
Chapter 8
Automatic Tree Matching for Analysing
Semantic Similarity in Comparable Text

Erwin Marsi and Emiel Krahmer

8.1 Introduction

Natural languages allow us to express essentially the same underlying meaning in
a virtually unlimited number of alternative surface forms. In other words, there
are often many similar ways to say the same thing. This characteristic poses a
problem for natural language processing applications. Automatic summarisers, for
example, typically rank sentences according to their informativity and then extract
the top n sentences, depending on the required compression ratio. Although the
sentences are essentially treated as independent of each other, they typically are not.
Extracted sentences may have substantial semantic overlap, resulting in unintended
redundancy in the summaries. This is particularly problematic in the case of multi-
document summarisation, where sentences extracted from related documents are
very likely to express similar information in different ways [21]. Provided semantic
similarity between sentences could be detected automatically, this would certainly
help to avoid redundancy in summaries.

Similar arguments can be made for many other NLP applications. Automatic
duplicate and plagiarism detection beyond obvious string overlap requires recogni-
tion of semantic similarity. Automatic question-answering systems may benefit from
clustering semantically similar candidate answers. Intelligent document merging
software, which supports a minimal but lossless merge of several revisions of the
same text, must handle cases of paraphrasing, restructuring, compression, etc. Yet
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another application is in the area of automatic evaluation of machine translation
output [20]. The general problem is that even though system output does not
superficially match any of the human-produced gold standard translations, it may
still be a good translation provided that it expresses the same semantic content.
Measuring the semantic similarity between system output and reference translations
may therefore be a better alternative to the more superficial evaluation measures
currently in use.

In addition to merely detecting semantic similarity, we can ask to what extent
two expressions share meaning. For instance, the meaning of a sentence can
be fully contained in that of another, it may overlap only partly with that of
another, etc. This requires an analysis of the semantic similarity between a pair
of expressions. Like detection, automatic analysis of semantic similarity can play
an important role in NLP applications. To return to the case of multi-document
summarisation, analysing the semantic similarity between sentences extracted from
different documents provides the basis for sentence fusion, a process where a new
sentence is generated that conveys all common information from both sentences
without introducing redundancy [1, 16].

In this paper we present a method for analysing semantic similarity in compara-
ble text. It relies on a combination of morphological and syntactic analysis, lexical
resources such as word nets, and machine learning from examples. We propose to
analyse semantic similarity between sentences by aligning their syntax trees, where
each node is matched to the most similar node in the other tree (if any). In addition,
alignments are labeled according to the type of similarity relation that holds between
the aligned phrases, which supports further processing. For instance, Marsi and
Krahmer [8, 16] describe how to generate different types of sentence fusions on
the basis of this relation labelling.

This chapter is structured in the following way. The next section defines the task
of matching syntactic trees and labelling alignments in a more formal way. This
is followed by an overview of the DAESO corpus, a large parallel monolingual
treebank for Dutch, which forms the basis for developing and testing our approach.
Section 8.4 outlines an algorithm for simultaneous node alignment and relation
labelling. The results of some evaluation experiments are reported in Sect. 8.5. We
finish with a discussion of related work and a conclusion.

8.2 Analysing Semantic Similarity

Analysis of semantic similarity can be approached from different angles. A basic
approach is to use string similarity measures such as the Levenshtein distance or
the Jaccard similarity coefficient. Although cheap and fast, this fails to account
for less obvious cases such as synonyms or syntactic paraphrasing. At the other
extreme, we can perform a deep semantic analysis of two expressions and rely
on formal reasoning to derive a logical relation between them. This approach
suffers from issues with coverage and robustness commonly associated with deep
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Fig. 8.1 Example of two aligned and labeled syntactic trees. For expository reasons the alignment
is not exhaustive

linguistic processing. We therefore argue that the middle ground between these two
extremes currently offers the best solution: analysing semantic similarity by means
of syntactic tree alignment.

Aligning a pair of similar syntactic trees is the process of pairing those nodes that
are most similar. More formally: let v be a node in the syntactic tree T of sentence S
and v0 a node in the syntactic tree T 0 of sentence S 0. A labeled node alignment is a
tuple < v; v0; r > where r is a label from a set of relations. A labeled tree alignment
is a set of labeled node alignments. A labeled tree matching is a tree alignment in
which each node is aligned to at most one other node.

For each node v, its terminal yield STR.v/ is defined as the sequence of all
terminal nodes reachable from v (i.e., a subsequence of sentence S ). Aligning node
v to v0 with label r indicates that relation r holds between their yields STR.v/
and STR.v0/. We label alignments according to a small set of semantic similarity
relations. As an example, consider the following Dutch sentences:

(1) a. Dagelijks
Daily

koffie
coffee

vermindert
diminishes

risico
risk

op
of

Alzheimer
Alzheimer

en
and

Dementie.
Dementia.

b. Drie
Three

koppen
cups

koffie
coffee

per
a

dag
day

reduceert
reduces

kans
chance

op
of

Parkinson
Parkinson

en
and

Dementie.
Dementia.

The corresponding syntax trees and their (partial) alignment is shown in Fig. 8.1.
We distinguish the following five mutually exclusive similarity relations:

1. v equals v0 iff lower-cased STR.v/ and lower-cased STR.v0/ are identical –
example: Dementia equals Dementia;

2. v restates v0 iff STR.v/ is a proper paraphrase of STR.v0/ – example: diminishes
restates reduces;

3. v generalises v0 iff STR.v/ is more general than STR.v0/ – example: daily coffee
generalises three cups of coffee a day;

4. v specifies v0 iff STR.v/ is more specific than STR.v0/ – example: three cups of
coffee a day specifies daily coffee;
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5. v intersects v0 iff STR.v/ and STR.v0/ share meaning, but each also contains
unique information not expressed in the other – example: Alzheimer and
Dementia intersects Parkinson and Dementia.

Our interpretation of these relations is one of common sense rather than strict
logic, akin to the definition of entailment employed in the RTE challenge [4].
Note also that relations are prioritised: equals takes precedence over restates, etc.
Furthermore, equals, restates and intersects are symmetrical, whereas generalises
is the inverse of specifies. Finally, nodes containing unique information, such as
Alzheimer and Parkinson, remain unaligned.

8.3 DAESO Corpus

The DAESO1 corpus is a parallel monolingual treebank for Dutch that contains
parallel and comparable Dutch text from several text domains:

• Alternative Dutch translations of a number of foreign language books
• Auto-cue (text that is automatically presented to a news reader) and subtitle text

from news broadcasts by Dutch and Belgium public television channels
• Similar headlines from online news obtained from the Dutch version of Google

News
• Similar answers from a Question-Answer corpus in the medical domain
• Press releases about the same news event from two major Dutch press agencies

All text was preprocessed in a number of steps. First, text was obtained by
extraction from electronic documents or by OCR and converted to XML. All
text material was subsequently processed with a tokeniser for Dutch [22]. OCR
and tokenisation errors were in part manually corrected. Next, the Alpino parser
for Dutch [2] was used to parse sentences. It provides a relatively theory-neutral
syntactic analysis originally developed for the Spoken Dutch Corpus [25]. It is a
blend of phrase structure analysis and dependency analysis, with a backbone of
phrasal constituents and arcs labeled with syntactic function/dependency labels. Due
to time and cost constraints, parsing errors were not subject to manual correction.

The next stage involved aligning similar sentences (regardless of their syntactic
structure). This involved automatic alignment using heuristic methods, followed
by manual correction using a newly developed alignment annotation tool, called
Hitaext, for visualising and editing alignments between textual segments.2 Annota-
tor guidelines specified that aligned sentences must minimally share a “proposition”,
i.e. a predication over some entity. Just sharing a single entity (typically an noun)

1The acronym of the Detecting And Exploiting Semantic Overlap research project which gave rise
to the corpus; see also http://daeso.uvt.nl
2http://daeso.uvt.nl/hitaext

http://daeso.uvt.nl
http://daeso.uvt.nl/hitaext
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or single predicate (typically a verb or adjective) is insufficient. This prevents
alignment of trees which share virtually no content later on.

The final stage consisted of analysing the semantic similarity of aligned sentences
along the lines described in the previous section. This included manual alignment
of syntactic nodes, as well as labelling these alignments with one of five semantic
relations. This work was carried out by six specially trained annotators. For
creating and labelling alignments, a special-purpose graphical annotation tool called
Algraeph was developed.3

The resulting corpus comprises over 2.1 M tokens, 678 K of which is manually
annotated and 1,511 K is automatically processed. It is freely available for research
purposes.4 It is unique in its size and detailed annotations, and holds great potential
for a wide range of research areas.

8.4 Memory-Based Graph Matcher

In order to automatically perform the alignment and labelling tasks described in
Sect. 8.2, we cast these tasks simultaneously as a combination of exhaustive pairwise
classification using a supervised machine learning algorithm, followed by global
optimisation of the alignments using a combinatorial optimisation algorithm. Input
to the tree matching algorithm is a pair of syntactic trees consisting of a source tree
Ts and a target tree Tt .

Step 1: Feature extraction For each possible pairing of a source node ns in tree
Ts and a target node nt in tree Tt , create an instance consisting of feature values
extracted from the input trees. Features can represent properties of individual nodes,
e.g. the category of the source node is NP, or relations between nodes, e.g. source
and target node share the same part-of-speech.

Step 2: Classification A generic supervised classifier is used to predict a class
label for each instance. The class is either one of the semantic similarity relations or
the special class none, which is interpreted as no alignment. Our implementation
employs the memory-based learner TiMBL [3], a freely available, efficient and
enhanced implementation of k-nearest neighbour classification. The classifier is
trained on instances derived according to Step 1 from a parallel treebank of aligned
and labeled syntactic trees.

Step 3: Weighting Associate a cost with each prediction so that high costs indicate
low confidence in the predicted class and vice versa. We use the normalised entropy
of the class labels in the set of nearest neighbours (H) defined as

3 http://daeso.uvt.nl/algraeph
4www.tst-centrale.org

http://daeso.uvt.nl/algraeph
www.tst-centrale.org
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H D �
P

c2C p.c/ log2 p.c/

log2jC j (8.1)

where C is the set of class labels encountered in the set of nearest neighbours (i.e., a
subset of the five relations plus none), and p.c/ is the probability of class c, which is
simply the proportion of instances with class label c in the set of nearest neighbours.
Intuitively this means that the cost is 0 if all nearest neighbours are of the same class,
whereas the cost goes to 1 if the nearest neighbours are equally distributed over all
possible classes.

Step 4: Matching The classification step results in one-to-many alignment of
nodes. In order to reduce this to just one-to-one alignments, we search for a node
matching which minimises the sum of costs over all alignments. This is a well-
known problem in combinatorial optimisation known as the Assignment Problem.
The equivalent in graph-theoretical terms is a minimum weighted bipartite graph
matching. This problem can be solved in polynomial time (O.n3/) using e.g., the
Hungarian algorithm [9]. The output of the algorithm is the labeled tree matching
obtained by removing all node alignments labeled with the special none relation.

8.5 Experiments

8.5.1 Experimental Setup

These experiments focus on analysing semantic similarity between sentences rather
than merely detecting similarity (as a binary classification task). Hence it is assumed
that there is at least some semantic overlap between comparable sentences and
the task is a detailed analysis of this similarity in terms of a labeled alignment of
syntactic constituents.

8.5.1.1 Data Sets

For developing and testing our alignment algorithm, we used half of the manually
aligned press releases from the DAESO corpus. This data was divided into a
development and held-out test set. The left half of Table 8.1 summarises the
respective sizes of development and test set in terms of number of aligned graph
pairs, number of aligned node pairs and number of tokens. The percentage of
aligned nodes over all graphs is calculated relative to the number of nodes over
all graphs. The right half of Table 8.1 gives the distribution of semantic relations
in the development and test sets. It can be observed that the distribution is fairly
skewed with equals being the majority class.

Development was carried out using ten-fold cross validation on the development
data and consequently reported scores on the development data are average scores



8 Automatic Tree Matching for Analysing Semantic Similarity in Comparable Text 135

Table 8.1 Properties of development and test data sets

Graph Node Aligned Equals Restates Specifies Generalises Intersects
Data pairs pairs Tokens nodes (%) (%) (%) (%) (%) (%)

Develop 2,664 22,741 45,149 47.20 56.61 6.57 7.52 6.38 22.91
Test 547 4,894 10,005 47.05 58.40 7.11 7.40 6.38 20.72

over ten folds. Only two parameters were optimised on the development set. First,
the amount of downsampling of the none class was fixed at 20 %; this will be
motivated in Sect. 8.5.3. Second, the parameter k of the memory-based classifier –
the number of nearest neighbours taken into account during classification – was
evaluated in the range from 1 to 15. It was found that k D 5 provided the best trade-
off between performance and speed. These optimised settings were then applied
when testing on the held-out test data.

8.5.1.2 Features

All features used during classification are described in Table 8.2. The word-based
features rely on pure string processing and require no linguistic preprocessing. The
morphology-based features exploit the limited amount of morphological analysis
provided by the Alpino parser [2]. For instance, it provides word roots and
decomposes compound words. Likewise the part-of-speech-based features use the
coarse-grained part-of-speech tags assigned by the Alpino parser. The lexical-
semantic features rely on the Cornetto database [27], an improved and extended
version of Dutch WordNet, to look-up synonym and hypernym relations among
source and target lemmas. Unfortunately there is no word sense disambiguation
module to identify the correct senses, so a certain amount of noise is present in these
features. In addition, a background corpus of over 500M words of (mainly) news text
provides the word counts required to calculate the Lin similarity measure [11]. The
syntax-based features use the syntactic structure, which is a mix of phrase-based
and dependency-based analysis. The phrasal features express similarity between the
terminal yields of source and target nodes. With the exception of same-parent-lc-
phrase, these features are only used for full tree alignment, not for word alignment.

We have not yet performed any systematic feature selection experiments.
However, we did experiment with a substantial number of other features and com-
binations. The current feature set resulted from manual tuning on the development
set. When removing any of these features, we observed decreased performance.

8.5.1.3 Evaluation Measures

A tree alignment A is a set of node alignments < v; v0 > where v and v0 are
source and target nodes respectively. As sets can be compared using the well-known
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Table 8.2 Featuresa used during classification step

Feature Type Description

Word

word-subsumption string indicate if source word equals, has as prefix, is a prefix of, has a
suffix, is a suffix of, has as infix or is an infix of target word

shared-pre-/in-/suffix-len int length of shared prefix/infix/suffix in characters
source/target-stop-word bool test if source/target word is in a stop word list
source/target-word-len int length of source/target word in characters
word-len-diff int word length difference in characters
source/target-word-uniq bool test if source/target word is unique in source/target sentence
same-words-lhs/rhs int no. of identical preceding/following words in source and target

word contexts

Morphology

root-subsumption string indicate if source root equals, has as prefix, is a prefix of, has a
suffix, is a suffix of, has as infix or is an infix of target root

roots-share-pre-/in-/suffix bool source and target root share a prefix/infix/suffix

Part-of-speech

source/target-pos string source/target part-of-speech
same-pos bool test if source and target have same part-of-speech
source/target-content bool test if source/target word is a content word
both-content-word bool test if both source and target word are content words

Lexical-semantic using Cornetto

cornet-restates float 1.0 if source and target words are synonyms and 0.5 if they are
near-synonyms, zero otherwise

cornet-specifies float Lin similarity score if source word is a hyponym of target word
cornet-generalises float Lin similarity score if source word is a hypernym of target word
cornet-intersects float Lin similarity score if source word share a common hypernym

Syntax

source/target-cat string source/target syntactic category
same-cat bool test if source and target have same syntactic category
source/target-parent-cat string source/target syntactic category of parent node
same-parent-cat bool test if parents of source and target have same syntactic category
source/target-deprel string source/target dependency relation
same-deprel bool test if source and target have same dependency relation
same-dephead-root bool test if the dependency heads of source and target have same root

Phrasal

word-prec/rec float precision/recall on the yields of source and target nodes
same-lc-phrase bool test if lower-cased yields of source and target nodes are identical
same-parent-lc-phrase bool test if lower-cased yields of parents of nodes are identical
source/target-phrase-len int length of source/target phrase in words
phrase-len-diff int phrase length difference in words
aslashes indicate multiple versions of the same feature, e.g. source/target-pos represents the two
features source-pos and target-pos

precision and recall measures [26], the same measures can be applied to alignments.
Given that Atrue is a true tree alignment and Apred is a predicted tree alignment,
precision and recall are defined as follows:



8 Automatic Tree Matching for Analysing Semantic Similarity in Comparable Text 137

precision D jAtrue \ Apredj
jApredj (8.2)

recall D jAtrue \ Apredj
jAtruej (8.3)

Precision and recall are combined in the F1 score, which is defined as the harmonic
mean between the two, giving equal weight to both terms, i.e. F1score D .2 �
precision � recall/=.precision C recall/

The same measures can be used for comparing labeled tree alignments in a
straight forward way. Recall that a labeled tree alignment is a set of labeled node
alignments < v; v0; r > where v is a source node, v0 a target node and r is a label
from the set of semantic similarity relations. Let Arel be the subset of all alignments
in A with label rel, i.e. Arel D f< vs; vt ; r >2 A W r D relg. This allows us to
calculate, for example, precision on relation equals as follows.

precisionEQ D jAEQ
true \ A

EQ
predj

jAEQ
predj (8.4)

We thus calculate precision as in the unlabelled case, but ignore all alignments –
whether true or predicted – labeled with a different relation. Recall and F score on
a particular relation can be calculated in a similar fashion.

8.5.2 Results on Tree Alignment

Table 8.3 presents the results on tree alignment consisting of baseline, human and
MBGM scores.

8.5.2.1 Baseline Scores

A simple greedy alignment procedure served as baseline. For word alignment,
identical words are aligned as equals and identical roots as restates. For full tree
alignment, this is extended to the level of phrases so that phrases with identical
words are aligned as equals and phrases with identical roots as restates. The baseline
does not predict specifies, generalises or intersects relations, as that would require a
more involved, knowledge-based approach, relying on resources such as a wordnet.

8.5.2.2 Human Scores

A subset of the test data, consisting of 10 similar press releases comprising a total
of 48 sentence pairs, was independently annotated by 6 annotators to determine
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Table 8.3 Scores (in percentages) on tree alignment and semantic relation labelling

Labelling:

Alignment: Eq: Re: Spec: Gen: Int: Macro: Micro:

Prec: 82.50 83.76 46.72 0.00 0.00 0.00 26.10 82.18
Develop baseline: Rec: 54.54 93.66 20.01 0.00 0.00 0.00 22.74 54.34

F: 65.67 88.43 28.02 0.00 0.00 0.00 23.29 65.42
Prec: 86.40 95.08 45.22 41.45 44.95 64.17 58.18 78.66

Develop MBGM: Rec: 86.06 96.16 35.86 31.16 39.06 72.21 54.89 78.35
F: 86.23 95.62 40.00 35.58 41.80 67.95 56.19 78.51
Prec: 84.23 85.68 42.24 0.00 0.00 0.00 25.58 84.14

Test baseline: Rec: 56.21 94.44 14.08 0.00 0.00 0.00 21.70 56.15
F: 67.43 89.85 21.12 0.00 0.00 0.00 22.19 67.35
Prec: 86.87 95.96 51.79 40.43 38.36 60.87 57.48 78.10

Test MBGM: Rec: 86.46 96.27 40.56 32.20 34.23 70.35 54.72 77.88
F: 86.66 96.11 45.49 35.85 36.18 65.27 55.78 77.99

Human: F: 88.31 95.83 71.38 60.21 66.71 62.67 71.36 81.92

inter-annotator agreement on the alignment and labelling tasks. Given the six
annotations A1, . . . , A6, we repeatedly took one as the Atrue against which the five
other annotations were evaluated as Apred . We then computed the average scores
over these 6 � 5 D 30 scores.5 This resulted in an F-score of 88.31 % on alignment
only. For relation labelling, the scores differed per relation, as is to be expected:
the average F-score for equals was 95.83 % alignment,6 and for the other relations
average F-scores between 62 and 72 % were obtained.

8.5.2.3 System Scores

The first thing to observe is that the MBGM scores on the development and tests
sets are very similar throughout, suggesting that generalisation across the news
domain is fairly good. We will therefore focus on the test scores, comparing them
statistically with the baseline scores and informally with the human scores.

With an alignment F-score on the test set of 86.66 %, MBGM scores over 19 %
higher than the baseline system, which is significant (t.18/ D 25:68; p < 0:0001).
This gain is mainly due to a much better recall score. This F-score is also less than

5As a result of this procedure, precision, recall and F score end up being equal.
6At first sight, it may seem that labelling equals is a trivial and deterministic task, for which the
F-score should always be close to 100%. However, the same word may occur multiple times in
the source or target sentences, which introduces ambiguity. This frequently occurs with function
words such as determiners and prepositions. Moreover, choosing among several equivalent equals
alignments may sometimes involve a somewhat arbitrary decision. This situation arises, for
instance, when a proper noun is mentioned just once in the source sentence but twice in the target
sentence.
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2 % lower than the average alignment F-score obtained by our human annotators,
albeit on a subset of test data.

In a similar vein, the performance of MBGM on relation labelling is considerably
better than that of the baseline system, significantly outperforming the baseline
for each semantic relation (t.18/ > 12:6636; p < 0:0001), trivially so for the
specifies, generalises specifies and intersects relations, which the baseline system
never predicts.

The macro scores are plain averages over the five scores on each relation,
whereas the micro scores are weighted averages. As equals is the majority class
and at the same time easiest to predict, the micro scores are higher. The macro
scores, however, better reflect performance on the real challenge, that is, correctly
predicting the relations other than equals. MBGM scores a macro F-score of
55:78% (an improvement of over 33% over the baseline) and a micro average of
77.99 % (over 10% above the baseline). It is interesting to observe that MBGM
obtains higher F-scores on equals and intersects (the two most frequent relations)
than the human annotators. As a result of this, the micro F-score of the automatic
tree alignment is merely 4 % lower than the human reference counterpart. However,
MBGM’s macro F-score (55:78) is still well below the human score (71:36).

8.5.3 Effects of Downsampling

As described in Sect. 8.4, MBGM performs tree alignment by initially considering
every possible alignment from source nodes to target nodes. For each possible
pairing of a source node ns in tree Ts and a target node nt in tree Tt , an instance
is created consisting of feature values extracted from the input trees. A memory-
based classifier is then used to predict a class label for each instance, either one
of the semantic similarity relations or the special class none, which is interpreted
as no alignment. The vast majority of the training instances is of class none,
because a node is aligned to at most one node in the other tree and unaligned to
all other nodes in the same tree. The class distribution in the development data
is: equals 0:81%, restates 0:08%, specifies 0:07%, generalises 0:10%, intersects
0:31%, none 98:63%. The problem is that most classifiers have difficulties with
handling heavily skewed class distributions, usually causing them to always predict
the majority class. We address this by downsampling the none class (in the training
data) so that less frequent classes become more likely to be predicted.

The effects of downsampling are shown in Fig. 8.2 where precision, recall and
F-score are plotted as a function of the percentage of original none instances in the
training data. The training and test material correspond to a 90/10 % split of the
development data. Timbl was used with its default settings, except for k D 5. The
first plot shows scores on alignment regardless of relation labelling. The general
trend is that downsampling increases the recall at the cost of precision until a cross-
over point at around 20 %. This effect is mainly due to the fact that downsampling
increases the number of predictions other than none.
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Fig. 8.2 Effects of downsampling none instances with regard to precision, recall and F-score,
first for alignment only (i.e. ignoring relation label), next per alignment relation and finally as
macro/micro average over all relations

The next five plots show the effect of downsampling per alignment relation.
The cross-over point is higher for equals and intersects, at about 40 %. As these
are still relatively frequent relations, their F-score is not negatively affected by all
the none instances. However, for the least frequent relations – restates, specifies,
generalises – it can be observed that the F-score is going down when using more
than 20 % of the none instances. A pattern that is reflected in the macro-average
plot (i.e. plain average score over all five relations), while the micro-average plot
(i.e. weighted average) is more similar to those for equals and intersects, as it is
dominated by these two most frequent relations.

Even though the alignment only and micro-average F-scores are marginally best
without any downsampling, we choose to report results with downsampling none to
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20 %, because this yields the optimal macro-average F-score. Arguably the optimal
downsampling percentage may be specific to the data set and may change with, for
example, more training data or another value of the k parameter in nearest neighbour
classification.

8.5.4 Effects of Training Data Size

To study the effects of more training data on the scores, experiments were
run gradually increasing the amount of training data from 1 up to 100 %. The
experimental setting was the same as described in the previous section, including
a constant downsampling to 20 % of the none class. The resulting learning curves
are shown in Fig. 8.3. The learning curve for alignment only suggests that the learner
is saturated at about 50 % of the training data, after which precision and recall are
virtually identical and the F-score improves only very slowly. With regard to the
alignment relations, equals and intersects show similar behaviour, with arguably no
gain in performance after using more than half of the training data. Being dominated
by these two relations, the same goes for the micro average scores. For restates and
generalises, however, we find that scores are getting better, and further improvement
may therefore be expected with even more training data. The only outlier is specifies,
with scores that appear to go down somewhat when more training data is consumed.
Until further study, we consider this an artefact of the test data. The general trend
that the learner is not yet saturated with training samples for the less frequent
relations is also reflected in the still improving macro-average scores.

8.6 Related Work

Many syntax-based approaches to machine translation rely on bilingual treebanks to
extract transfer rules or train statistical translation models. In order to build bilingual
treebanks a number of methods for automatic tree alignment have been developed,
e.g., [5, 6, 10, 24]. Most related to our approach is the work on discriminative tree
alignment by Tiedemann and Kotzé [23]. However, these algorithms assume that
source and target sentences express the same information (i.e. parallel text) and
cannot cope with comparable text where parts may remain unaligned. See [12] for
further arguments and empirical evidence that MT alignment algorithms are not
suitable for aligning parallel monolingual text.

Recognising textual entailments (RTE) could arguably be seen as a specific
instance of detecting semantic similarity [4]. The RTE task is commonly defined
as: given a text T (usually consisting of one or two sentences) determine whether a
sentence H (the hypothesis) is entailed by T. Various researchers have attempted to
use alignments between T and H to predict textual entailments [7, 18]. However,
these RTE systems have a directional bias (i.e., they assume the text is longer
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Fig. 8.3 Effects of training data size on precision, recall and F-scores, first for alignment only (i.e.
ignoring relation label), next per alignment relation and finally as macro/micro average over all
relations

than the the hypothesis), and apart from an entailment judgement do not provide
an analysis of semantic similarity. Our specifies relation may be interpreted as
entailment and vice versa, our generalises relation as reversed entailment. Likewise,
restates may be regarded as mutual entailment. The intersects relation, however,
cannot be stated in terms of entailment, which makes our relations somewhat more
expressive. For instance, it can express the partial similarity in meaning between
“John likes milk” and “John likes movies”. In a similar way, contradictory statements
such as “John likes milk” versus “John hates milk” can not be distinguished from
completely unrelated statements such as “John likes milk” and “Ice is cold” in terms
of entailment. In contrast, intersects is capable of capturing the partial similarity
between contradictory statements.
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Marneffe et al. [14] align semantic graphs for textual inference in machine
reading, both manually and automatically. Although they do use typed dependency
graphs, the alignment is only at the token level, and no explicit phrase alignment
is carried out. As part of manual annotation, alignments are labeled with relations
akin to ours (e.g. ‘directional’ versus ‘bi-directional’), but their automatic alignment
does not include labelling. MacCartney, Galley, and Manning [12] describe a system
for monolingual phrase alignment based on supervised learning which also exploits
external resources for knowledge of semantic relatedness. In contrast to our work,
they do not use syntactic trees or similarity relation labels. Partly similar semantic
relations are used in [13] for modelling semantic containment and exclusion in
natural language inference. Marsi and Krahmer [15] is closely related to our work,
but follows a more complicated method: first a dynamic programming-based tree
alignment algorithm is applied, followed by a classification of similarity relations
using a supervised-classifier. Other differences are that their data set is much smaller
and consists of parallel rather than comparable text. A major drawback of this
algorithmic approach is that it cannot cope with crossing alignments, which occur
frequently in the manually aligned DAESO corpus. We are not aware of other
work that combines alignment with semantic relation labelling, or algorithms which
perform both tasks simultaneously.

8.7 Conclusions

We have proposed to analyse semantic similarity between comparable sentences
by aligning their syntax trees, matching each node to the most similar node
in the other tree (if any). In addition, alignments are labeled with a semantic
similarity relation. We have reviewed the DAESO corpus, a parallel monolingual
treebank for Dutch consisting of over two million tokens and covering both parallel
and comparable text genres. It provides detailed analyses of semantically similar
sentences in the form of syntactic node alignments and alignment relation labelling.
We have subsequently presented a Memory-based Graph Matcher (MBGM) that
performs both of these tasks simultaneously as a combination of exhaustive pairwise
classification using a memory-based learning algorithm, and global optimisation
of alignments using a combinatorial optimisation algorithm. It relies on a com-
bination of morphological/syntactic analysis, lexical resources such as word nets,
and machine learning using a parallel monolingual treebank. Results on aligning
comparable news texts from the DAESO corpus show that MBGM consistently and
significantly outperforms the baseline, both for alignment and labelling.

In future research we will test MBGM on other data, as the DAESO corpus
contains other segments with various degrees of semantic overlap. We also intend
to explore additional features which facilitate learning of lexical and syntactic
paraphrasing patterns, for example, vector space models for word similarity. In
addition, a comparison with other alignment systems, such as GizaCC [19], would
provide a stronger baseline.
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23. Tiedemann, J., Kotzé, G.: Building a large machine-aligned parallel treebank. In: Eighth
International Workshop on Treebanks and Linguistic Theories, Milan, Italy, p. 197 (2009)

24. Tinsley, J., Zhechev, V., Hearne, M., Way, A.: Robust language-pair independent sub-tree
alignment. Mach. Transl. Summit XI, 467–474 (2007)

25. van der Wouden, T., Hoekstra, H., Moortgat, M., Renmans, B., Schuurman, I.: Syntactic
analysis in the spoken dutch corpus. In: Proceedings of the Third International Conference on
Language Resources and Evaluation, Las Palmas, Canary Islands, Spain, pp. 768–773 (2002)

26. van Rijsbergen, C.: Information Retrieval, 2nd edn. Butterworth, London/Boston (1979)
27. Vossen, P., Maks, I., Segers, R., van der Vliet, H.: Integrating lexical units, synsets and ontology

in the Cornetto Database. In: Proceedings of the LREC 2008, Marrakech, Morocco (2008)


	8 Automatic Tree Matching for Analysing Semantic Similarity in Comparable Text
	8.1 Introduction
	8.2 Analysing Semantic Similarity
	8.3 DAESO Corpus
	8.4 Memory-Based Graph Matcher
	8.5 Experiments
	8.5.1 Experimental Setup
	8.5.1.1 Data Sets
	8.5.1.2 Features
	8.5.1.3 Evaluation Measures

	8.5.2 Results on Tree Alignment
	8.5.2.1 Baseline Scores
	8.5.2.2 Human Scores
	8.5.2.3 System Scores

	8.5.3 Effects of Downsampling
	8.5.4 Effects of Training Data Size

	8.6 Related Work
	8.7 Conclusions
	References


