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Abstract. In this paper, we study two hierarchical N-Body methods
for Network-on-Chip (NoC) architectures. The modern Chip Multipro-
cessor (CMP) designs are mainly based on the shared-bus communication
architecture. As the number of cores increases, it suffers from high com-
munication delays. Therefore, NoC based architecture is proposed. The
N-Body problem is a classical problem of approximating the motion of
bodies. Two methods, namely Barnes-Hut (Barnes) and Fast Multipole
(FMM), have been developed for fast simulation. The two algorithms
have been implemented and studied in conventional computer systems
and Graphics Processing Units (GPUs). However, as a promising uncon-
ventional multicore architecture, the evaluation of N-Body methods in
a NoC platform has not been well addressed. We define a NoC model
based on state-of-the-art systems. Evaluation results are presented using
a cycle accurate full system simulator. Experiments show that, Barnes
scales better (53.7x/Barnes and 36.6x/FMM for 64 processing elements)
and requires less cache than FMM. However, we observe hot-spot traffic
in Barnes. Our analysis and experiment results provide a guideline for
studying N-Body methods in a NoC platform.

1 Introduction

It is predictable that in the near future, hundreds or even more cores on a chip
will appear on the market. The number of circuits integrated on a chip have
been increasing continuously which leads to an exponential rise in the complex-
ity of their interaction. Traditional digital system design methods, e.g. bus-based
architectures will suffer from high communication delay and low scalability. To
address these problems, NoC communication backbone was proposed for future
multicore systems [I]. Network communication methodologies are brought into
on-chip communication. More transactions can occur simultaneously and thus
the delay of the packets is reduced and the throughput of the system is in-
creased. Moreover, as the links in NoC are based on point-to-point mechanism,
the communication among cores can be pipelined to further improve the system
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Fig. 1. An example of 4x4 NoC using mesh topology

performance. Figure [Il shows a NoC with 4x4 mesh (16 nodes). The underly-
ing network is comprised of network links and routers (R), each of which is
connected to a processing element (PE) via a network interface (NI). The ba-
sic architectural unit of a NoC is the tile/node (N) which consists of a router,
its attached NI and PE, and the corresponding links. Communication among
PEs is achieved via network packets. Intel [] has demonstrated an 80 tile, 100M
transistor, 275mm? 2D NoC under 65nm technology [2]. An experimental mi-
croprocessor containing 48 x86 cores on a chip has been created, using 4x6 2D
mesh topology with 2 cores per tile [2]. The TILE-Gx processor from Tilera,
containing 16 to 100 general-purpose processors in a single chip, is available for
commercial use [3].

The N-Body problem is a classical problem of approximating the motion of
bodies that interact with each other continuously. The bodies are usually galax-
ies and stars in an astrophysical system. The gravitational force of bodies is
calculated according to Newton’s Principia [4]. The N-Body problem is used in
other computations and simulations as well, e.g. the interference of wireless cells
and protein folding [5]. Several algorithms have been developed for N-Body sim-
ulation. In principle, to be precise, the simulation requires the calculation of all
pairs, since the gravitational force is a long range force. However the computa-
tion complexity of this method is O(n?) [6]. J. Barnes et al. and L. Greengard
introduced two fast hierarchical methods [7I8]. A tree is build firstly according to
the position of the bodies in the physical space. The interactions are calculated
by traversing this tree. The computation complexities in these algorithms are
reduced to O(nlog, ), or even O(n) in some cases.

The performance of these two algorithms has been studied in traditional cache-
coherent shared address space multiprocessors, e.g. Standford DASH, KSR-1
and SGI-Challenge [9]. A simulator is used for examining the implications of
the two algorithms in a multiprocessor architecture [10]. However, the previous
works are based on conventional architectures, e.g. bus-based multiprocessors,

! Intel is a trademark or registered trademark of Intel or its subsidiaries. Other names
and brands may be claimed as the property of others.
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physically distributed main memory or cache-only memory architecture. NVIDIA
has presented a CUDA-based N-Body simulation by calculating the gravitational
attractions of all body-pairs [I1]. Hierarchical methods for GPGPU-based sys-
tems have been implemented and compared in [12] and [13]. As a promising
unconventional multicore architecture in the future, the implementation of these
algorithms in a NoC platform has not been well studied. To design efficient
NoCs, designers need to understand the characteristics of the applications, e.g.
the amount of communication among cores, caches and memory controllers, as
well as the scaling of the application with the designated architecture. In our
paper, we study and discuss two hierarchical N-Body algorithms for the NoC
architecture. To validate our study, we model and analyze a 64-core NoC with
8x8 mesh, present the performance and network traces of the two algorithms
using a full system simulator.

2 Modeling of the Network-on-Chip

The Tilera TILE processor family includes TILE64, TILEPro and TILE-Gx
members. The basic architecture of these processor are the same: an array of 16 to
100 general purpose RISC processor cores (tiles) in a on-chip mesh interconnect.
Each tile consists a core with related L1 and L2 caches. The memory controllers
are integrated on the chip as well.

Figure 2] shows the architecture diagram of TILE-Gx processor [3]. Each tile
consists of a 64-bit VLIW core with private L1 cache (32KB instruction and
32KB data) and shared L2 cache (256KB per tile). Four 64-bit DDR3 memory
controllers, duplexed to multiple ports, connect the tiles to the main memory.
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Fig. 2. The Tilera TILE multicore processor with 100 cores
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Fig. 3. An 8x8 mesh-based NoC with memory controllers attached to up and down
sides

The L2 caches and the memory are shared by all processors. The processor
operates at 1.0 to 1.5GHz, with typical power consumption of 10 to 55W. The
I/0O controllers are integrated on chip to save costs of north and south bridges.
The mesh network provides bandwidth up to 200Tbps.

To analyze the low-level behavior of an application, we model a NoC similar
to the Tilera TILE architecture. The processing core of the NoC is a Sun SPARC
RISC core [14], the area is 14mm? with 65nm fabrication technology. Scaled to
32nm technology, each core has an area of 3.4mm?. We simulate the character-
istics of a 16MB, 64 banks, 64-bit line size, 4-way associative, 32nm cache by
CACTI [15]. Results show that the total area of cache banks is 64.61mm?. Each
cache bank, including data and tag, occupies 1mm?. Routers are quite small
compared with processors and caches, e.g. we calculate a 5-port router to be
only 0.054mm? under 32nm. The number of transistors required for a memory
controller is quite small compared with a chip (usually billions). It is presented
that a DDR3 memory controller is about 2,000 LCs with Xilinx Virtex-5 Field-
Programmable Gate Array (FPGA) [I6]. The total area of the chip is estimated
to be around 300mm?, comparable to the TILE-Gx. Figure [J illustrates the
architecture of the aforementioned NoC.

3 The Hierarchical N-Body Methods

In this section, we describe the two most important hierarchical N-Body al-
gorithms that we used for analysis: the Barnes-Hut method [7] and the Fast
Multiple Method (FMM) [8]. The two hierarchical methods build a structured
tree firstly. The tree is built by subdividing space cells until a certain condition,
e.g. reaching the maximum number of particles in a leaf cell. The physical space
is represented by a hierarchical tree. The computation of interactions is done by



Study of Hierarchical N-Body Methods for NoC Architectures 369

traversing this tree. The two algorithms differ in the steps they use to calculate
the interactions of particles.

In Barnes-Hut method, for each particle, the tree is traversed to compute
the forces. It starts at the root of the tree, and traverses every cell. To reduce
the computation complexity of long-range interactions, the subtree is approxi-
mated by the mass of the center cell, if the cell is far away from the particle.
The accuracy of this methods is thus dependent on the approximation metrics.
The Barnes-Hut method only computes the interactions for particle-particle and
particle-cell.

The FMM computes the interactions for cell-cell as well, compared with
Barnes-Hut. If two cells are far away from each other, the interaction between
them is computed by the multipole expansion of the cells. The computation
complexity is thus reduced. For uniform distributions, the complexity of FMM
is O(n), compared with O(nlog,) in Barnes-Hut. To develop a multithreaded
program for both algorithms, the space is divided into several regions where
each core is assigned with a region. A tree for the regions is built for the respon-
sible core, and each core calculates its local tree. Most of the calculation time
is spent in traversals of the tree to compute the forces. In a NoC platform, the
performance of the algorithms will be affected by (a) long distance communica-
tion of nodes; (b) the initial distribution of particles; (¢) the dynamic changing
of position of particles; (d) hot-spot traffic.

4 Experimental Evaluation

4.1 Experiment Setup

The simulation platform is based on a cycle-accurate NoC simulator which is
able to produce detailed evaluation results. The platform models the routers
and links accurately. State-of-the-art router in our platform includes a routing
computation unit, a virtual channel allocator, a switch allocator, a crossbar
switch and four input buffers. Deterministic XY routing algorithm has been
selected to avoid deadlocks.

We use a 64-core network which models a single-chip NoC for our experiments.
A full system simulation environment with 64 nodes, each with a core and related
cache, has been implemented. The simulations are run on the Solaris 9 operating
system based on the UltraSPARCIII+ instruction set in-order issue structure.
Each processor core is running at 2GHz, attached to a wormhole router and has
a private write-back L1 cache (split I+D, each 32KB, 4-way, 64-bit line, 3-cycle).
The 16MB L2 cache shared by all processors is split into banks (64 banks, each
256K B, 64-bit line, 6-cycle). The simulated memory/cache architecture mimics
SNUCA [I7]. A two-level distributed directory cache coherence protocol called
MOEST based on MEST [I8] has been implemented in our memory hierarchy in
which each L2 bank has its own directory. The protocol has five types of cache
line status: Modified (M), Owned (O), Exclusive (E), Shared (S) and Invalid
(I). We use Simics [19] full system simulator as our simulation platform. For
both methods, we use the Plummer model [20] for particle generation, instead



370 T.C. Xu, P. Liljeberg, and H. Tenhunen

of uniform distribution. The multithreaded part of the programs utilizes the
C/pthread model.

4.2 Result Analysis

We start by evaluating the computation time distribution and scalability of the
two algorithms. Both algorithm applies same parameters. The results are listed
in Table[Iland 2l The first five rows show the computation time from 4K to 64K
particles, with 64 processors. In Barnes-Hut, around 90% of the total time are
spent on force calculation (84.2% in 4K to 91.1% in 64K), while the time spent
on other tasks (e.g. tree building) are relatively small. The Barnes-Hut method
scales very well from 1 to 64 processors. The speedups for 64 processors are 53.7x
and 61.8x for total execution time and force calculation time, respectively.

In Figure @ the network request rates of 64 cores are illustrated. We simulate
64K particles in 5 time steps. The horizontal axis is time, segmented in 12.1M-
cycle percentage fragments. The traffic trace has 165.2M packets. It is observed
that, several nodes, especially NO and N34, generate more data traffic than
others (e.g. NO 14.18%, N34 12.19%, N12 5.3% and N20 2.76%). This introduces
heavy hot-spot traffic in certain regions of the NoC. Notice that, the traffic
patterns of other nodes are quite similar, they have a high traffic in the starting
phase, and drop to a lower traffic after that. There are several time slices, for
example 16% to 21%, when all processors are sending packets simultaneously.
The reason is, the simulation has executed for 5 time steps, the positions of
particles will change at the end of each time step. In terms of point-to-point
traffic, several source-destination pairs, specifically originated from NO and N34,
generated a considerable amount of the traffic. We observe the top 5 pairs are:
34-62 (0.88%), 0-14 (0.63%), 0-58 (0.62%), 0-8 (0.60%) and 34-10 (0.51%). These
hot-spot traffic can be alleviated with, e.g. long links between nodes, or increase
the link bandwidth for hot-spot nodes.

Table 1. Time distribution and scalability of the Barnes-Hut Method

Configuration Total time Treebuild Forcecalc Others

64p/4K 19 1 16 2
64p/8K 41 2 35 4
64p/16K 87 5 76 6
64p/32K 184 8 168 8
64p,/64K 385 15 351 19
4K/1p 1020 28 988 4
4K /2p 511 15 495 1
4K /4p 258 8 246 4
4K /8p 129 4 124 1
4K /16p 65 3 61 1
4K /32p 34 2 31 1
4K /64p 19 1 16 2
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Fig. 4. Network request rate for 64-core NoC running Barnes

Table 2. Time distribution and scalability of the Fast Multipole Method

Configuration Total time Treebuild Forcecalc Barrier Listbuild Others

64p /4K 17 1 10 3 2 1
64p/8K 27 2 16 6 0 3
64p /16K 54 7 30 14 2 1
64p /32K 102 11 73 13 1 4
64p/64K 209 21 147 30 4 7
4K/1p 622 75 533 0 10 4
4K/2p 316 38 270 1 3 4
4K /4p 162 20 136 1 3 2
4K /8p 83 9 71 0 1 2
4K/16p 44 4 35 2 1 2
4K/32p 26 3 16 4 0 3
4K /64p 17 1 10 3 2 1

The time spent on force calculation in the Fast Multipole method is lower
than Barnes-Hut (Table[2), e.g. 58.8% in 4K to 70.3% in 64K. Nearly 10% of the
time are spent on tree building, and about 15% on barrier. The Fast Multipole
method scales worse than Barnes. The speedups for 64 processors are 36.6x and
53.3x for total execution time and force calculation time, respectively. This is
primarily due to the higher number of barriers in Fast Multipole method. It is
noteworthy that, in spite of poor scaling, the Fast Multipole method spends less
time for calculation. For example, it spends 54.3% of the total execution time
in 64p/64K, compared with Barnes. In consideration of better scalability, the
Barnes-Hut method could use shorter time in a systems with thousands of cores.

Figure [l shows the network request rate of each processing core when running
FMM in a 64-core NoC. The horizontal axis is time, segmented in 1.69M-cycle
percentage fragments. The traffic trace has 57.4M packets. It is revealed that,
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Fig. 5. Network request rate for 64-core NoC running FMM

several nodes (e.g. NO 7.6%, N46 4.15%, N13 2.72% and N7 2.71%) generate more
data traffic than others. The network traffic is relatively low in the starting phase
(before 30% of the time slice). After that time point, FMM shows similar traffic
patterns as in Barnes. However, the hot-spot traffic in FMM is not as significant
as Barnes. We note that, in terms of point-to-point traffic, a small portion of
source-destination pairs generated a sizable portion of the traffic. For example,
only 4 (19-60, 13-44, 60-19 and 0-29) of the pairs (in totally 642> = 4,096)
generated 1.42% traffic.

We evaluate other performance metrics of the two algorithms in terms of 1.2
cache miss rate (L2MR), misses per thousand instructions (MissPKI), Average
Link Utilization (ALU) and Average Network Latency (ANL). ALU is calculated

[ Barnes—Hut
B Fast-Multipole

1.1 T T T T

Normalized value

L2MR MissPKI ALU ANL

Fig. 6. Performance for Barnes and FMM
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with the number of packets transferred between NoC resources per cycle. ANL
represents the average number of cycles required for the transmission of all mes-
sages. The number of required cycles for each message is calculated from the injec-
tion of the message header into the network at the source node, to the reception of
the tail flit at the destination node. Under the same configuration and workload,
lower values of these metrics are favorable. The results are shown in Figure[6l We
note that, in terms of L2MR and MissPKI, Barnes is lower than FMM (1.21% for
L2MR and 15.77% for MissPKI respectively). This reflects, FMM requires more
cache than Barnes. A system with limited cache could be unsuitable for FMM.
The ALU of Barnes is only 43.83% of FMM, which means an alleviated network
load. It is noteworthy that despite the fact that the value of Z axis in Figure @ is
twice as larger than Figure[d each time slice in Figured represents 12.1M cycles,
compared with 1.69M cycles in Figure Bl Finally, the ANL of Barnes is 96.31%
that of FMM, indicating that the network performance of Barnes is better, and
hence having lower communication overhead.

5 Conclusion

The implementation of two hierarchical N-Body methods (Barnes-Hut and Fast
Multipole) in a NoC platform was studied in this paper. Both scalability and
network traffic for the two methods were analyzed. We studied an 8x8 NoC
model based on state-of-the-art systems. The time distribution of the two meth-
ods, with 1 to 64 processing cores, were explored. We investigated the advantages
and disadvantages of the two algorithms. The network requests rates of 64 pro-
cessing cores were illustrated for both methods. Our experiments have shown
that, the Barnes-Hut method generates more hot-spot traffic than Fast Multi-
pole. However, it scales better, and has lower overall pressure to the on-chip
network and caches, compared with Fast Multipole. The results of this paper
gave guidance for analyzing hierarchical N-Body methods in a NoC platform.
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