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Abstract. In this paper, we answer the question of what are the nec-
essary conditions under which Correlation Power Attack (CPA), that
essentially targets embedded cryptographic implementations, is optimal
with regards to attacks that exploit the same leakage model. For this pur-
pose, we offer an in-depth theoretical study which aims at determining
the conditions under which the Pearson correlation coefficient is maxi-
mized. Moreover, we propose theoretical metrics to practically verify the
validity of those conditions. Besides, we illustrate our theoretical study
by an experiment on real electromagnetic traces acquired from a DES
cryptographic implementation.

Keywords: Correlation Power Attack (CPA), Estimation theory, Secu-
rity metrics, Spearman attack.

1 Introduction

Recently, E.Prouff et al. have shown in [1] that Side-channel distinguishers are
not only asymptotically equivalent but also can be rewritten one in function of
the other, only by modifying the power consumption model. In particular, they
have established an equivalence between most univariate Side-channel distin-
guishers and Correlation Power Analysis (CPA) performed with different leak-
age models. Besides, based on the same statistical tool (i.e. Pearson coefficient),
it is shown that it is possible to break protected implementations (masking
countermeasure) by considering the leakage at different time samples. Such at-
tacks, called Higher-Order Power Correlations, were suggested and investigated
by T.Messerges in [2]. In this paper, we answer the question of what are the
conditions under which CPA is optimal with regards to attacks that exploit the
same leakage model. The answer we provide is principally based on Estimation
theory. For more in-depth study about Estimation theory, we refer the reader
to [3–5]. The overall goal of this study is to put the Correlation Power Analysis
on a sound theoretical basis, and therefore brighten the task of an evaluator
when assessing the robustness of secure embedded systems against CPA.
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The rest of the paper is organized as follows: first, in Section 2, we discuss
the optimality of CPA. Actually, we define the sufficient conditions to maxi-
mize Pearson correlation coefficient, thereby reaching the optimality of CPA.
Second, in Section 3, we propose theoretical and practical metrics to validate
those conditions. Third, in Section 4, we illustrate the theoretical study by an
experiment on real electromagnetic traces acquired from a DES cryptographic
implementation. Eventually, we conclude the paper in Section 5.

2 The Optimality from the Estimation Theory View
Point

The Approximation Problem. Suppose we want to best approximate Y
with another variable X based on their joint distribution. The approximation
problem is to seek for a function φ( · ) of X that best fits Y among all possible

forms of φ( · ). We write ̂Y = φ(X) and we call ̂Y an estimator of Y . In our
study, the variable X is deterministic since it is theoretically predicted from a
known cryptographic process. Whereas, the variable Y is a real measure acquired
by an oscilloscope. For sake of clarity, in what follows the variable X is called
the prediction and Y the measurement (or the observation). Let ε = Y − ̂Y

denotes the error in estimating Y , and let pos(ε) = pos(Y, ̂Y ) denotes a non
negative function of ε. pos(ε) can be for instance the absolute difference or the

square difference between Y and ̂Y (i.e. |Y − ̂Y | or (Y − ̂Y )2 respectively). The

average cost, i.e., E[pos(Y, ̂Y )], is referred to as the Bayes risk �B. Obviously,
the approximation problem comes down to a minimization problem. In fact,
minimizing the Bayes risk with respect to ̂Y for a given cost function is a proper
solution of the problem. The most popular �B is the Mean Square Error (MSE),
since it is parameter free, straightforward to implement and memory-less. The
MSE measures the average of the squares of the errors. In this case, it is clear
that pos(Y, ̂Y ) = (Y − ̂Y )2. In what follows, we will focus on the important
role played by the MSE in the approximation problem. There are several ways
in which the role of the MSE can be introduced. A particular way for especial
convenience is to work with the L2 space that is defined as the space of square
summable variables1. If Z is a random variable belonging to this space, then the
corresponding norm, called L2 norm, is expressed as ‖Z‖2 =

√

E[Z2]; so that
the distance between two elements Z1 and Z2 of L2 space can be written as
‖Z1−Z2‖2 =

√

E[(Z1 − Z2)2]. Z1 and Z2 are said to be orthogonal (Z1 ⊥ Z2) if
and only if E[(Z1Z2)] = 0. Orthogonality property and mean square convergence
will allow us in the following to introduce the notion of optimal estimation in
the sense of L2 norm. With these notations, the optimal estimator of Y given X ,
in the sense of the L2 norm, is the function ̂Y = φ(X) for which ‖Y − ̂Y ‖22 is a
minimum [4]. But more importantly, it is proved that the conditional expectation
̂Y = E[Y |X ] is the estimator that gives such a minimum. Incidentally, using the
error notation, ε, the MSE is written in the following form:

1 The L2 space is also often referred to as a weighted Euclidean norm.
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MSE(̂Y ) = E[ε2] = ‖Y − ̂Y ‖22 .

Besides, in [6], it is shown that MSE can be expressed as follows:

MSE(̂Y ) = V ar(̂Y ) + bias(̂Y )2 ,

where V ar(̂Y ) is the variance of ̂Y and bias(̂Y ) = E(̂Y ) − Y . Note that for an
unbiased estimator (i.e. bias = 0), the MSE is just the variance of the estimator.
In the literature of estimation theory [7], two naturally desirable properties of
estimators are for them to have minimal MSE and to be unbiased. Common cri-
teria for estimation are Maximum Likelihood Estimator (MLE), Minimum Mean
Squared Error (MMSE) and Maximum A Posteriori Probability (MAP [4]). From
the theoretical point of view, MLE approach is more efficient than the rest of
criteria. But more importantly, estimation theory says that no asymptotically
unbiased estimator has lower MSE than the MLE (see Cramer-Rao Lower Bound
theory) [8–10]. However, in practice, statisticians prefer using MMSE estimator,
specifically in the linear case, which is in fact the approach that minimizes the
MSE in the sense of the L2 norm, because of its simplicity relatively to the
other criteria. Additionally, later on, we will show that, under few assumptions,
MMSE estimator produces the lowest MSE among all estimators, in particular
unbiased ones, and can be derived as a maximum likelihood estimator.

Optimal Linear MMSE Estimation and Connection with Pearson
coefficient. As stated before, the conditional expectation is the optimal es-
timator in the sense of the L2 norm, which is indeed the MMSE estimator.
Hence, the MSE can be rewritten as MSE(̂Y ) = E[ε2] = ‖Y − E[Y |X ]‖22. A
useful property of the MMSE estimator is that the estimation error Y −E[Y |X ]
is orthogonal to every function of the variable X . This property is known as the
Orthogonality Principle that provides a necessary and sufficient condition for the
optimal estimation in the L2 space. More formally, φ(X) is the MMSE estimator
ŶMMSE if and only if the error Y − φ(X) is orthogonal to every function γ(X)
that is:

E [(Y − φ(X)) · γ(X)] = 0 . (1)

Now, the problem is that MMSE is very general; and therefore, the conditional
expectation can be complicated to compute. Nonetheless, the analysis is very
simple when the linear assumption is made (i.e. Linear MMSE, often termed by
LMMSE). For this purpose, statisticians usually make such assumption as a first
approximation. However, when the true data does not fit the linear case, we say
that LMMSE is sub-optimal to the optimal estimate of MMSE. In the context
of side-channel analysis, the linear case has a pure theoretical flavour for us
especially when considering unprotected implementations. But it is noteworthy
that even for unprotected implementations it is possible to have recourse to
what we call linear transformations [11]; and therefore to fall into the linear
case. In “Introduction to optimal estimation” book ( [4] Chapter 3), using the
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orthogonality principle (Eqn. (1)), authors show that when the true data fits
exactly the linear case (i.e. LMMSE is optimal) the associated MSE of ŶLMMSE

is expressed with Pearson coefficient ρ, as follows:

MSELMMSE = σY
2(1− ρ2X,Y ) .

In the linear case, ŶLMMSE is the optimal estimate in the sense of MMSE es-
timation. But more importantly and always from the MMSE estimation point
of view, it is clear that ρ is the optimal metric to measuring the linear associa-
tion between involved variables. Actually, the maximization of ρ2 implies the
minimization of MSELMMSE .

Limitations of Optimal MMSE Estimation. Up to this point, we have
shown that in the linear case Pearson correlation coefficient is an optimal indi-
cator of linearity in the sense of MMSE estimation. However, the MMSE does
not make any assumption about the joint distribution. One may ask: is the Pear-
son correlation still the best linear indicator even if the joint distribution is not
bivariate normal? Indeed, the fact that the MMSE is distribution free2 is often
seen as a weak point in the estimation literature, specifically when performing
a linear estimation (LMMSE). Generally, when no assumption is made about
the joint distribution, it exists two important cases in which the optimality of
LMMSE, relatively to all estimators, is not guaranteed. In other words, in these
cases LMMSE does not give the lowest MSE among the other estimators such
as the Maximum Likelihood Estimator (MLE).

Case 1: Heteroscedasticity This basically occurs when the error of estima-
tion ε depends on the prediction X . The LMMSE only states that the error
of estimation ε is uncorrelated with the prediction X . In the linear case,
this statement follows since Cov(X, ε) is null. However, Cov(X, ε) = 0 does
not imply the independence of X and ε. In other words, even if the linear
estimation is optimal in the sense L2 norm (i.e. E[Y |X ] = α+ βX), it could
exist a relation between X and ε which compromises the efficiency of the
LMMSE in estimating the parameters α and β of the linear model. In this
case, the linear model is said to display a heteroscedasticity. A frequent sit-
uation of heteroscedasticity is that the error is linearly increasing with the
values taken by the prediction X . For such situation, it is easy to verify that
the MLE estimator is more efficient than the LMMSE as it produces the
lowest MSE ( [12] page 398).

Case 2: Imperfect data (aka outliers problem) The data, which is com-
posed by the prediction X and the measurement Y , is often disturbed by
the presence of what we call outliers. An outlier can vaguely be defined as
an observation which shows a different behaviour with regards to observa-
tions composing the data. The reason might be due to the type of variables
(continuous, discrete) and the shape of the marginal distributions of X and
Y respectively.

2 In statistics, a statistical criterion that does not make any assumption about the
joint distribution is said to be “distribution free”.
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Overall Optimality of MMSE. According to case 1 and case 2, the MMSE
is not sufficient to totally characterise the dependence between X and Y , even
if the true relationship between them is linear. More importantly, the Pear-
son correlation coefficient could not be considered as the best linear metric to
measuring the true relationship. In statistic, several candidates exist, such as
Spearman, Kendall or intra-class coefficient correlations, that are designed to be
less sensitive (more robust) to outliers or heteroscedasticity and therefore they
would be better than Pearson coefficient. However, the estimation theory proved
that there exists one and only one condition if satisfied then the MMSE is equiv-
alent to the MLE; and therefore considered to be the optimal estimator among
all estimators, in particular unbiased ones, as it gives the lowest MSE. Thus, the
Pearson coefficient ρ is the best metric for measuring a linear association. This
condition requires that the joint distribution should be bivariate normal [4, 13].
In fact, under the Gaussian assumption, the true relationship is linear, not het-
eroscedastic (i.e. homoscedastic) and not disturbed by some undesirable effects
like the outliers. Note that in this case the error of estimation follows a normal
distribution. Hence, we can state that ρ is the best linear metric only when the
true relationship in the MMSE sense satisfies the Gaussian assumption. If such
assumption is not validated, the MMSE is less efficient than MLE; and therefore
the optimality of CPA is compromised.

Sufficient Conditions for the Optimality. A common pitfall about the va-
lidity of the Gaussian assumption is to check only that X and Y are drawn from
normal distributions. This is not sufficient. Indeed, if X and Y are each individu-
ally Gaussian then this does not imply that they are jointly Gaussian. Generally,
a joint distribution is said to be bivariate normal if all following conditions are
satisfied ( [14] page 54):

1. Linearity The true relationship between X and Y is linear.

2. Normal conditional distribution The conditional distribution of Y given
X = x is normal.

3. Homoscedasticity The conditional distribution of Y given X = x has a
constant variance (i.e. the variance of the error) for each x.

4. Normal marginal distribution The marginal distribution of X is normal
(Gaussian).

We note that, the last condition is independent from the measurements; it is only
dependent on the predictions that are provided by the leakage model. Moreover,
under these conditions, the error ε must be drawn from zero mean normal dis-
tribution. In other words, ε is a random variable strictly independent from X
and that a linear function φ characterizes the dependence between X and Y ,
entirely. In practice, these conditions are not supposed to be strictly verified but
to hold to a certain degree. Actually, in real situations, it is mostly hard to get a
perfect binormal joint distribution. In such situations, the higher the departure
from the Gaussian assumption is, the lower the efficiency of Pearson correlation
coefficient ρ will be.
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3 Practical Metrics Computation

3.1 Deviation from Linearity Metric (DLM)

In statistics, the Correlation ratio coefficient [12] between X and Y is defined
as follows:

ηY |X2 =
V ar

[

E[Y |X ]
]

V ar(Y )
= 1− E

[

V ar[Y |X ]
]

V ar(Y )
.

Unlike the Pearson correlation coefficient ρ which only detects the linear de-
pendency between two variables, the Correlation ratio measures the functional
dependency. In other words, η quantifies the dependency strength whatever the
relation between the two variables, linear or non linear. Similarly to ρ2X,Y , the
Correlation ratio takes on values between 0 and 1. The higher the value of η
is, the higher the functional dependency is. Furthermore, η is asymmetric (i.e.
ηY |X �= ηX|Y ) since the two variables fundamentally do not play the same role
in the functional relationship. In the general context of this paper, the most
important additional properties of η are those which characterize the relation
between η and ρ. These properties are summarized as follows:

ηY |X2 ≥ ρX,Y
2 .

ηY |X2 = ρ2X,Y ⇐⇒ ∃(α, β), E[Y |X ] = α+ βX . (2)

From (2), we can design a new metric which aims at measuring the deviation
from a perfect linear relationship. This metric that we name Deviation from
Linearity Metric (DLM) is expressed by the ratio between the squared Pearson
coefficient and the Correlation ratio as follows:

DLM =
ρ2

η2
∈ [0, 1] .

The DLM ratio takes on values between 0 when the relation is totally curved
and 1 when it is perfectly linear.

3.2 Deviation from Normality Metric (DNM)

In the literature, there exist many variants of statistical tools (e.g. Shapiro-
Wilk test, Lilliefors test, D’Agostino test and Jarque-Bera test [12]) that aim at
measuring the deviation from a normal distribution. For sake of simplicity and
convenience, we used the Jarque-Bera (JB) test as a “Deviation from Normality
Metric” (DNMJB) as it is mainly based on the computation of the skewness
(S) and the kurtosis (K) ( [12]). Hence, the Jarque-Bera metric can be defined
as follows:

DNMJB =
n

6

(

S2 +
1

4
(K − 3)2

)

,

where n is the number of observations. The smaller the value of DNMJB, the
better the approximation by a normal distribution. Indeed, in the case of a
perfect normal distribution, we have DNMJB = 0.
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3.3 Deviation from Homoscedasticity Metric (DHM)

As stated before, homoscedasticity simply requires that the conditional variances
V ar(Y |X = x) are equals. For this purpose, we propose to compute the Coeffi-
cient of variation [12] based dispersion of such conditional variances to measure
the deviation of data from homoscedasticity. The coefficient of variation, which
is a normalized metric for dispersion, is defined as the ratio of the standard de-
viation to the mean. Hence, the metric proposed (DHM) can be expressed as
follows:

DHM =

√

V ar(V ar(Y |X = x))

E(V ar(Y |X = x))
.

The smaller the dispersion DHM , the better the homoscedasticity. Actually, in
the case of a perfect homoscedasticity, we have DHM = 0.

4 Experiments on Real DES Cryptographic
Implementation

In this study, we are interested in the basic attack of the Data Encryption Stan-
dard (DES), that targets the two first rounds of the encryption algorithm. For
this purpose, we acquired real electromagnetic leakage traces from an unpro-
tected DES implementation based ASIC (Secmat V1) [15] circuit (easy to at-
tack by CPA). Recall that the DES implementation is composed of eight different
Sboxes. There are thus eight secret keys to retrieve3. Therefore, in this case, a
Hamming distance HD model can take five possible values, HD = {0, 1, 2, 3, 4},
and 26 key hypotheses are required to break one Sbox. Now, let us analyse the
marginal distributions of the prediction X . The variable X that is represented
by the values taken by HD, is a discrete type variable following a symmetric
distribution [16] β(nb=4,p= 1

2 )
where nb represents the predicted bits in the tar-

geted register R, and p is the success probability. In statistics, if nb is large, say
nb > 20, and p = 1

2 , then the binomial distribution is approximately equal to
the normal distribution [12, 17, 18]. In our case nb � 20, therefore X can not
be strictly approximated to a normal distribution. We note that for a binomial
distribution, the Skewness (S) and the Kurtosis (K) are expressed by the pa-
rameters nb, p and q [12]. In our experiment, we assume that enough traces are
acquired. Thus, p = q = 0.5. Hence, the DNMJB metric defined previously, to
measure the deviation from a normal distribution, is computed as follows:

DNMJB =
nb

6

(

S2 +
1

4
(K − 3)2

)

=
4

6

(

02 +
1

4
(2.5− 3)2

)

= 0.041.

Up to this point, we have only studied the marginal distribution of the prediction
X and calculated theoretically its deviation from a perfect normal distribution.
Therefore, three other conditions are still to be verified to assume the Gaussian

3 For misuse of language, we often use the notion of “broken Sbox” to say that the
secret key corresponding to the attacked Sbox is found.
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case. Fig. 1 represents a CPA differential trace superposed with DNMJB (for
example HD = 4), DLM and DHM metrics. The idea behind calculating such
metrics over the whole time samples of the real DES traces is to reveal more
details, especially when the knowledge about the implementation is not total to
know exactly where the secret information is happened. In this figure, we dis-
tinguish four zones (Z1, Z2, Z3 and Z4), depending on the distribution of the
real leakage over the time samples. In fact, the secret information corresponds
to the zones Z2 , Z3 and Z4 in which CPA differential trace shows high values
(i.e. peaks). But more importantly, we show that the proposed metrics are in
agreement with our theoretical study, as DLM � 1, DHM � 0 and DNM � 0.
Therefore, CPA performance is close to the optimality (Gaussian assumption).
However, Z1 is not suitable for CPA as the linearity metric (DLM) is virtu-
ally equal to zero. Besides, Z4 can not be the best zone for CPA (CPA peak is
not high), because the deviations from normality DNM and homoscedasticity
DHM are relatively high. In what follows, we will be interested only in the zone
Z3 as it shows better performance of CPA than it does for Z2 and Z4. Ac-
tually, we conducted two operations: the first operation consists in performing
and comparing the efficiency of two correlation attacks based on Pearson (CPA)
and Spearman coefficients, respectively. We note that Spearman correlation has
been developed to be more robust4 than the Pearson correlation. Spearman cor-
relation measures both the linear and the non-linear relationship between the
two variables, as it does not require that the observations are drawn from a
bivariate normal distribution. It is a non-parametric correlation that was first

Fig. 1. Illustration of Gaussian assumption metrics on unprotected DES

4 A statistical criterion that does not make any assumption about the joint distribution
is said to be robust or distribution free.
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applied in side-channel context in [19]. In this operation, we will show that the
conditions required to maximize the Pearson coefficient (Gaussian assumption)
hold to a sufficient degree, which makes the CPA more powerful than Spearman
attack. The second operation consists in degrading the quality of acquired traces,
by creating outliers, in order to simulate a situation in which the deviation from
the Gaussian assumption is relatively high. Therefore, we show that in such case,
despite the fact that the true relationship is linear, CPA becomes less powerful
than Spearman attack. Recently, an evaluation metric has been proposed in [20]
to assess the performance of Side-channel analysis: the Guessing Entropy, termed
by GE. In fact, GE metric measures the average position of the secret key in
a list of key hypotheses ranked by a statistical test referred to as distinguisher
(e.g. Pearson coefficient, Spearman coefficient). According to Fig. 2, as expected,
CPA outperforms Spearman attack when applied on original traces. Actually,
to reach the five first ranks, we need 12 traces for CPA. Whereas, 18 traces are
needed for Spearman attack. However, when the quality of original set of traces
is degraded by creating outliers, Spearman attack becomes more powerful than
CPA; which is in agreement with our study.

Fig. 2. GE for CPA and Spearman attacks on original and degraded traces

5 Conclusion

In this paper, we have studied the efficiency of Correlation Power Attack (CPA)
from the estimation theory point of view. This study is useful in that it allows
to assess the performance of CPA; and therefore to decide on the choice of an
appropriate Side-channel distinguisher for the analysis. Actually, if the Gaussian
assumption is satisfied, then CPAmust be the best analysis to quantify the secret
leakage. Besides, if these conditions do not hold to a certain degree, then CPA
might not be efficient and therefore is not the best analysis anymore. In this
case, more powerful attacks and distinguishers like Spearman coefficient should
be investigated.
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