
Enhancing Brainware Productivity
through a Performance Tuning Workflow

Christian Iwainsky1, Ralph Altenfeld2,�,
Dieter an Mey1, and Christian Bischof1

1 Center for Computing and Communication,
RWTH Aachen University

{iwainsky,anmey,bischof}@rz.rwth-aachen.de
2 Access e.V.

RWTH Aachen University
r.altenfeld@access-technology.de

Abstract. Operation costs of high performance computers, like cooling
and energy, drive HPC centers towards improving the efficient usage of
their resources. Performance tuning through experts here is an indis-
pensable ingredient to ensure efficient HPC operation. This "brainware"
component, in addition to software and hardware, is in fact crucial to en-
sure continued performance of codes in light of diversifying and changing
hardware platforms. However, as tuning experts are a scarce and costly
resource themselves, processes should be developed that ensure the qual-
ity of the performance tuning process. This is not to dampen human
ingenuity, but to ensure that tuning effort time is limited to achieve a
realistic substantial gain, and that code changes are accepted by users
and made part of their code distribution. In this paper, we therefore for-
malize a service-based Performance Tuning Workflow to standardize the
tuning process and to improve usage of tuning-expert time.

1 Introduction

Researchers from many scientific backgrounds (e.g. biology, engineering, medicine)
develop software to satisfy their simulation needs. We observe that software
development projects pressed ahead by domain specialists typically lack the nec-
essary knowledge, experience and manpower to effectively use modern manycore-
clusters, resulting in insufficient or lacking parallelization, little or no tuning and
missing adaption to the local HPC-system and as a consequence results in limited
scalability, less than optimal performance and bad hardware utilization.

Besides the ability to solve previously unsolvable problems, the operational
cost in terms of power and cooling becomes an additional driving force for per-
formance tuning and parallelization (from now on summarized as "tuning"). It
is therefore in the interest of users, i.e. the users of a projects software, and
HPC-centers to improve scalability and efficiency.
� Formerly employed at the Center for Computing and Communication.

M. Alexander et al. (Eds.): Euro-Par 2011 Workshops, Part II, LNCS 7156, pp. 198–207, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Enhancing Brainware Productivity through a Performance Tuning Workflow 199

For this reason many HPC-sites employ tuning specialists to provide the nec-
essary expertise. This can be most prominently seen in the Tier-0 and Tier-
1 HPC-sites, like the UK National Supercomputing Service (HECToR) with
the Distributed Computations Science and Engineering support1 and the HPC-
Simulation Labs in Germany2. These projects provide this essential performance
tuning expertise to enable "users", i.e. code developers and program users, to
scale to ten-thousands or more cores. Also the smaller Tier-2 sites (like ours)
who focus more on productivity and throughput of compute-jobs especially ben-
efit from such support.

Whilst funding for such experts is typically difficult for Tier-2 sites, we argued
in previous work (Brainware for Green HPC [1]), summarized in section 2, that
savings in the Total Cost of Ownership (TCO) obtained by the tuning activity
could be used to fund these experts. This claim holds true, as long as these
experts achieve sufficient improvement for a project in a definite time.

Under this assumption, we propose a Tuning Workflow, described in detail in
section 3, to guide and monitor the tuning service effort of a performance tuning
expert. This workflow aims to maintain the necessary balance between tuning
investment and the obtained savings. To our knowledge such a process has not
been published, though tuning-experts may already follow this process.

We discuss our work and, as this workflow is our first implementation of this
workflow, further improvement possibilities in section 4.

2 Brainware for Green HPC

To acquire an HPC-system on a Tier-2 level considerable funds are required. At
the RWTH-Aachen University the TCO of about 5.5 millione per year covers
of costs for the building, compute hardware, maintenance, power, software and
staff. Figure 1 shows the percentage of a typical annual load of our system, broken
down to the number of users causing the load. Using this figure and the TCO we
can derive that the top 10 users consume roughly 40 % of our system amounting
to 2.2 millione.

From our past experience and consistent with findings of the Computational
Science and Engineering support of the HECToR UK National Supercomputing
Service 3, we claim that on average a tuning expert can achieve at least a perfor-
mance improvement of 10 % to 20 %. In this case this means that the project, i.e.
code, dataset and software environment, executed faster on the same number of
cores or used the available nodes more efficiently by scaling to further cores. For
several projects in the past, we even experienced performance improvements of a
factor of 2 to 5, with similar findings reported in the HECToR reports. The amount
of work necessary for these improvements depends on the specific project. If one
for example augments an MPI-only project with OpenMP (multi-threading), very
little time is needed to identify the hotspot, parallelize it with OpenMP and to
1 http://www.hector.ac.uk/cse/distributedcse/
2 http://www.jara.org/de/research/jara-hpc/forschung/
3 http://www.hector.ac.uk/cse/distributedcse/

http://www.hector.ac.uk/cse/distributedcse/
http://www.jara.org/de/research/jara-hpc/forschung/
http://www.hector.ac.uk/cse/distributedcse/

200 C. Iwainsky et al.

verify the results. However, if one performs a change in algorithms or other exten-
sive code modifications, more time is necessary for these changes but the potential
outcome is larger. In our experience a tuning expert invests on average about 2
months worth of work to achieve the aforementioned conservative 10 % to 20 %
performance improvements.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

16
3

16
9

17
5

18
1

18
7

19
3

19
9

C
PU

-ti
m

e
us

ag
e

Number of users responsible

Fig. 1. Accumulated Cluster Usage

Assuming a constant
load, these funds are
initially freed up by
shutting down the re-
spective surplus hard-
ware starting with older,
less power efficient sys-
tems thus saving en-
ergy. In the long run a
portion money can be
diverted from procure-
ments towards tuning as
the new machinery could
be considered 10 % more
productive. For a non-

constant load, i.e. the users allways use all available ressources, the systems
behaves as if one had obtained 10 % more hardware, which would cost more
in terms of running costs and procurement. So in either way the tuning would
conserve funds in the long run.

With this in mind and looking at the top users who consume 10 % of our
system (approx. 550ke), it is easy to see, that by just improving such a users
project by 10 % a full time employee at 60ke per year could be funded. Looking
at the total usage, a mere average improvement of 5% on all projects would be
sufficient to continuously support 3 HPC experts, if those experts tune one of
the top projects every 2 months. For further detail and information please refer
to "Brainware for Green HPC" [1].

3 A Performance Tuning Workflow

Performance experts themselves need to be concerned about the productivity
of their efforts, i.e. they should try to obtain maximum gains in minimal time.
Based on our experience in tuning several user-codes, we determined two issues
the most common, which we will focus on in this work: First without outside
stimulus a tuning process can continue for an indefinite time, as always some
more tuning or improvement is possible. The second issue is the lack of user-
acceptance of code changes preventing the tuning to take effect.

To address these issues, we developed a systematic approach by defining a
Tuning Workflow (see Fig. 2)4. In our experience, involving the user in the
4 In this workflow, we only incorporated those performance analysis tools in use at

the RWTH Aachen University.

Enhancing Brainware Productivity through a Performance Tuning Workflow 201

tuning process the acceptance of tuning-recommendations and code modifica-
tions at the end of tuning effort increases significantly. It should also be noted
at this point that we consider a program or code with a specific data set and
runtime environment as a single project. Therefore multiple datasets or different
execution sites call for multiple, though potentially abbreviated tuning projects.

From our experience with past and current projects (e.g. XNS [2], CDPLit [3]
and MICRESS [4]) we identified five general stages for a tuning / parallelization
project:

1. Initial Meeting
2. Baseline
3. Pathology
4. Tuning Cycle
5. Finalization / Handover.

These stages are explained in the subsections to follow.

3.1 Initial Meeting

The tuning process should be initiated by the user, however it is also possi-
ble for the expert to approach top users. We recommend an initial face-to-face
meeting with all parties involved. From our experience this improves the per-
sonal involvement of everyone and the acceptance of recommendations at the
end of the tuning-project. This meeting should establish clear expectations by
users and clear definitions of goals by the tuning expert. This practice helps to
prevent overstated improvement expectations and unnecessary prolonged expert-
involvement. The expert and user should also agree on the time frame and sched-
ule a date for a later review, already preventing the expert-time allotted for the
project to get out of hand.

Also in this meeting the scope of involvement, e.g. actual development work,
consultation, minor code changes, should be discussed as copyright, code- and
data-security are often of significance. Full access to the source code is desirable
for the best tuning outcome, though tuning may still be possible for binaries
by optimizing scheduling and environment parameters, like thread-counts and
MPI-parameters. If the expert is granted access to the source code, he should
be given a hands-on introduction to the build system and program execution
setup, to speed up the following tuning and experimentation phase. It may even
be possible, within reason, to request the user to modify the build-system to
resemble a site-specific standard, like using standard compilers, GNUmake and
a single configuration file. We also recommend a review of the algorithms used
in the program, to check later in the Pathology phase for known issues of given
algorithms.

3.2 Base-Line

The Base-line is intended to be quick and easy to obtain information. Great
emphasis should be put on disturbing the target application as little as possible

202 C. Iwainsky et al.

HPC Tuning Process

HPC Support

Pathology
Communication-Bound
Memory-Bound
Compute-Bound
I/O-Bound

Algorithmic Issues
Dwarfs

Schedule Meeting

Generate Issue Report

User

Application Tuning Request Schedule User Meeting

Initial Meeting
Goals
Expectations
Code Transfer
Brief Introduction

Baseline
Metrics
Runtime, CPI, LLC-
Misses (Bandwith),
Mflops

Tools
time, gprof, Oracle
Analyzer, Intel Amplifier,
Vampir

Stop

Hybrid Analysis
Vampir

Oracle Analyzer

MPI Analysis
Vampir
Scalasca

Serial Analysis
Acumem

Oracle Analyzer
Intel Amplifier/PTU

OpenMP Analysis
Intel Thread Profiler

Oracle Analyzer
Intel Amplifier

Tune/Modify
Code

yes

Meeting:
Algorithmic Review

Meeting:
* Code Transfer
* Acceptance

Continue?

Meeting:
Issue Report

Continue?

no

Issue Specific Analysis

Baseline
Metrics
Runtime, CPI, LLC-
Misses (Bandwith),
Mflops

Tools
time, gprof, Oracle
Analyzer, Intel Amplifier,
VampirGenerate

Modification and
Improvement Report

Code modification
recommondation

Schedule Meeting

no

yes

yes

...

Goal
Achieved?

End?

Fig. 2. Proposed Performance Tuning Workflow

Enhancing Brainware Productivity through a Performance Tuning Workflow 203

in order to use this information to later detect undue instrumentation overhead.
It should in no way provide details about deficiencies or tuning opportunities,
though it should provide a good overview where the program does its work.
This baseline obviously incorporates the runtime, peak memory usage, a sim-
ple runtime-profile, some basic hardware-performance counters (e.g. FLOP/s5,
IOP/s6, Memory Access, Cache-Miss-Rate and CPI7) and if the application is
parallel, a few scalability samples. If possible, information of solver-convergence
rates and similar information should be preserved in order to spot deviations
from the expected behavior during the tuning and measurement phases.

The recorded runtime can be used to easily measure the progress of the tun-
ing effort as well as the perturbance induced by later performance measure-
ments. The memory consumption itself is typically not a performance sensitive
point, though the available RAM on a machine is typically the limiting factor
for problem set size. The runtime-profile provides information about the gen-
eral program behavior and hot-spots and becomes important during the later
measurement and tuning stages, e.g. for adapting the measurement systems of
many performance analysis tools, like Scalasca[5], Vampir[6] and Tau[7]. The
hardware-performance counters mostly serve as easy-to-monitor progress scale.
The scalability sample (serial, two-processes, many processes) serves the expert
as an indicator for the programs scalability limits.

The tools for the baseline should be a fixed and predefined tool set to facilitate
cross-projects comparisons and prevent unnecessary experimentation during the
tuning project. For example one could define gprof[8] for serial applications, Intel
Amplifier[9] for shared memory and Scalasca with hardware performance coun-
ters through PAPI[10] for message passing applications. In general, alterations
to the tool-sets recommended by the workflow should only be altered in extreme
situations or through a separate evaluation process between tuning activities.

3.3 Pathology

In the Pathology-phase the expert uses the information form the initial base-
line to spot potential problems that the project-code may have. The expert
should only survey the program for general common issues, i.e. if the applica-
tion is bound by Algorithmic Issues,Communication Issues, Computation Issues,
Memory Access Issues and I/O Issues, without spending a lot of time in detail
analysis. Also each of these issues may require different tool-sets for observation
and measurement. Whilst it is in this phase tempting to identify the cause of
a specific problem, we recommend against it, as an early focus on a specific
issue may lead to wrong conclusions. It is, in our experience, much more impor-
tant to get an overall picture. In addition, the expert should gather information
about the hardware-capabilities of the target platform, in order to later correlate
any observed issues. For example, if an application is spending most of its time
5 Floating Point Operations per Second.
6 Integer Operations per Second.
7 Cycles Per Instruction.

204 C. Iwainsky et al.

floating-point intensive routines (compare profile) the peak-floating point rate
of the architecture may become important.

It is also important in this phase to look for general scalability issues that
may derive from the used algorithms in the code potentially leading to a coarse
grained performance model for the application. However, as detailed performance
models have a different focus, we consider such model a separate project or
service. Whilst the performance expert can recognize such algorithmic issues,
the precise identification and solution can usually only be found in conjunction
with the domain expert in an interdisciplinary effort, that we can not depict in
this workflow.

The Pathology-phase should be concluded with a detailed report of problems
on a coarse level, their impact on the program behavior and a recommendation
which single issue to address first in the following tuning step. This report then
should be discussed with the user including risk-benefit assessment based on the
experience with similar codes and issues in the past. Also a specific time frame
should be determined, in which the issue at hand is to be solved. In addition a
process or method to verify the correctness of the code during the tuning process
has to be defined or established jointly by the user and the tuning expert, as
domain experts are very sensitive about numerical deviations of the correctness
of their code. This verification method should later be used by the expert during
the tuning cycle to prevent work that invalidates the correctness and numeric
stability of the program.

If at this point no specific issue is found, the expert must decide if the potential
improvement of the code is worth his effort. For computationally demanding
codes, i.e. many execution instances at a high cost per execution, it may still be
a prudent choice to continue to invest additional time and effort.

3.4 Tuning Cycle

Once a specific issue, like reduction of wait-times at a specific barrier or load
imbalances, has been chosen as the tuning target, the expert has to decide how
to detect the root-cause of the problem. Typically performance analysis tools
are employed. For example in Aachen we use tools like the Intel Amplifier, Or-
acle Analyzer, or community developed tools like Vampir-Trace[6], Scalasca[5]
or PAPI[10]. As these tools all focus on different properties and exhibit differ-
ent measurement methods, the expert initially has gauge a tool’s advantages
and disadvantages based on experience alone. Our workflow provides valuable
information for the selection of the right tool or tool-chain from the beginning,
reducing his time spent on experiments.

We also recommend to establish rules and cook-book like approaches for dif-
ferent, typically occurring issues. Besides providing reminders and guidelines for
specific checks, these cook-books can be used to monitor tuning-quality and train
new experts. In our example workflow, we have indicated this, with no claim to be
complete, by providing four place-holders for Serial Analysis, OpenMP Analysis,
MPI Analysis and Hybrid Analysis along with tool selection for each analysis.
We do not provide details on such cook books, but are of the opinion, that

Enhancing Brainware Productivity through a Performance Tuning Workflow 205

a process standardization would improve average tuning quality, in particular
for less experienced tuning staff. An exemplary cook-book could for example,
based on a dominant wait-time in MPI routines without network-saturation
from the Pathology-phase, recommend an initial MPI-only8 Vampir based anal-
ysis for confirmation followed by a Scalasca based investigation to automatically
identify the root-cause. Of course branches for potential different diagnoses and
observation would have to be defined as well as detailed configuration steps.

The tuning phase itself contains many inherently iterative steps. Many avail-
able performance analysis tools require in the initial step an adaption of the
measurement system to reduce the overhead and program perturbation [11] and
a focus on the specific problem at hand. Is is beneficiary to use information
from the base-line as a "pre-conditioner" for this process. Once a measurement
of sufficient quality has been obtained, the expert has to analyze, investigate and
hypothesize based on the information to determine the cause for an issue and to
develop a solution.

This solution is then implemented or recommended to the user and ideally
verified using the performance tool in question. If the modification does not yet
deliver the agreed-on goal, then the process iterates again until the expert either
solves the problem or runs out of time.

The tuning activity is then concluded by a repetition of the base-line to docu-
ment the improvement, as well as to check for any side effects that may influence
the usability of the change. This may for example be an increased memory foot-
print or different requirements upon the data-set.

The last crucial, but often forgotten step of this phase is the Modification and
Improvement Report. It should contain detailed reasons for the code-change,
its effects and extent on the programs performance in a user-understandable
fashion. It should contain a protocol of the resources used for the tuning phase,
be it work-time, tools or compute resources. We consider such a report to be
very important, as in our experience the information provided influences the
acceptability of the effort to a great extent.

3.5 Results/Handover

The tuning cycle ends in a review meeting to elaborate the modified code in
conjunction with the final Modification and Improvement Report in detail. This
provides the user with an opportunity to raise concerns regarding code-changes
or the results of the last tuning cycle. These concerns and the general acceptance
or reasons for dismissal should be attached to the report. Lastly, the invested
tuning effort should be reflected against the achieved improvement to decide if
further tuning is worthwhile or desirable. If further open issues from the pathol-
ogy exists, a new iteration of the tuning cycle is started with a new specific issue
(see second part of section 3.3) - otherwise the tuning projects concludes at this
point.

8 i.e. using only the wrapped MPI routines.

206 C. Iwainsky et al.

4 Conclusion

In this work we proposed a Tuning Workflow to improve the productivity of
tuning-experts. We argued, that increasing complexity and diversity of paral-
lelism in clusters requires specialized expertise to efficiently use current hard-
ware. As domain experts typically do not have this expertise, it must be pro-
vided, in particular at University installations, where a large diversity of scientific
applications typically is supported by a single HPC installation. Previous work
showed that such a service pays for itself, if top user’s projects are targeted in a
systematic fashion by performance tuning experts. We called this the "brainware"
component of an HPC operation. However, to maximize gains from brainware,
we need to develop standards and processes to govern the performance tuning
process to maximize its efficiency. If performance tuning is only left to "gurus"
there will just not be sufficient staff available for this task.

Our tuning process itself is based on the notion of a service and distinguishes
the roles of users and experts. In reality this role separation is not so clear as
both sides may interact in every phase to assist each other with details when
tuning and adapting the code. Nevertheless, we still see a formal tuning process
description as necessary to ensure the quality of a tuning service: clear goals,
deadlines, avoidance of exaggerated expectations, limitation of wasted effort and
an indication when to stop. A particularly important fact is the documentation
of the tuning effort in a Modification and Improvement Report. Such a workflow
together with the entailed documentation also can provide better argumentation
for funding to the management, as the costs and benefits of tuning become
evident. Furthermore, this workflow can be used to train additional experts and
even integrate non-scientific staff in the tuning process.

The workflow itself is based so far solely on the collective experience of the
HPC-group of the RWTH Aachen University. We recognize the fact, that this
workflow has yet to see a throughout study and that additional input from other
HPC-sites must still be incorporated. At the time of this work, the workflow was
only partially applied to one ongoing tuning effort, using only the Baseline and
Reporting with good acceptance by the users.

In its current form there are some additional conceivable steps. For example
the topic of version control, data management and verification remain unan-
swered. However, we consider the workflow in its current form to be already
quite complex, such that we plan to gain further use-case experience and feed-
back, before revising and adding additional steps.

Whilst we did not cover any performance tools in specific, we would like to
raise the question, to what extent tools could generate external documentation
of performance issues.

The workflow we described as a guide for tuning processes is of course not
meant to be the last word, but rather to serve as a rough guide and incentive
for implementation and improvement of such tuning processes. It is also clear
that depending on local characteristics these processes may need to be modified.
Nonetheless, we believe that defined processes, "cook-books" for specific tasks
and the requirement of modification and improvement reports are important

Enhancing Brainware Productivity through a Performance Tuning Workflow 207

ingredients that should be part of such a structured process. In the long run, we
hope that, similar in spirit to ITIL9 for general IT operations, also for HPC
code development and tuning a structured body of best-practice knowledge
will develop to structure the increasingly complex task of ensuring good HPC
performance.

References

1. Bischof, C., an Mey, D., Iwainsky, C.: Brainware for Green HPC. In: Ludwig, T.
(ed.) Proceedings EnA-HPC 2011 (2011) (to appear)

2. Behr, M., Arora, D., Benedict, N.A., O’Neill, J.J.: Intel compilers on linux clusters.
Intel Developer Services online publication (October 2002)

3. Zeng, P., Sarholz, S., Iwainsky, C., Binninger, B., Peters, N., Herrmann, M.: Sim-
ulation of Primary Breakup for Diesel Spray with Phase Transition. In: Ropo, M.,
Westerholm, J., Dongarra, J. (eds.) PVM/MPI. LNCS, vol. 5759, pp. 313–320.
Springer, Heidelberg (2009)

4. Altenfeld, R., Apel, M., an Mey, D., Böttger, B., Benke, S., Bischof, C.: Parallelising
Computational Microstructure Simulations for Metallic Materials with OpenMP.
In: Chapman, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP
2011. LNCS, vol. 6665, pp. 1–11. Springer, Heidelberg (2011)

5. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The
Scalasca performance toolset architecture. Concurrency and Computation: Practice
and Experience 22(6), 702–719 (2010)

6. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller,
M.S., Nagel, W.E.: The vampir performance analysis tool-set. In: Proceedings of
the 2nd HLRS Parallel Tools Workshop, Stuttgart, Germany (July 2008)

7. Shende, S.S., Malony, A.D.: The tau parallel performance system. The Interna-
tional Journal of High Performance Computing Applications 20, 287–331 (2006)

8. GNU: gprof, http://sourceware.org/binutils/docs/gprof/
9. Intel: Intel c©parallel amplifier (2011)

http://software.intel.com/en-us/articles/intel-parallel-amplifier/
10. London, K., Moore, S., Mucci, P., Seymour, K., Luczak, R.: The papi cross-

platform interface to hardware performance counters. In: Department of Defense
Users Group Conference Proceedings, pp. 18–21 (2001)

11. Iwainsky, C., an Mey, D.: Comparing the Usability of Performance Analysis Tools.
In: Cèsar, E., Alexander, M., Streit, A., Träff, J., Cèrin, C., Knüpfer, A., Kran-
zlmüller, D., Jha, S. (eds.) Euro-Par 2008 Workshops. LNCS, vol. 5415, pp. 315–
325. Springer, Heidelberg (2009)

9 www.itil.org

http://sourceware.org/binutils/docs/gprof/
http://software.intel.com/en-us/articles/intel-parallel-amplifier/
www.itil.org

	Enhancing Brainware Productivity through a Performance Tuning Workflow
	Introduction
	Brainware for Green HPC
	A Performance Tuning Workflow
	Initial Meeting
	Base-Line
	Pathology
	Tuning Cycle
	Results/Handover

	Conclusion
	References

