAs) and not on how aspects influence
the correctness of the base system. Furthermore, in our approach, the category
is determined manually as all aspects are considered black boxes whereas Katz
uses statical analyses to automatically determine the category of an aspect.
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Durr et al. [7I8] abstract the behavior of advices into a resource operation
model which presents common or shared interactions. This model is comple-
mented by a conflict model including data and control flow conflicts. The impact
of advices on data is classified as read, nondestructive write (add), destructive
write (modify), and unknown. They also identify conflicting situations with pairs
of those impact types. In their analyzing process, a message flow graph is gen-
erated which represents all possible paths through the filter set (their approach
is based on Composition Filters). This graph is then used to find the conflicting
paths. In our approach, we also use data or control conflicts (impact types),
but we use this information to enrich our interdependency model which is on a
higher level than the concrete execution paths. Moreover, the constraints on the
composition implied by the interdependencies are not only used for validation
purposes but also for conflict resolution and guided composition. Another dif-
ference is that Durr et al. do static code analysis to determine impact types of
advices whereas in our approach this is done manually.

6 Conclusions

In this paper, we presented our interdependency model which can be used to
discover conflicts in compositions and non-functional behavior already at design
time in order to avoid conflicts at runtime. Additionally, action properties have
been introduced. The benefit of these properties is that they allow — in con-
trast to interdependencies — to regard one action in isolation. This helps to dis-
cover additional interdependencies even across different non-functional domains.
Our rich interdependency model also enables conflict resolution and supports a
guided, conflict-free composition procedure.

The presented concepts have been evaluated in the context of web services. A
realistic web service example has been introduced in order to show the applica-
bility and feasibility of our approach. Moreover, a set of graphical Eclipse-based
editors has been implemented in order to support modelers during the complex
task of action composition. Finally, related work has been identified showing that
most approaches rely on completely automated processes, do not involve human
actors, and thus strongly depend on the quality of the available interdependency
information. These drawbacks are addressed in our approach by firstly obtaining
a rich interdependency model with help of data dependencies and secondly by
introducing our guided composition procedure.

However, our approach also has a few limitations. First, loops in the functional
or non-functional composition logic are not yet supported. Second, interdepen-
dencies between functional and non-functional actions are currently out of scope.
Third, conditions for process branching are not processed by our validation al-
gorithm. These issues need to be investigated in the future.
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