
Unsupervised Learning of Link Discovery

Configuration

Andriy Nikolov, Mathieu d’Aquin, and Enrico Motta

Knowledge Media Institute, The Open University, Milton Keynes, UK
{a.nikolov,m.daquin,e.motta}@open.ac.uk

Abstract. Discovering links between overlapping datasets on the Web is
generally realised through the use of fuzzy similarity measures. Configur-
ing such measures is often a non-trivial task that depends on the domain,
ontological schemas, and formatting conventions in data. Existing solu-
tions either rely on the user’s knowledge of the data and the domain or on
the use of machine learning to discover these parameters based on train-
ing data. In this paper, we present a novel approach to tackle the issue of
data linking which relies on the unsupervised discovery of the required
similarity parameters. Instead of using labeled data, the method takes
into account several desired properties which the distribution of output
similarity values should satisfy. The method includes these features into
a fitness criterion used in a genetic algorithm to establish similarity pa-
rameters that maximise the quality of the resulting linkset according to
the considered properties. We show in experiments using benchmarks as
well as real-world datasets that such an unsupervised method can reach
the same levels of performance as manually engineered methods, and how
the different parameters of the genetic algorithm and the fitness criterion
affect the results for different datasets.

1 Introduction

Identity links between data instances described in different sources provide ma-
jor added value of linked data. In order to facilitate data integration, newly
published data sources are commonly linked to reference repositories: popular
datasets which provide good coverage of their domains and are considered re-
liable. Such reference repositories (e.g., DBpedia or Geonames) serve as hubs:
other repositories either link their individuals to them or directly reuse their
URIs. However, establishing links between datasets still represents one of the
most important challenges to achieve the vision of the Web of Data. Indeed, such
a task is made difficult by the fact that different datasets do not share commonly
accepted identifiers (such as ISBN codes), do not rely on the same schemas and
ontologies (therefore using different properties to represent the same informa-
tion) and often implement different formatting conventions for attributes.

Automatic data linking often relies on fuzzy similarity functions comparing
relevant characteristics of objects in the considered datasets. More precisely, a
data linking task can be specified as the evaluation of a decision rule establishing

E. Simperl et al. (Eds.): ESWC 2012, LNCS 7295, pp. 119–133, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



120 A. Nikolov, M. d’Aquin, and E. Motta

whether two individuals should be considered equivalent, based on the value of
a function aggregating the similarity comparisons of some properties of these
individuals. In most systems, establishing the appropriate decision rule is left
to the user, who needs to rely on his/her knowledge of the domain, of the data
in both datasets, and on his/her intuition regarding the performance of various
similarity functions in the considered linking situation. Other systems try to
alleviate the issue of establishing the decision rule for linking by using machine
learning techniques. They however require a substantial set of training data in
the form of pre-established links within a subset of the considered datasets.

In this paper, we investigate the question: can a suitable decision rule for link-
ing two datasets be learned without possessing labelled training data, based only
on the characteristics of the datasets and on the distribution of similarity values
amongst their instances? Our hypothesis is that in a scenario which involves
establishing links to reference datasets, available information (e.g., knowledge
that the datasets do not contain duplicates and have high degree of overlap) can
provide sufficient evidence to learn a decision rule which would determine iden-
tity mappings between instances in two datasets with high accuracy. To learn
such rules, we propose an approach based on a genetic algorithm, which evolves
a set of initially random solutions to a problem according to a fitness criterion.
Following research in the area of record linkage in databases, we devise an ap-
plicable fitness criterion which relies on the distribution of links and similarity
values generated by applying a particular decision rule.

To test our assumptions, we apply this approach to the benchmark datasets
from the OAEI 2010 and 2011 instance matching contests. We show that ap-
plying the learned decision rule for data linking achieves results at the level of
the best state-of-the-art tools, without the need to configure linking parameters
for each task. We also experiment with subsets of real-world linked datasets to
demonstrate the robustness of the approach to different types of datasets in dif-
ferent domains and discuss the effects of some of the parameters of the genetic
algorithm on its behaviour in data linking tasks. The remainder of this paper
is structured as follows. In section 2, we provide an overview of the basic no-
tions of the link discovery problem and relevant work in both Semantic Web and
database research communities. Section 3 describes our algorithm in detail. Sec-
tion 4 describes the experiments we performed in order to validate our approach.
Section 5 concludes the paper and discusses directions for future work.

2 Problem Definition and Related Work

In this section, we specify the tasks of link discovery and of establishing the
necessary decision rule, together with a brief description of the relevant existing
work.

2.1 Link Discovery Problem

The problem of reconciliation was originally studied in the database commu-
nity where it is known as record linkage or object identification [3]. With the



Unsupervised Learning of Link Discovery Configuration 121

development of the linked data initiative, it gains importance in the Semantic
Web community where it is studied under the name of link discovery [14]. The
link discovery task takes as inputs two datasets D1 and D2 and tries to discover
all pairs of individuals (I1i, I2j) belonging to these datasets such that they de-
scribe the same entity ω according to a chosen identity criterion. In the context
of linked data, datasets D1 and D2 represent RDF graphs and their individuals
are identified by URIs.

Existing techniques solving this task can be divided into two main categories:
individual matching and dataset matching. We essentially focus on individual
matching in this paper. Dataset matching techniques are built on top of individ-
ual matching ones: they take as input two datasets as a whole together with the
initial set of mappings produced by individual matching and further refine them.
These techniques take into account additional available information such as rela-
tions between individuals, axioms defined in the ontological schema, and mutual
impact of different mappings. The individual matching task can be defined as
follows.

Definition 1: Let I1i ∈ I1 and I2j ∈ I2 represent two individuals in instance
sets I1 and I2. The individual matching task takes I1i and I2j as input and makes
a decision whether I1i ≡ I2j (in which case they are said to be matching) or not.
This decision is made based on the comparison of the profiles of two individuals.
A profile P (I) is defined as a set of pairs {(ai, Vi)}, where ai represent attributes
describing an individual (e.g., name, age, colour, etc.), each of which has a
set of values Vi. The output of individual matching is a set of mappings M =
{(I1i, I2j)} believed to represent equivalent individuals I1i ≡ I2j .

Most individual matching techniques follow the approach proposed in a semi-
nal paper by Fellegi & Sunter [6], in which the decision is based on a similarity
function sim(P (I1), P (I2)) which returns a degree of confidence that I1 ≡ I2.
The similarity function commonly takes the form of aggregated similarity over
attributes sim(P (I1), P (I2)) = fagg({simi(V1i, V2i)}), where fagg is an aggre-
gation function and simi is a comparison function, which returns a degree of
similarity between two values of the attribute ai. The decision rule then takes
the form of applying a filtering criterion which determines whether the con-
fidence degree returned by the similarity function is sufficient to consider a pair
of individuals as identical. The threshold-based criterion is commonly used: a
mapping (I1, I2) is returned if sim(P (I1), P (I2)) ≥ t, where t is a threshold.

2.2 Establishing a Decision Rule for Individual Matching

As can be seen from the description above, the key component of an individual
matching method is the decision rule. For a given pair of datasets to link, a de-
cision rule has to be established that incorporates comparisons between relevant
pairs of properties using appropriate similarity functions, weights, and thresholds
to obtain an adequate discriminative ability.

Some systems assume that a pre-established, generic similarity measure can
be employed across domains. This approach is often followed by systems tar-
geted for the global scale link discovery (e.g., OKKAM [13]), generic ontology



122 A. Nikolov, M. d’Aquin, and E. Motta

matching systems (e.g., RiMOM [9]), or systems which primarily rely on the
dataset matching stage (e.g., CODI [12]). However, in most other cases, a dedi-
cated decision rule has to be established for each link discovery task (i.e., each
pair of datasets to link). Existing systems in the Semantic Web area take two
different approaches to realise this:

Manual configuration. where the decision rule is specified by the user. Be-
sides requiring user effort, the clear disadvantage of such an approach is that
it relies on extensive knowledge from the user of the structure and content of
the two datasets to link, as well as on a reasonable level of intuition regard-
ing the performance of (often complex) similarity functions in a particular
situation.

Learning from training data. where the appropriate decision rule is pro-
duced by analyzing the available labeled data. This method is followed, for
example, by the ObjectCoref system [7]. This alleviates the need for user in-
put to establish the decision rule, but requires the availability of a substantial
set of robust training data (although some methods, like active learning [10]
can reduce the required amount of data).

Here we investigate a third category of approaches that relies on the characteris-
tics of the datasets and of the similarity distributions resulting from comparing
them to establish high performing decision rules in an unsupervised way. Several
solutions in the database research community proposed to use the distribution
features of similarity functions. For example, in [2] individuals are clustered into
matching and non-matching classes based on the structure of their neighbour-
hood rather than on simple threshold filtering. Zardetto et al [15] proposed to
use prior knowledge about the features of the similarity distribution – namely,
that correct mappings are dominant in the area of high similarity values and that
matches are very rare in comparison with non-matches. These features are used
to build a mixture model, which is later used for classifying candidate mappings
into matching and non-matching.

Considering the task of linking to a reference repository, we can make several
assumptions about the datasets and the desired instance matching output:

– Assumption 1: While different URIs are often used to denote the same
entity in different repositories, distinct URIs within one dataset can be ex-
pected to denote distinct entities.

– Assumption 2: Datasets D1 and D2 have a strong degree of overlap.
– Assumption 3: A meaningful similarity function produces results in the

interval {0..1} and returns values close to 1.0 for pairs of matching individ-
uals.

The method described in this paper proposes to use a genetic algorithm guided
by a fitness criterion using these assumptions to assess the expected quality of
a decision rule, and of the derived set of links. Our method goes a step further
than existing methods, as it chooses an appropriate similarity function for a
given matching task as well as a suitable filtering criterion, rather than relying



Unsupervised Learning of Link Discovery Configuration 123

on given similarity functions. Hence, producing a solution requires selecting mul-
tiple parameters of the decision rule simultaneously, such as similarity functions,
comparable attributes, and weights.

For such problems where a suitable complex function has to be found based
on its desired output, genetic algorithms are known to perform well on many
practical tasks, and have already been applied to the instance matching problem
in the context of supervised learning [1], [8]. The idea here is to use such an ap-
proach to evolve a population of candidate solutions (i.e., decision rules) using
selection and variation mechanisms to favour the “fittest” solutions in each gen-
eration, therefore presumably converging to decision rules that can be optimally
applied to link the two given datasets.

3 Algorithm

Applying a genetic algorithm to the problem of optimizing a decision rule re-
quires solving three issues: how relevant parameters of a decision rule are encoded
as a set of genes, what fitness measure to use to evaluate candidate solutions,
and how to use selection and variation operators to converge on a good solution.

3.1 Representing Individual Matching in Terms of a Genetic
Algorithm

Definition 2: Let Ci represent a candidate solution to a given optimization task
T 1. Assume that Ci can be encoded as a set of numeric parameters. Then, the
term gene gij denotes the jth parameter of the candidate solution Ci, genotype
or chromosome G(Ci) =< gi1, . . . , gin > denotes a set of genes representing
a candidate solution Ci, and population G = {G1, . . . GN} represents a set of
N chromosomes encoding candidate solutions for the task. A fitness function
Ffit(Ci) is a function which provides an estimation of the quality of a solution.

An initial population is used as a pool of candidates, from which the algorithm
selects the best chromosomes according to the fitness function. In order to find
a solution which optimizes the fitness function, the algorithm updates the initial
population by using selection and variation operators:

– Selection chooses a subset of chromosomes in the original population to be
used in the creation of the new one.

– Variation changes the genes of the selected chromosomes to generate new
candidate solutions from the old ones. Commonly used variation operators
include crossover, which recombines elements of several “parent” chromo-
somes to produce several new chromosomes (or “children”), and mutation,
which produces a new chromosome by randomly tweaking the genes of the
original one.

1 The term “individual” is used both in the Semantic Web domain to denote ontologi-
cal instances and in the evolutionary computation area, where it refers to candidate
solutions. To avoid confusion, we use it only in its first sense, while using the term
“candidate solution” when talking about the output of the genetic algorithm.



124 A. Nikolov, M. d’Aquin, and E. Motta

The updated population is created by applying these operators to selected chro-
mosomes from the original one. Then, the same steps are performed for the
updated population, and the algorithm continues iterating until the optimal so-
lution (or one sufficiently close to the optimum) is produced or a termination
condition is satisfied: e.g. maximal number of iterations is reached or the fit-
ness of the population does not improve for a long time. The candidate solution
Cbest = argmax(Ffit(Ci)) is returned by the algorithm as its output.

To apply a genetic algorithm to the individual matching problem, we need to
represent candidate decision rules as a set of genes. Similarly to many existing
approaches (see section 2), we represent a decision rule using an aggregated
attribute similarity function.

Definition 3: A decision rule for an individual matching task is defined as:
filt(sim(P (I1), P (I2))) where sim(P (I1), P (I2)) is the similarity function
comparing profiles of two individuals, and filt(sim(P (I1), P (I2))) is a boolean
filtering function. The similarity function takes the form

sim(P (I1), P (I2)) = fagg(w11sim11(V11, V21), . . . , wmnsimmn(V1m, V2n))

– simij is the function which measures similarity between the values of the
attributes a1i of P (I1) and a2j of P (I2),

– wij is a numeric weight (0 ≤ wij ≤ 1),

– fagg is an aggregation function.

We considered two alternative filtering criteria: the threshold-based one and the
nearest neighbour one. The former requires that sim(P (I1), P (I2)) ≥ t, where t
is a threshold value. The latter chooses for each instance I1 in the source dataset
such I2 that sim(P (I1), P (I2)) = max(sim(P (I1), P (Ij))). This criterion is ap-
plicable in cases where we expect each I1 to have a matching I2.

Each of these parameters is represented by a gene in the following way:

– simij are encoded as nominal values representing corresponding attribute
similarity functions (or nil, if a1i and a2j are not compared). We included a
number of character-based functions (edit distance, Jaro, I-Sub, etc., and the
corresponding token-based similarity metrics. The latter divide both string
values into sets of tokens, then compare each pair of tokens using a character-
based similarity function and try to find the best match between them.

– Weights of each attribute comparison pair wij and the threshold t are en-
coded using their real values.

– fagg is encoded as a nominal value representing one of two types of aggre-

gation functions: weighted average avg(P (I1), P (I2)) =
∑

wijsimij(a1i,a2j)∑
wij

and maximum max(P (I1), P (I2)) = max({wijsimij(a1i, a2j)}). In the lat-
ter case the weights wij can only take values 0 or 1.

These genotypes are evaluated by applying the decision rule to the matching
task and calculating the fitness function.



Unsupervised Learning of Link Discovery Configuration 125

3.2 Fitness Functions: Pseudo-F-measure and Neighbourhood
Growth

In the absence of labelled data it is not possible to estimate the quality of a set
of mappings accurately. However, there are indirect indicators corresponding to
“good characteristics” of sets of links which can be used to assess the fitness of a
given decision rule. To establish such indicators, we rely on the assumptions we
made about the matching task. Traditionally, the quality of the matching output
is evaluated by comparing it with the set of true mappings M t and calculating

the precision p and recall r metrics. Precision is defined as p = |tp|
|tp|+|fp| , where

tp is a set of true positives (mappings m = (I1, I2) such that both m ∈ M and
m ∈ M t) and fp is a set of false positives (m ∈ M , but m /∈ M t). Recall is

calculated as r = |tp|
|tp|+|fn| , where fn is a set of false negatives (m /∈ M , but

m ∈ M t). In the absence of gold standard mappings, we use Assumption 1 to
formulate the pseudo-precision and pseudo-recall measures in the following way:

Definition 4: Let M represent a set of mappings (Ii, Ij) between two sets of
individuals I1, I2 such that Ii ∈ I1, Ij ∈ I2. Then, pseudo-precision is the

value p∼ =
|{Ii|∃Ij:(Ii,Ij)∈M}|∑

i |{Ij |(Ii,Ij)∈M}| , and pseudo-recall is the value r∼ = |M|
min(|I1|,|I2|) .

In an ideal case where p = 1, if Assumption 1 holds, then p∼ = 1: of two
mappings from the same individual one is necessarily an error. Similarly, in case
where r = 1, the number of returned mappings will be equal to the size of the
overlap between two instance sets |M | = no = |I1 ∩ I2|, and the pseudo-recall

value r∼ = |M|
no

= 1. However, estimating the true recall is problematic since no

is not known in advance. From Assumption 1 it follows that no ≤ min(|I1|, |I2|),
while no = min(|I1|, |I2|) if one instance set is a subset of another. Incorrect
estimation of no can be misleading for the genetic algorithm: it can result in
“lenient” decision rules being favored and, in consequence, to many false posi-
tives in the resulting solution. To deal with such cases, we reduce the impact of
incorrect recall estimations in the final fitness function.

A standard metric combining precision and recall is the F-measure Fβ =
(1+β2)·p·r
β2·p+r , where β characterizes the preference of recall over precision, and β =

1 means equal importance of both. To reduce the impact of recall, we used
β = 0.1 and the pseudo-F-measure F∼

0.1 = 1.01p∼·r∼
0.01·p∼+r∼ . In this way, solutions

which increase precision are favored, while recall is only used to discriminate
between solutions with similar estimated precision. This “cautious” approach is
also consistent with the requirements of many real-world data linking scenarios,
as the cost of an erroneous mapping is often higher than the cost of a missed
correct mapping.

In order to incorporate Assumption 3, the final fitness function gives a pref-
erence to the solutions which accept mappings with similarity degrees close to
1: F∼

fit = F∼
0.1 · (1 − (1 − simavg)

2). In this way, the fitness function is able
to discriminate between such decision rules as avg(0.5 · jaro(name, label), 0.5 ·
edit(birthY ear, yearOfBirth)) ≥ 0.98 and avg(0.05 · jaro(name, label), 0.05 ·
edit(birthY ear, yearOfBirth), 0.9 · edit(name, yearOfBirth)) ≥ 0.098. While



126 A. Nikolov, M. d’Aquin, and E. Motta

these two rules would produce the same output in most cases, comparing ir-
relevant attributes (like name and yearOfBirth) is not desirable, because it
increases a possibility of spurious mappings without adding any value.

While we used F∼
fit as the main fitness criterion, to test the effect of the choice

of a fitness function on the performance of the genetic algorithm, we implemented
an alternative fitness function: the neighbourhood growth function FNG

fit . While
the pseudo F-Measure tries to estimate the quality of resulting mappings to guide
the evolution of candidate solutions, FNG

fit tries to exploit the desired property of
a “good” similarity function: namely, that it should be able to discriminate well
between different possible candidate mappings. To measure this property, we
adapt the neighbourhood growth indicator defined in [2] to achieve an optimal
clustering of instance matching results for a pre-defined similarity function, as
an alternative to the threshold-based filtering criterion. We adapt this indicator
as an alternative fitness criterion for selecting the most appropriate similarity
functions.

Definition 5: Let Mx represent a set of mappings (Ix, Ixj) between an in-
dividual Ii ∈ I1 and a set of individuals Ixj ∈ I§| ⊆ I∈. Let simmax =
max(sim(P (Ix), P (Ixj))) Then, neighbourhood growth NG(Ix) is defined as
the number of mappings in Mx such that their similarity values are higher than
1− c · (1− simmax), where c is a constant.

Intuitively, high values of NG(Ix) indicate that the neighbourhood of an in-
stance is “cluttered”, and the similarity measure cannot adequately distinguish
between different matching candidates. Then the fitness function for a set of
compared instance pairs M is defined as FNG

fit = 1/avgx(NG(Ix)). As this func-
tion does not require applying the filtering criterion, it only learns the similarity
function, but not the optimal threshold. However, the threshold can be deter-
mined after the optimal similarity function has been derived: t is selected in such
a way that it maximises the F∼

fit function over a set of compared pairs.

3.3 Obtaining the Optimal Solution: Genetic Algorithm

The algorithm takes as input two instance sets I1 and I2 and two sets of potential
attributes A1 and A2. Each set of attributes Ai includes all literal property values
at a distance l from individuals in Ii. In our experiments we used l = 1, however,
also including the paths of length 2 if an individual was connected to a literal
through a blank node. In order to filter out rarely defined properties, we also

remove all attributes aij for which
|{P (Ii)|aij∈P (Ii),Ii∈I}|

|I| < 0.5.

As the first step, the algorithm initializes the population of size N . For the
initial population, all values of the genotype are set in the following way:

– A set of k pairs of attributes (a1i, a2j) is selected randomly from the corre-
sponding sets A1 and A2.

– For these pairs of attributes the similarity functions simij and the corre-
sponding weights wij are assigned randomly while for all others are set to
nil.



Unsupervised Learning of Link Discovery Configuration 127

– The aggregation function and the threshold are initialized with random val-
ues, and the weights are normalized so that

∑
wij = 1.

All initial solutions only compare a single pair of attributes (k = 1): this is done
to identify highly discriminative pairs of attributes at the early iterations, and
then improve these solutions incrementally.

Each iteration of the algorithm consists of two stages: selection and repro-
duction. At the selection stage, each candidate solution is applied to produce
mappings between individuals from I1 and I2. In case of large-scale datasets,
random sampling can be applied, so that the solutions are only applied to a
subset IS

1 ⊆ I1. The calculated Ffit fitness measure is used for the selection of
candidate solutions for reproduction. Our algorithm uses the standard roulette
wheel selection operator: the probability of a chromosome being selected is pro-
portionate to its Ffit fitness. At the reproduction stage, a new population of
chromosomes is generated by three different operators: elitist selection, crossover,
and mutation. In the new population, the proportion of chromosomes produced
by each operator is proportional to its rate: elitist selection rate rel, crossover
rate rc, and mutation rate rm (rel + rc + rm = 1). Elitist selection copies the
best subset of chromosomes from the previous population. The crossover opera-
tor takes two parent chromosomes and forms a pair of “children”: each gene of
the parent is passed to a randomly chosen child, while another child inherits a
corresponding gene of the second parent. Finally, mutation modifies one of the
genes of the original chromosome in one of the following ways:

– Adding or removing a comparison between attributes with a probability pmatt.
The operator either changes the similarity function for a pair of attributes to
nil or selects a random similarity function and weight for a pair of attributes
not compared in the original chromosome. The probability of adding a com-
ponent (versus removing one) is calculated as padd = 1

n+ , where n+ is the
number of non-nil similarity comparisons in the original solution.

– Changing one of the weights wij for a pair of attributes where simij �= nil,
with a probability pmwgt. The value of the change is calculated as 0.8·rnd+0.2

n+ ,
where rnd is a random number between 0 and 1.

– Changing a non-nil similarity function for a pair of attributes into a ran-
domly selected one with a probability pmsym.

– Modifying the threshold value with the probability pmt : the algorithm decides
whether the current threshold should be increased or decreased with the
probability 0.5. The new threshold is set as tnew = told ± Δt, where Δt =
rnd · (1 − p∼)(1 − told) for increase and rnd · (1 − r∼)told for decrease. The
rationale behind this is to make bigger steps if precision/recall values are far
from desired.

– Changing the aggregation function with pmagg.

At the new iteration, chromosomes in the updated population are again evalu-
ated using the Ffit fitness function, and the process is repeated. The algorithm
stops if the pre-defined number of iterations niter is reached or the algorithm



128 A. Nikolov, M. d’Aquin, and E. Motta

converges before this: i.e., the average fitness does not increase for nconv gener-
ations. The phenotype with the best fitness in the final population is returned
by the algorithm as its result.

4 Evaluation

To validate our method, we performed experiments with two types of datasets.
First, we tested our approach on the benchmark datasets used in the instance
matching tracks of the OAEI 2010 and OAEI 2011 ontology matching competi-
tions2, to compare our approach with state-of-the-art systems. Second, we used
several datasets extracted from the linked data cloud to investigate the effect of
different parameter settings on the results.

4.1 Settings

As discussed above, a genetic algorithm starts with an initial population of ran-
dom solutions, and iteratively create new generations through selection, muta-
tion and crossover. In our experiments, we used the following default parameters:

– rates for different recombination operators: rel = 0.1, rm = 0.6, and rc = 0.3.
– rates for different mutation options: pmatt = 0.3, pmwgt = 0.15, pmsym = 0.15,

pmt = 0.3, pmagg = 0.1 (ensuring equivalent probabilities for modifying the list
of compared properties, comparison parameters, and the threshold).

– termination criterion: niter = 20 (found to be sufficient for convergence in
most cases).

– fitness function: F∼
fit, except when comparing F∼

fit with FNG
fit

The genetic algorithm is implemented as a method in the KnoFuss architec-
ture [11]. Relevant subsets of two datasets are selected using SPARQL queries.
Each candidate decision rule is used as an input of the KnoFuss tool to create the
corresponding set of links. To reduce the computation time, an inverted Lucene3

index was used to perform blocking and pre-select candidate pairs. Each individ-
ual in the larger dataset was indexed by all its literal properties. Each individual
in the smaller dataset was only compared to individuals returned by the index
when searching on all its literal properties, and pairs of compared individuals
were cached in memory. Common pre-processing techniques (such as removing
stopwords and unifying synonyms) were applied to the literal properties.

4.2 Benchmark Test

The OAEI 2010 benchmark contains three test cases: Person1 and Person2,
which contain artificially distorted records of people, and Restaurants, which
includes data about restaurants from the RIDDLE repository4. Two versions

2 http://oaei.ontologymatching.org/
3 http://lucene.apache.org
4 http://www.cs.utexas.edu/users/ml/riddle/data.html



Unsupervised Learning of Link Discovery Configuration 129

Table 1. Comparison of F1-measure with other tools on the OAEI 2010 benchmark [4]

Dataset KnoFuss+GA ObjectCoref ASMOV CODI LN2R RiMOM FBEM
Person1 1.00 1.00 1.00 0.91 1.00 1.00 N/A
Person2 0.99 0.95 0.35 0.36 0.94 0.97 0.79
Restaurant (OAEI) 0.78 0.73 0.70 0.72 0.75 0.81 N/A
Restaurant (fixed) 0.98 0.89 N/A N/A N/A N/A 0.96

of the Restaurants dataset exist: the version originally used in the OAEI 2010
evaluation which contained a bug (some individuals included in the gold standard
were not present in the data), and the fixed version, which was used in other
tests (e.g, [13], [7]). To be able to compare with systems which used both variants
of the dataset, we also used both variants in our experiments. The OAEI 2011
benchmark includes seven test cases, which involve matching three subsets of
the New York Times linked data (people, organisations, and locations) with
DBpedia, Freebase, and Geonames datasets.

We compared our algorithm with the systems participating in the OAEI 2010
tracks as well as with the FBEM system [13], whose authors provided the bench-
mark datasets for the competition. We report in Table 1 on the performance of
the KnowFuss system using decision rules learned through our genetic algorithm
(noted KnowFuss+GA) as the average F1-Measure obtained over 5 runs of the
algorithm with a population size N = 1000. The solution produced by the

Table 2. Example decision rules found by the algorithm with N = 1000

Test case Similarity function Threshold
Person1 max(tokenized-jaro-winkler(soc sec id;soc sec id);

monge-elkan(phone number;phone number)) ≥0.87
Person2 max(jaro(phone number;phone number);

jaro-winkler(soc sec id;soc sec id)) ≥0.88
Restaurants avg(0.22*tokenized-smith-waterman(phone number;phone number);
(OAEI) 0.78*tokenized-smith-waterman(name;name)) ≥0.91
Restaurants avg(0.35*tokenized-monge-elkan(phone number;phone number);
(fixed) 0.65*tokenized-smith-waterman(name;name)) ≥0.88

genetic algorithm managed to achieve the highest F1-measure on 3 out of 4
datasets and the second highest F1-measure on 1 out of 4. Examples of pro-
duced decision rules are provided in Table 2. We observed that the algorithm
took less time on identifying discriminative pairs of properties and the aggrega-
tion function and more on tuning weights and attribute similarity functions. To
test the robustness of the results achieved by the algorithm with different set-
tings, we performed tests on the benchmark datasets varying the crossover rates
rc, and mutation rate rm. Surprisingly, varying the crossover rate and the mu-
tation rate did not lead to significant changes in the results, except for extreme
values. These parameters mostly affected the number of generations needed to



130 A. Nikolov, M. d’Aquin, and E. Motta

Table 3. Comparison of F1-measure with other tools on the OAEI 2011 benchmark [5]

Dataset KnoFuss+GA AgreementMaker SERIMI Zhishi.links
DBpedia (locations) 0.89 0.69 0.68 0.92
DBpedia (organisations) 0.92 0.74 0.88 0.91
DBpedia (people) 0.97 0.88 0.94 0.97
Freebase (locations) 0.93 0.85 0.91 0.88
Freebase (organisations) 0.92 0.80 0.91 0.87
Freebase (people) 0.95 0.96 0.92 0.93
Geonames 0.90 0.85 0.80 0.91
Average 0.93 0.85 0.89 0.92

converge to the optimal solution, and the algorithm usually converged well before
20 generations5.

Given the larger scale of the OAEI 2011 benchmark, to speed up the algo-
rithm we used random sampling with the sample size s = 100 and reduced the
population size to N = 100. To improve the performance, a post-processing step
was applied: the 1-to-1 rule was re-enforced, and for a source individual only 1
mapping was retained. As shown in Table 3, these settings were still sufficient
to achieve high performance: the algorithm achieved the highest F1 measure on
4 test cases out of 7 and the highest average F1 measure. These results verify
our original assumptions that (a) the fitness function based on the pseudo-F-
measure can be used as an estimation of the actual accuracy of a decision rule
and (b) the genetic algorithm provides a suitable search strategy for obtaining
a decision rule for individual matching.

4.3 LOD Datasets

To test the reusability of our method in different real-world scenarios, we have
defined the following three matching tasks:

Music Contributors. As a source dataset, we selected a list of music contrib-
utors from the LinkedMDB dataset6. This dataset of 3995 individuals was
matched against the set of all people from DBpedia7 (363751 individuals).
The gold standard was constructed manually and included 1182 mappings.

Book Authors. To construct this dataset, we extracted a set of 1000 individ-
uals describing book authors from the BNB dataset8 (from the first part of
the dump, we selected 1000 authors with the highest number of published
books). This dataset was also matched against the set of all people from
DBpedia. The gold standard was constructed manually and included 219
correct mappings.

Research Papers. To generate a matching task with a larger number of reli-
able gold standard mappings, we used a subset of 10000 research publications

5 The datasets and test results are available for download from our website:
http://kmi.open.ac.uk/technologies/knofuss/knofuss-GA-tests.zip

6 http://www.linkedmdb.org/
7 http://dbpedia.org
8 http://www.archive.org/details/Bibliographica.orgBnbDataset



Unsupervised Learning of Link Discovery Configuration 131

represented in the L3S-DBLP dataset9 (out of the snapshot of 366113 pub-
lications included in the BTC 2010 dataset10). For these publications, we
extracted their RDF descriptions from the DOI web-site11. We used equiva-
lent DOI codes to create the gold standard and then removed corresponding
properties from respective datasets to prevent the algorithm from using them
as an easy solution.

On each of these datasets, we applied the algorithm with the same default set-
tings as used in the benchmark tests. We performed the experiments using two
different fitness functions: the unsupervised F∼

fit fitness function and the actual
F1-measure produced using the gold standard dataset. The latter case repre-
sents an ideal scenario, in which a complete set of labeled data is available in
advance, and the algorithm only has to produce an optimal decision rule which
would approximate this data. For Music contributors and Book authors, we var-
ied the population size N in order to estimate the necessary number of candidate
solutions which the algorithm has to test before achieving stable performance.
The results for these datasets are summarised in Table 4, which shows average
precision, recall, and F1-measure achieved using two different fitness functions,
as well as the standard deviation of F1 measure σF1 over 5 runs and the time
of a single run for the unsupervised case12. In both cases, F∼

fit allowed reaching

Table 4. Results with different population size

Dataset Pop. size N
F1-fitness (ideal case) F∼

fit-fitness (unsupervised)
Precision Recall F1 Precision Recall F1 σF1 Time (s)

Music 50 0.92 0.92 0.92 0.90 0.90 0.90 0.021 520
contributors 100 0.91 0.93 0.92 0.92 0.91 0.92 0.003 931

500 0.91 0.93 0.92 0.92 0.92 0.92 0.003 4197
Book 50 0.90 0.93 0.91 0.66 0.69 0.68 0.022 753
authors 100 0.98 0.95 0.97 0.78 0.89 0.82 0.13 1222

500 0.99 0.98 0.98 0.91 0.91 0.91 0.009 7281

high performance (F1 above 0.9), and increasing the population size N led to
improvement in performance as well as more robust results (lower σF1). In fact,
for the Music contributors test case, the results produced using F∼

fit and the ideal
case F1 were almost equivalent. For the Research papers dataset (Table 5), we
trained the algorithm on several samples taken from the DOI dataset and then
applied the resulting decision rules to the complete test case (10000 individuals in
the DOI dataset). This was done to emulate use cases involving large-scale repos-
itories, in which running many iterations of the genetic algorithm over complete
datasets is not feasible. From Table 5 we can see that starting from 100 sam-
ple individuals the algorithm achieved stable performance, which is consistent

9 http://dblp.l3s.de/
10 http://km.aifb.kit.edu/projects/btc-2010/
11 http://dx.doi.org/
12 Experiments were performed on a Linux desktop with two Intel Core 2 Duo proces-

sors and 3GB of RAM.



132 A. Nikolov, M. d’Aquin, and E. Motta

Table 5. Results obtained for the Research papers dataset (for all sample sizes, pop-
ulation size N = 100 was used)

Sample size
F1-fitness (ideal case) F∼

fit-fitness (unsupervised) Complete set
Precision Recall F1 Precision Recall F1 σF1 Time (s) Precision Recall F1

50 0.50 0.76 0.60 0.58 0.36 0.44 0.063 162 0.68 0.22 0.33
100 0.95 0.88 0.91 0.998 0.72 0.83 0.068 255 0.995 0.68 0.81
500 0.96 0.85 0.90 0.99 0.73 0.84 0.046 842 0.98 0.75 0.85
1000 0.95 0.88 0.91 0.99 0.67 0.79 0.065 3667 0.997 0.71 0.83

with the results achieved for the OAEI 2011 benchmark. Applying the resulting
decision rules to the complete dataset also produced results with precision and
recall values similar to the ones achieved on the partial sample. Finally, to test

Table 6. Comparing the F∼
fit and FNG

fit fitness functions

Dataset
F∼

fit-fitness NG-fitness
Precision Recall F1 Precision Recall F1

Music contributors 0.92 0.91 0.92 0.90 0.91 0.91
Book authors 0.78 0.89 0.82 0.97 0.78 0.85
NYT-Geonames 0.88 0.82 0.84 0.87 0.92 0.89
NYT-Freebase (people) 0.60 0.97 0.74 0.47 0.66 0.55

the effect of the chosen fitness function on the performance, we compared the
pseudo-F-measure F∼

fit and neighbourhood growth FNG
fit fitness functions. We

applied the algorithm to the Music contributors and Book authors datasets, as
well as to the NYT-Geonames and NYT-Freebase (people) test cases from the
OAEI 2011 benchmark (without applying post-processing). The results reported
in Table 6 show that both functions are able to achieve high accuracy with F∼

fit

providing more stable performance. This validates our initial choice of F∼
fit as

a suitable fitness criterion and reinforces our assumption that features of the
similarity distribution can indirectly serve to estimate the actual fitness.

5 Conclusion and Future Work

In this paper, we proposed a method which exploits expected characteristics
of “good” sets of mappings to estimate the quality of results of the individual
matching task. We formalised these characteristics to propose a fitness function
for a genetic algorithm, which derives a suitable decision rule for a given matching
task. Experiments, which we performed with both benchmark and real-world
datasets, have validated our initial assumptions and have shown that the method
is able to achieve accuracy at the level of the top-performing state-of-the-art data
linking systems without requiring user configuration, training data, or external
knowledge sources.

We plan to use the results presented in this paper to pursue several promising
research directions, in particular, combining our approach with more knowledge-
involving dataset matching methods. On the one hand, dataset matching systems



Unsupervised Learning of Link Discovery Configuration 133

have to rely on individual matching techniques to provide initial sets of mappings
for refining. For such systems, using initial mappings of better quality can be
beneficial. On the other hand, domain knowledge can be used to improve the
unsupervised fitness functions, for example to reduce the fitness of decision rules
whose results violate ontological restrictions.

Acknowledgements. Part of this research has been funded under the EC 7th
Framework Programme, in the context of the SmartProducts project (231204).

References

1. de Carvalho, M.G., Laender, A.H.F., Goncalves, M.A., da Silva, A.S.: A genetic
programming approach to record deduplication. IEEE Transactions on Knowledge
and Data Engineering 99(PrePrints) (2010)

2. Chaudhuri, S., Ganti, V., Motwani, R.: Robust identification of fuzzy duplicates.
In: ICDE 2005, pp. 865–876 (2005)

3. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A
survey. IEEE Transactions on Knowledge and Data Engineering 19(1), 1–16 (2007)

4. Euzenat, J., et al.: Results of the ontology alignment evaluation initiative 2010. In:
Workshop on Ontology Matching (OM 2010), ISWC 2010 (2010)

5. Euzenat, J., et al.: Results of the ontology alignment evaluation initiative 2011.
In: Workshop on Ontology Matching (OM 2011), ISWC 2011 (2011)

6. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. Journal of American Sta-
tistical Association 64(328), 1183–1210 (1969)

7. Hu, W., Chen, J., Qu, Y.: A self-training approach for resolving object coreference
on the semantic web. In: WWW 2011, pp. 87–96 (2011)

8. Isele, R., Bizer, C.: Learning linkage rules using genetic programming. In: Workshop
on Ontology Matching (OM 2011), ISWC 2011, Bonn, Germany (2011)

9. Li, J., Tang, J., Li, Y., Luo, Q.: RiMOM: A dynamic multistrategy ontology align-
ment framework. IEEE Transactions on Knowledge and Data Engineering 21(8),
1218–1232 (2009)

10. Ngonga Ngomo, A.C., Lehmann, J., Auer, S., Höffner, K.: RAVEN - active learning
of link specifications. In: Workshop on Ontology Matching (OM 2011), ISWC 2011
(2011)

11. Nikolov, A., Uren, V., Motta, E., de Roeck, A.: Integration of Semantically An-
notated Data by the KnoFuss Architecture. In: Gangemi, A., Euzenat, J. (eds.)
EKAW 2008. LNCS (LNAI), vol. 5268, pp. 265–274. Springer, Heidelberg (2008)

12. Noessner, J., Niepert, M., Meilicke, C., Stuckenschmidt, H.: Leveraging Termino-
logical Structure for Object Reconciliation. In: Aroyo, L., Antoniou, G., Hyvönen,
E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010.
LNCS, vol. 6089, pp. 334–348. Springer, Heidelberg (2010)

13. Stoermer, H., Rassadko, N., Vaidya, N.: Feature-Based Entity Matching: The
FBEM Model, Implementation, Evaluation. In: Pernici, B. (ed.) CAiSE 2010.
LNCS, vol. 6051, pp. 180–193. Springer, Heidelberg (2010)

14. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and Maintaining Links
on the Web of Data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L.,
Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 650–665. Springer, Heidelberg (2009)

15. Zardetto, D., Scannapietro, M., Catarci, T.: Effective automated object matching.
In: ICDE 2010, pp. 757–768 (2010)


	Unsupervised Learning of Link Discovery Configuration
	Introduction
	Problem Definition and Related Work
	Link Discovery Problem
	Establishing a Decision Rule for Individual Matching

	Algorithm
	Representing Individual Matching in Terms of a Genetic Algorithm
	Fitness Functions: Pseudo-F-measure and Neighbourhood Growth
	Obtaining the Optimal Solution: Genetic Algorithm

	Evaluation
	Settings
	Benchmark Test
	LOD Datasets

	Conclusion and Future Work
	References




