Chapter 17
Parse and Corpus-Based Machine Translation

Vincent Vandeghinste, Scott Martens, Gideon Kotzé, Jorg Tiedemann,
Joachim Van den Bogaert, Koen De Smet, Frank Van Eynde,
and Gertjan van Noord

17.1 Introduction

The current state-of-the-art in machine translation consists of phrase-based statis-
tical machine translation (PB-SMT) [23], an approach which has been used since
the late 1990s, evolving from word-based SMT proposed by IBM [5]. These string-
based techniques (which use no linguistic knowledge) seem to have reached their
ceiling in terms of translation quality, while there are still a number of limitations
to the model. It lacks a mechanism to deal with long-distance dependencies, it has
no means to generalise over non-overt linguistic information [37] and it has limited
word reordering capabilities. Furthermore, in some cases the output quality may
lack appropriate fluency and grammaticality to be acceptable for actual MT users.
Sometimes essential words are missing from the translation.

To overcome these limitations efforts have been made to introduce syntactic
knowledge into the statistical paradigm, usually in the form of syntax trees, either
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only for the source (tree-to-string) or the target language (string-to-tree), or for both
(tree-to-tree).

Galley et al. [12] describes an MT engine in which tree-to-string rules have been
derived from a parallel corpus, driven by the problems of SMT systems raised by
[11]. Marcu et al. and Wang et al. [30, 52] describe string-to-tree systems to allow
for better reordering than phrase-based SMT and to improve grammaticality. Hassan
et al. [18] implements another string-to-tree system by means of including supertags
[2] to the target side of the phrase-based SMT baseline.

Most of the tree-to-tree approaches use one or another form of synchronous
context-free grammars (SCFGs) a.k.a. syntax directed translations [1] or syntax
directed transduction grammars [28]. This is true for the tree-based models of the
Moses toolkit,! and the machine translation techniques described in, amongst others
[7,27,36,53-55]. A more complex type of translation grammars is synchronous tree
substitution grammar (STSG) [10, 38] which provides a way, as [8] points out, to
perform certain operations which are not possible with SCFGs without flattening
the trees, such as raising and lowering nodes. Examples of STSG approaches are
the Data-Oriented Translation (DOT) model from [20,35] which uses data-oriented
parsing [3] and the approaches described in [14—16] and [37], using STSG rules
consisting of dependency subtrees, and a top-down transduction model using beam
search.

The Parse and Corpus based MT (PaCo-MT) engine described in this chapter?
is another tree-to-tree system that uses an STSG, differing from related work
with STSGs in that the PaCo-MT engine combines dependency information with
constituency information and that the translation model abstracts over word and
phrase order in the synchronous grammar rules: the daughters of any node are in a
canonical order representing all permutations. The final word order is generated by
the tree-based target language modeling component.

Figure 17.1 presents the architecture of the PaCo-MT system. A source language
(SL) sentence gets syntactically analysed by a pre-existing parser which leads to a
source language parse tree, making abstraction of the surface order. This is described
in Sect. 17.2. The unordered parse tree is translated into a forest of unordered
trees (a.k.a. bag of bags) by applying tree transduction with the transfer grammar
which is an STSG derived from a parallel treebank. Section 17.3 presents how
the transduction grammar was built and Sect. 17.4 how this grammar is used in
the translation process. The forest is decoded by the target language generator,
described in Sect. 17.5 which generates an n-best list of translation alternatives by
using a tree-based target language model. The system is evaluated on Dutch o
English in Sect. 17.6 and conclusions are drawn in Sect. 17.7. As all modules of our
system are language independent results for Dutch — French, English — Dutch,
and French — Dutch can be expected soon.

Thttp://www.statmt.org/moses/
ZPrevious versions were described in [48] and [49].
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17.2 Syntactic Analysis

Dutch input sentences are parsed using Alpino [32], a stochastic rule-based
dependency parser, resulting in structures as in Fig. 17.2.3

In order to induce the translation grammar, as explained in Sect. 17.3, parse trees
for the English sentences in the parallel corpora are also required. These sentences
are parsed using the Stanford phrase structure parser [21] with dependency informa-
tion [31]. The bracketed phrase structure and the typed dependency information are
integrated into an XML format consistent with the Alpino XML format. All tokens
are lemmatised using TreeTagger [39].

Abstraction is made of the surface order of the terminals in every parse tree used
in the PaCo-MT system. An unordered tree is defined* by the tuple (V, V', E, L)
where V is the set of nodes, V' is the set of internal nodes, and V/ = V — V' is the
set of frontier nodes, i.e. nodes without daughters. E C Vix V is the set of directed
edges and L is the set of labels on nodes or edges. V! C V/ is the set of lexical
frontier nodes, containing actual words as labels, and V" = V/ — V! is the set of
non-lexical frontier nodes, which is empty in a full parse tree, but not necessarily in
a subtree. There is exactly one root node r € V' without incoming edges. Let T be
the set of all unordered trees, including subtrees.

Asubtree s, € T ofatreef € T has as arootnode r € V, where V;' is the set of
internal nodes of 7. Subtrees are horizontally complete [4] if, when a daughter node
of a node is included in the subtree, then so are all of its sisters. Figure 17.3 shows
an example. Let H C T be the set of all horizontally complete subtrees.

Bottom-up subtrees are a subset of the horizontally complete subtrees: they are
lexical subtrees: every terminal node of the subtree is a lexical node. Some examples
are shown in Fig. 17.4. Let B C H be the set of all bottom-up subtrees. Vb € B :

3Limited restructuring is applied to make the resulting parse trees more uniform. For instance,
nouns are always placed under an NP. A similar restructuring of syntax trees is shown by [52] to
improve translation results.

“This definition is inspired by [10].
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smain

advimod np|obj np|su verb]hd

ook  det]det nounlhd adjjmod pronjhd heeft

een reden wettelijke het

Fig. 17.2 An unordered parse tree for the Dutch sentence Het heeft ook een wettelijke reden “It
also has a legal reason”, or according to Europarl “It is also subject to a legal requirement”. Note
that edge labels are marked behind the ‘|’

np|obj

det|det noun]hd adjjmod
Fig. 17.3 An example of a horizontally complete subtree which is not a bottom-up subtree

b np

a
verb det noun adj

heeft een reden wettelijke

Fig. 17.4 Two examples of bottom-up subtrees

vy = @ and Vbl = be , where V)" is the set of non-lexical frontier nodes of b and
Vb’ is the set of lexical frontier nodes of b. be is the set of all frontier nodes of b.

17.3 The Transduction Grammar

In order to translate a source sentence, a stochastic synchronous tree substitution
grammar G is applied to the source sentence parse tree. Every grammarrule g € G
consists of an elementary tree pair, defined by the tuple (d¢, e8, A8), where d¢ € T
is the source side tree (Dutch), e € T is the target side tree (English), and Af is
the alignment between the non-lexical frontier nodes of d¢ and e¥. The alignment
A¢# is defined by a set of tuples (vq,v,) where vy € V' and v, € V'. V] is the set
of non-lexical frontier nodes of d¥, and V" is the set of non-lexical frontier nodes
of ef. Every non-lexical frontier node of the source side is aligned with a non-
lexical frontier node of the target side: Vv, € V7 is aligned with a node v, € V.
An example grammar rule is shown in Fig. 17.5.
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np HP

| |
/r\\ NPMmod

noun|hd, pp|mad
NN[hd,
/\\ INJhd;  NP|pobj
preplhd, npjobjl; NN|hd,

Fig. 17.5 An example of a grammar rule with horizontally complete subtrees on both the source
and target side. Indices mark alignments

In order to induce such a grammar a node aligned parallel treebank is required.
Section 17.3.1 describes how to build such a treebank. Section 17.3.2 describes the
actual induction process.

17.3.1 Preprocessing and Alignment of the Parallel Data

The system was trained on the Dutch-English subsets of the Europarl corpus [22],
the DGT translation memory,> the OPUS corpus® [42] and an additional private
translation memory (transmem).

The data was syntactically parsed (as described in Sect. 17.2), sentence aligned
using Hunalign [50] and word aligned using GIZA++ [33]. The bidirectional
GIZA++ word alignments were refined using the intersect and grow-diag heuris-
tics implemented by Moses [24], resulting in a higher recall for alignments suitable
for machine translation.

For training Lingua-Align [43], which is a discriminative tree aligner [44], a set
of parallel alignments was manually constructed using the Stockholm TreeAligner
[29], for which the already existing word alignments were imported. The recall of
the resulting alignments was rather low, even though in constructing the training
data a more relaxed version of the well-formedness criteria as proposed by [19] was
used.

Various features and parameters have been used in experimentation, training with
around 90 % and testing with the rest of the data set. The training data set consists
of 140 parallel sentences.

Recent studies in rule-based alignment error correction ([25,26]) show that recall
can be significantly increased while retaining a relatively high degree of precision.

Shttp://langtech.jrc.it/DGT-TM.html
Shttp://opus.lingfil.uu.se/


http://langtech.jrc.it/DGT-TM.html
http://opus.lingfil.uu.se/

310 V. Vandeghinste et al.

ik don’t understand

Fig. 17.6 Two sentences with subsentential alignment

a smain s
A b c
np wverb np adv NP VP verb Inf pron Pron
|1 1 | L. 2PN [ |
pr|on begrijp prlcm niet Pr|an Atirx In|f begrijp _, understand ik |
ik het N | don't understand
d smain S
/\
np verb, np mod NP VP
I || | 2N
prony pron niet Pron, Aux Inf,
d L

Fig. 17.7 Rules extracted from the alignments in Fig. 17.6

This approach has been extended by applying a bottom-up rule addition component
that greedily adds alignments based on already existing word alignments, more
relaxed well-formedness criteria, as well as using measures of similarities between
the two unlinked subtrees being considered for alignment.

17.3.2 Grammar Rule Induction

Figure 17.6 is an example’ of two sentences aligned at both the sentence and
subsentential level. For each alignment point, either one or two rules are extracted.
First, each alignment point is a lexical alignment, creating a rule that maps a source
language word or phrase to a target language one (Fig. 17.7a, b).

Secondly, each aligned pair of sentences engenders further rules by partitioning
each tree at each alignment point, yielding non-lexical grammar rules. For these

"The edge labels have been omitted from these examples, but were used in the actual rule induction.
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rules, the alignment information is retained at the leaves so that these trees can be
recombined (Fig. 17.7d).

The rule extraction process was restricted to rules with horizontally complete
subtrees at the source and target side. Rule extraction with other types of subtrees
was considered out of the scope of the current research.

Figure 17.7 shows the four rules extracted from the alignments in Fig. 17.6. Rules
are extracted by passing over the entire aligned treebank, identifying each aligned
node pair and recursively iterating over its children to generate a substitutable pair
of trees whose roots are aligned, and whose leaves are either terminal leaves in the
treebank or correspond to aligned vertices. As shown in Fig. 17.7, when a leaf node
corresponds to an alignment point, we retain the information to identify which target
tree leaf aligns with each such source leaf.

Many such tree substitution rules recur many times in the treebank, and a count is
kept of the number of times each pair appears, resulting in a stochastic synchronous
tree substitution grammar.

17.4 The Transduction Process

The transduction process takes an unordered source language parse tree p € T
as input, applies the transduction grammar G and transduces p into an unordered
weighted packed forest, which is a compact representation of a set of target trees
Q C T, which represent the translation alternatives. An example of a packed forest
is shown in Fig. 17.8.

For every node v € V;, where Vpi is the set of internal nodes in the input parse
tree p, it is checked whether there is a subtree s, € H with v as its root node, which
matches the source side tree d¢ of a grammarrule g € G.

To keep computational complexity limited the subtrees of p that are considered
and the subtrees that occur in the source and target side of the grammar G have been
restricted to horizontally complete subtrees (including bottom-up subtrees).

When finding a matching grammar rule for which s, = d¢, the corresponding e®
is inserted into the output forest Q. When not finding a matching grammar rule, a
horizontally complete subtree is constructed, as explained in Sect. 17.4.2.

The weight that the target side ef of grammar rule g € G will get when is
calculated according to Eq. 17.1. This weight calculation is similar to the approaches
of [14,37], as it contains largely the same factors. We multiply the weight of the
grammar rule w(g) with the relative frequency of the grammar rule over all grammar

rules with the same source side ;(zgg))' This is divided by an alignment point penalty
(j + 1)?PP, favouring the solutions with the least alignment points.
F
W(et) = w(g) o (g) 17.1)

(j + Der F(d?)
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e ——————— . —
NP|nsub) velhd 7 3
| _,,/“H,H__ ________————— —
r ? ADVP|advmod  RB|advmod NP|dobj NP
X g | ) e Nt
OTlhd PRP|hd VBZ|hd VEP|hd RE|hd ? Jlamed DT|det NN|hd Jjamod DT|det ?
I [ | o] [ W | | P
there it ? have ¥ also too even legal a reason ? ? ‘WRE|hd MNN|hd
e e
VAN AT N AN | |

has is also too even statutory legislative legal a an the why

IR

reasen cause

Fig. 17.8 An example of a packed forest as output of the transducer for the Dutch sentence Het
heeft ook een wettelijke reden. Note that ? marks an alternation

where w(g) = {/[1/=; w(A?) is the weight of g¢ € G, which is the geometric mean
of the weight of each individual occurrence of alignment A, as produced by the
discriminative aligner described in Sect. 17.3.1; j = |V'| = [V}"| is the number of
alignment points, which is the number of non-lexical frontier elements which are
aligned in g € G; app is the alignment points power parameter (app = 0.5); F(g)
is the frequency of occurrence g in the data; F(d?) is the frequency of occurrence
of the source side d of g in the data.

When no translation of a word is found in the transduction grammar, the label
| € L is mapped onto its target language equivalent. Adding a simple bilingual
word form dictionary is optional. When a word translation is not found in the
transduction grammar, the word is looked up in this dictionary. If the word has
multiple translations in the dictionary, each of these translations receives the same
weight and is combined with the translated label (usually part-of-speech tags). When
the word is not in the dictionary or no dictionary is present, the source word is
transfered as is to Q.

17.4.1 Subtree Matching

In a first step, the transducer performs bottom-up subtree matching, which is
analogous to the use of phrases in phrase-based SMT, but restricted to linguistically
meaningful phrases. Bottom-up subtree matching functions like a sub-sentential
translation memory: every linguistically meaningful phrase that has been encoun-
tered in the data will be considered in the transduction process, obliterating the
distinction between a translation memory, a dictionary and a parallel corpus [45].

For every node v € V, itis checked whether a subtree s, with root node v is found
for which s, € B and for which there is a grammar rule g € G for which d = s,.
These matches include single word translations together with their parts-of-speech.

A second step consists of performing horizontally complete subtree matching for
those nodes in the source parse tree for which the number of grammar rules g € G
that match is smaller than the beam size b.
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NP np NP np

A A | | T

( moun, adj _, JJ. NN, ) + ( det _, DT ) = ( det, noun. adj, N
np

I. DT, NN. )

Fig. 17.9 An example of a constructed grammar rule

For every node v € Vlﬁ the set H, C H \ B is generated, which is the set of all
horizontally complete subtrees minus the bottom-up subtrees of p with root node v.
It is checked whether a matching subtree s, € H, is found for which there is a
grammar rule g € G for which d¢ = s,

An example of a grammar rule with horizontally complete subtrees on both
source and target sides was shown in Fig. 17.5. This rule has three alignment points,
as indicated by the indices.

17.4.2 Backing Off to Constructed Horizontally Complete
Subtrees

In cases where no grammar rules are found for which the source side matches the
horizontally complete subtrees at a certain node in the input parse tree, grammar
rules are combined for which, when combined, the source sides form a horizontally
complete subtree. An example of such a constructed grammar rule is shown in
Fig. 17.9.

Vv e Vlﬁ for which there is no s, € H, matching any grammar rule g € G, let
Cs = (c1,...,cy) be the set of children of root node v in subtree s,. Vc; € C; the
subtree s, is split into two partial subtrees y, and z,, where C, = C; \ {c;} is the
set of children of subtree y, and C, = {c,} is the set of children of subtree z,.

When a grammar rule g € G is found for which d% = y, and another grammar
rule 4 € G is found for which d" = z,, then the respective target sides es with root
node ¢ and e” with root node u are merged into one target language tree e/ if ¢ = u
and Coen = Cec U C,i, resulting in a constructed grammar rule f ¢ G defined by
the tuple (d/,e/, A'), where d/ = s,. The alignment of the constructed grammar
rule is the union of the alignments of the grammar rules g and h: A/ = A8 U A",

As f is a constructed grammar rule, the absolute frequency of occurrence of the
grammar rule F(f) = 0, which would result in W(e#") = 0in Eq. 17.1. In order to
resolve this, the frequency of occurrence F( f) is estimated according to Eq. 17.2.

Flg)  Fh)
F(d¢) ~ F(dh)

F(f) =wn) x (17.2)
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where

o w(yy) = V/TTL, w(Af) is the weight of grammar rule g, which is the geometric
mean of the weight of each individual occurrence of alignment A, as produced
by the discriminative aligner described in 17.3.1;

* F(g) is the frequency of occurrence of grammar rule g

e F(d?) is the frequency of occurrence of the source side d¥ of grammar rule g

e F(h) is the frequency of occurrence of grammar rule /

« F(d") is the frequency of occurrence of the source side d” of grammar rule g”

Constructing grammar rules leads to overgeneration. As a filter the target
language probability of such a rule is taken into account. This is estimated by
multiplying the relative frequency of v; in which ¢; occurs as a child over all v;’s
with the relative frequency of ¢; occurring N times over ¢; occuring any number
of times, as shown in Eq. 17.3, which is applied recursively for every node v; € V,
where V, is the set of nodes in e/ .

l—[ l—[ F(#(cilvy) = 1) F@#(cilvj) =N)

,
Plel) = DI Feny "o F#ah) =0

(17.3)
where

#(ci|v;) is the number of children of v; with the same label as c;
N is the number of times the label ¢; occurs in the constructed rule

The new weight w(e/) is calculated according to Eq. 17.4.

w(e!) = Y/ F(f)x P(ef) (17.4)

where
cp 1isthe construction penalty: 0 < cp < 1.

When constructing a horizontally complete subtree fails, a grammar rule is
constructed by translating each child separately.

17.5 Generation

The main task of the rarget language generator is to determine word order, as the
packed forest contains unordered trees. An additional task of the target language
model is to provide additional information concerning lexical selection, similar to
the language model in phrase-based SMT [23].

The target language generator has been described in detail in [47], but the system
has been generalised and improved and was adapted to work with weighted packed
forests as input.
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For every node in the forest, the surface order of its children needs to be deter-
mined. For instance, when translating “een wettelijke reden” into English, the bag
NP(JJ(legal), DT(a), NN(reason)) represents the surface order of all permutations
of these elements.

A large monolingual treebank is searched for an NP with an occurrence of these
three elements, and in what order they occur most, using the relative frequency of
each permutation as a weight. If none of the permutations are found, the system
backs off to a more abstract level, only looking for the bag NP(JJ, DT, NN) without
lexical information, for which there is most likely a match in the treebank.

When still not finding a match, all permutations are generated with an equal
weight, and a penalty is applied for the distance between the source language word
order and the target language word order to avoid generating too many solutions
with exactly the same weight. This is related to the notion of distortion in IBM
model 3 in [5].

In the example bag, there are two types of information for each child: the part-
of-speech and the word token, but as already pointed out in Sect. 17.2 dependency
information and lemmas are also at our disposal.

All different information sources (token, lemma, part-of-speech, and dependency
relation) have been investigated with a back-off from most concrete (token +
lemma 4 part-of-speech + dependency relation) to most abstract (part-of-speech).

The functionality of the generator is similar to the one described in [17], but
relative frequency of occurrence is used instead of n-grams of dependencies. As
shown in [47] this approach outperforms SRILM 3-g models [41] for word ordering.
[51] uses feature templates for translation candidate reranking, but these can have a
higher depth and complexity than the context-free rules used here.

Large monolingual target language treebanks have been built by using the target
sides of the parallel corpora and adding the British National Corpus (BNC)®.

17.6 Evaluation

We evaluated translation quality from Dutch to English on a test set of 500 sentences
with three reference translations, using BLEU [34], NIST [9] and translation edit
rate (TER) [40], as shown in Table 17.1.

We show the effect of adding data, by presenting the results when using the
Europarl (EP) corpus, and when adding the OPUS corpus, the DGT corpus, and
the private translation memory (transmem), and we show the effect of adding a
dictionary of 4 100,000 words, taken from the METIS Dutch English translation
engine [6,46]. This dictionary is only used for words where the grammar does not
cover a translation.

8hitp://www.natcorp.ox.ac.uk/
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Table 17.1 Evaluation of the Dutch-English engine

Without dictionary With dictionary
Training data BLEU NIST TER BLEU NIST TER
EP 25.48 7.36 61.12 25.75 7.43 60.38
EP+OPUS 26.23 7.40 61.63 26.46 7.44 61.42
EP+OPUS+DGT 24.10 6.59 64.08 25.82 7.28 61.83
EP+OPUS+transmem 29.12 7.68 60.04 29.33 7.71 59.98

EP+OPUS+DGT+transmem 28.50 7.59 60.22 29.31 7.71 59.47

These results show that the best scoring condition is trained on all the data
apart from DGT, which seems to deteriorate performance. Adding the dictionary is
beneficial under all conditions. Error analysis shows that the system often fails when
using the back-off models, whereas it seems to function properly when horizontally
complete subtrees are found.

Comparing the results with Moses® [24] shows that there is a long way to go for
our syntax-based approach until we par with phrase-based SMT. The difference in
score is partly due to remaining bugs in the PaCo-MT system which cause no output
in 2.6 % of the cases. Another reason could be the fact that automated metrics like
BLEU are known to favour phrase-based SMT systems. Nevertheless, the PaCo-MT
system has not yet reached its full maturity and there are several ways to improve
the approach, as discussed in Sect. 17.7.

17.7 Conclusions and Future Work

With the research presented in this paper we wanted to investigate an alternative
approach towards MT, not using n-grams or any other techniques from phrase-based
SMT systems. '

A detailed error analysis and comparison between the different conditions will
reveal what can be done to improve the system. Different parameters in align-
ment can result in more useful information from the same set of data. Different
approaches to grammar induction could also improve the system, as grammar induc-
tion is now limited to horizontally complete subtrees. STSGs allow more complex
grammar rules including horizontally incomplete subtrees. Another improvement
can be expected from working on the back-off strategy in the transducer, such as the
real time construction of new grammar rules on the basis of partial grammar rules.

9This phrase-based SMT system was trained on the same test set with the same training data,
using 5-g without minimum error rate training scored 41.74, 43.30, 44.46, 49.61 and 49.98 BLEU
respectively.

10 Apart from word alignment.
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The system could be converted into a syntactic translation aid, by only taking the
decisions of which it is confident, backing off to human decisions in cases of data
sparsity. It remains to be tested whether this approach would be useful.

Further investigation of the induced grammar could lead to a reduction in
grammar rules, by implementing a default inheritance hierarchy, similar to [13],
speeding up the system, without having any negative effects on the output.

The current results of our system are in our opinion not sufficient to reject nor
accept a syntax-based approach towards MT as an alternative for phrase-based SMT,
as, quoting Kevin Knight “the devil is in the details”."!

Open Access. This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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