Rapid Prototyping of Architectures on the Cloud
Using Semantic Resource Description

Houssam Haitof

Technische Universitat Miinchen, Germany
haitof@in.tum.de

Abstract. We present in this paper a way for prototyping architectures
based on the generation of service representations of resources. This gen-
erated “infrastructure” can be used to rapidly build on-demand settings
for application/scenario requirements in a Cloud Computing context
where such requirements can be as diverse as the applications running
on the Cloud. The resources used to build the infrastructure are semanti-
cally described to capture their properties and capabilities. We have also
developed a framework called the Managed Resource Framework (MRF)
to automatically generate service descriptions with an added manage-
ability interface from these semantic description. These services are then
ready for deployment. Our work was materialize in the SEROM Software.

1 Introduction

One of the biggest advantages of Cloud Computing is that the back-end of the
Cloud infrastructure is invisible to the user, especially for the Software as a
Service (SaaS) and Platform as a Service (PaaS) types of Cloud. This advantage
is less prominent when we deal with the Infrastructure as a Service (IaaS) type
of Clouds where the user has more control, and hence, more visibility on the
infrastructure. Another difficulty with the IaaS is that the Cloud is often pre-
configured with some services suitable for an application or a certain scenario,
and once the requirements change, that configuration needs to be adapted by
adding or removing some services or some other infrastructure components.

Depending on the application settings, resources are instantiated to answer the
requirements needed by the application. If, for instance, the requirements include
some database servers and web servers, then these requirements and the rela-
tionship among them are described in a semantic document and a match-making
routine searches for the appropriate resources using their semantic descriptions
and, using the Managed Resource Framework, actual service representations
of the resources are generated and deployed with minimum human interven-
tion. This prototype architecture can be then reviewed and validated by an
administrator if there is need for that.

For every service representation, a standard interface for managing the ser-
vice is generated. This interface can then be used by other software agents for
management purposes or for querying about the resource capabilities and prop-
erties. The resource that can be used in this setting have to be first semantically
described following a basic model called an Abstract Managed Resource Model.

M. Alexander et al. (Eds.): Euro-Par 2011 Workshops, Part I, LNCS 7155, pp. 73 2012.
© Springer-Verlag Berlin Heidelberg 2012

74 H. Haitof

Our architectural model is based on the Service Oriented Architecture and we
use semantics with a formal language representation based on description logic
for the knowledge level.

2 Description and Knowledge Levels

Our system needs a certain level of conformity and defined expectation, espe-
cially when dealing with system components. Confronting the Software compo-
nents with unknown system representations where resources may take unknown
forms, use unknown communication protocols or present unknown control inter-
faces is a real challenge that is out of the scope of this work. We believe that
such system configuration is too complex to be dealt with and we think that it is
extremely difficult to come up with a system capable of navigating through such
a configuration. We assume that all the system component have a certain degree
of conformity making it (i.e. the system) a homogeneous and integrated system.
This conformity is expressed at the level of component description and at the
possible ways to interact with those components. This level of predictability is
necessary whenever we deal with an automated or semi-automated management
model, where several management tasks are offloaded to software agents.

2.1 The Need for SOA

Having this conformity of resources at the description level coincide with the
service encapsulation that the service orientation model follows. Where the ser-
vice represents a single, contained and self-standing set of functionalities. In this
model, everything is a service that shares similar communication protocols with
all other services, allowing other software agents, services or not, to handle them
in a predictable way. This important characteristic of service orientation is an
appealing argument that motivated the use of that model as our conceptual
model. The service orientation model is quite vague in its definitions leaving the
room open for interpretation and assumptions related to many design principles.
Although, it offers a lot of flexibility, this vagueness leads often to incompatible
service oriented architectures defying the whole purpose off the model. This is
why we wanted to stick, as much as possible, to an abstraction level that would,
at the same time, adhere to the guiding principles for a service oriented system,
while being extensible and compatible with the defacto standards used for creat-
ing service oriented systems and the design decision that lead to them. This, in
fact, justifies some design decision such as the choice of ws* 1 stack over REST
even if the latter is easier and has a more perfo urmant implementation than
the first, because the first is indeed the defacto standard used in implementing
service oriented systems.

1 WS-* is used to refer to the collection of specifications related to the Web Services.

Rapid Prototyping of Architectures 75

2.2 The Need for Semantics

Even though modeling everything as a service would ease handling system com-
ponents by software agents, these latter would still miss the semantic of the
functionalities they are dealing with. In other terms, the software agents would
have access to the “technical” description of the services and would be able to
initiate and endure communication with the services, however, they will not be
able to know what the service is actually doing, or to distinguish (or find, as
a matter of redundancy support for instance) between different services sup-
posedly doing the same thing. Another layer of information is needed to allow
software agents to understand what they are dealing with in a manner close to
what a human would do to apprehend the usefulness of a service. This layer is
called the knowledge layer. But, why would the software agents need an access
to the knowledge layer? In fact, it is not that difficult to automatize a system,
in a majority of cases it comes down to writing a set of scripts. The real value is
coming from enabling software agents to become more than automated agents
and be adaptive and even more: to behave in an autonomic manner.

3 Semantic Resource Description and Resource
Management

Describing the the resource characteristics, capabilities, interaction possibilities
and management potential in a formal language is not enough for other software
components to figure out the exact purpose of the resource and the meaning of its
capabilities. Using such language provides only syntactic level description that
necessitate the intervention of humans to appreciate the value or the purpose of
the resource. Hence the resources need to be augmented by a semantic description
that would capture the fore-mentioned meaning. A serious problem in today’s
IT management is the lack of information related to the managed resources
[10]. This lack of information can be sensed at different levels which add to the
complexity of the problem.

3.1 Lack of Information Effects

At the Level of IT System. There is a lack of information on what is installed
and where it is installed. Often the purpose of the system it self is ambiguous
if not unknown. Sometimes whole parts of the system that are unused are up
and running and nobody can make a clear decision of the necessity of those
components or if any other part of the system may depend on those components.

At the Level of the Resources Relationships. Often the information of
the relationships of resources to one another is missing. Information about why
and how a set of resources is generally not documented making failures analy-
sis an extremely difficult task as well as problem source determination. Another

76 H. Haitof

problem that is also related to the first point is that with the lack of such
information, predicting the impact of a change in a system is nearly impossible,
with cascading effects and latent effects being the worse types of problems that
may happen.

At the Level of the Resource Itself. There is a lack of information about
the resource itself, its purpose, capabilities and requirements. If this information
is ever stored, it is done separately of the resource in external repositories that
can get inconsistent if there is no system capable of reflecting in it the status of
the resources in real-time. If such information was available, maintenance would
be done in an easier manner as data about the resource is available, allowing to
offer it its needed ecosystem or changing it with an equivalent resource.

3.2 Semantically Augmented Resources

Describing resources semantically is crucial to understand what they are, what
they do and how to interact with them. This semantic augmentation amounts to
adding meta-data to resources as descriptive layer, thus publishing information
about the resources in a standardized, machine-readable way. If we want man-
agement systems in our model to interact with the resources, we need more than
the capacity to how to read information about the resource (syntax parsing),
but also what does the information mean (semantics).

3.3 Managing Resources

One important principle behind the creation of web services was for application
integration, including legacy applications that were written using heterogeneous
technologies and platforms. This was also the case for management applica-
tions that not only had to deal with heterogeneous resources, were themselves
not inter-operable. Using web services principles, it is possible for management
applications to use common messaging protocols between themselves and the
manageable resources, thus becoming vendor-neutral and platform-independent
solutions [7]. In the WS-* landscape, there are two important and competing
sets of specifications that describe management messaging protocols on top of
the web service stack, namely WSDM [720/8/9] and WS-Man [I5]. There is an
ongoing effort to merge the two specifications [2] as conformity and standardiza-
tion was a key objective in the design of both specifications. Both specifications
have a resource centric view of management, where the common messaging pro-
tocol is used to communicate directly with the resource through a standardized
interface. Contrast this with the traditional model where management appli-
cations were often contacting agents on behalf of the resources. This standard
interface is the interface of the web service that represents the resources. In other
words, resources can be accessed only through the End Point Reference of the
web service.

Rapid Prototyping of Architectures 77

3.4 Representing Resources as Services

There is nothing special about representing a resource using a web service, if that
resource is already offering some API to access its capabilities and properties.
It would be a matter of writing an interface to this API, accessible through a
well-defined web service. However there are some issues related to the intrinsic
nature of web services and resources. The most prominent difference is the fact
that web services are stateless, meaning that they do not keep data (a state)
between different invocations. This contradicts the view of the physical resource
that keeps a state during its lifetime. This stateless characteristic of web services
is not a limitation as it was a design choice aiming at the web services being
light-weight software components. There is mechanisms that permits to emulates
a statefull behavior for web services, with the most traditional being session
cookies or using persistent storage of state like a database or using WS-Session.

WSRF [3] propose an elegant and integrated solution to the stateless issue of
web services by using descriptive document called ResourceProperties and intro-
ducing the concept of WS-Resource. The WSRF provides a general solution using
web services to an originally specific problem: describing and representing Grid
resources that are statefull in nature. Another relevant feature of WSRF is that
it brings a solution for management of a resource lifetime, faults and properties.
Rendering resources as WS-Resource and decomposing software component into
services is the first step toward a SOA enabled management architecture with
all the advantages that it can bring such as ease of management, adaptability
and automation.

4 Managed Resource Framework (MRF)

This section discuses the Managed Resource Framework (MRF), a framework
for automatically generating ready-to-deploy service representations of resources
from their semantic representations. The objective is to have a computer aided
process by which resources can be rapidly instantiated, deployed and managed
in a relatively quick and transparent manner for the user.

The framework assumes the existence of a semantic representation of a re-
source written in OWL that extends an Abstract Managed Resource Model and
outputs a deployable service representation called Managed Resource Archive
(MRA). The only “human” intervention during this process would be in the case
there were custom capabilities defined in the semantic representation and that
lack an implementation (see figure [I]).

Using the Managed Resource Framework, it is possible to generate resource
artifacts that would eventually constitute the Managed Resource Archive. MRF
assumes a target-based mechanism by which, only one or several constituent of
the MRA could be generated as needed instead of the monolithic MRA.

The Managed Resource Archive is a deployable service representation of the
resource that is generated by the Managed Resource Framework. The MRA is a

78 H. Haitof

Q
Semantic
Template
exte?nds Custom Code
Semantic Managed
Representation input—» Resource output
(OWL Tie) Framework

Fig. 1. Managed Resource Framework (MRF) input/output

Web application formed by a bundle of servlets, classes and other resources and
intended to run on Managed Resource Containers or on Java Servlet Containers
with, however, a loss of capabilities.

Once deployed, every MRA has a unique URI represented by its location in
the container. An example would be http://www.example.com/sitel/res_A42.
Requests to the resource would have to start with that URL as a prefix. Every
request is then forwarded to the ServletContext representing the resource.
The ServletContext is an interface that defines a servlet’s view of the Web
application. It is up to the container provider to provide an implementation
to the ServletContext and to ensure the one to one correspondence between
every resource and a single ServletContext. A Web application may consist of
servlets, utility Java Classes, static documents, client-side Java applets, beans,
and classes and descriptive meta information.

5 Implementation

5.1 SEROM

We developed a full implementation of the Managed Resource Framework called
SEROM to materialize some concepts presented in this work. The development
environment was constituted of the Java programming language, eclipse and
maven. We used Java for the richness of its libraries and APIs and its portability.
We used eclipse as IDE and maven as project management tool.

MRF is being developed as a modular, plug-in based software to insure the
future extendability of the framework. It comes in two versions a command line
tool and an API to be programatically invoked. MRF is target-based, meaning
that a target needs to be specified while invoking the framework and these
targets can be: model, wsdl, doc, source, proxy, build or all. model can only

http://www.example.com/site1/res_A42

Rapid Prototyping of Architectures 79

be invoked programatically, all the other targets can also be invoked from the
command line tool. The model target generates an internal model of the resource,
this model is needed by all the developed modules. wsdl generates the WSDL
document from the model, doc the online documentation, source the server
stub and the proxy skeleton source code, proxy the proxy client library, while
build builds the WAR archive and finally all generates all of the above and
packages the archive into a deployable artifact. Every new module can provide
new targets but it has to specify its required inputs from the existing targets.
MRF uses a templating system to generate the different documents. Appropriate
templates are loaded at run-time and processed using the in memory model of
the resource. The WSDM implementation used by MRF is Apache muse.

5.2 Under the Hood

MRF implementation of the management mechanisms is done following the Web
Services Distributed Management (WSDM) set of standards [2089]. WSDM de-
fines protocols to allow services to expose their manageability interface in a stan-
dard way such that any consumer that is WSDM-compliant is able to access the
service manageability functions. WSDM specification relies on several WS-* stan-
dards for its operations, namely WS-MetadataExchange, WS-ResourceFramework
[3], WS-ResourceProperties, WS-ResourceLifetime [I8], WS-ServiceGroup and
WS-Notification. The manageability of a service is exposed through a Web Ser-
vice and is accessed through that service EPR, called a manageability endpoint.
Any software application that accesses the manageability endpoint is called man-
ageability consumer. The manageability consumer can interact with the manage-
ability endpoint, and hence, the resource, in three distinct ways:

— The manageability consumer can retrieve management information from the
managed resource through calls to its management capabilities.

— The manageability consumer can affect the state of the managed resource
by changing its state through calls to its management capabilities.

— The manageability consumer can receive notifications from the managed
resource if the consumer had subscribed to receive events from the managed
resource.

The methods stated above show that the relationship between the managed re-
source and the manageability consumer can be a pull or a pushed based commu-
nication mechanism depending on the nature of the resource and the consumer
and the rate by which the resource can produce events. Producing events by the
resource is, however, optional. WSDM does not, in general, define the content of
the messages exchanged between the managed resource and the consumer, but
only the communication protocol and the format of the exchanged data. Using
MRF, the user can also specify some WSDM-defined management capabilities to
be added to the resource definition. The MRF takes then care of generating the
proper configuration files and capabilities implementation. The following section
describes the WSDM-defined capabilities as well as other capabilities inherited
from the other supporting WS-* standards.

80 H. Haitof

6 Related Works

There are numerous works done in the field of semantic web services, such as
WSDL-S [I] that tries to extend WSDL by adding some semantic annotation to
the file as XML tags that can reference entities in models outside the WSDL
document. WSDL-S builds on the establishment of WSDL as a service descrip-
tion language for ease of migration. WSDL-S is intended to be a minimalist
approach that tries to extend the pre-existing Web Services with semantic an-
notation, which is quite different from the other methods that tries to create a
more complete, sometimes complex frameworks. Another effort is the Web Ser-
vice Modeling Language (WSMO) that tries to describe all aspects of semantic
web services with the goal of automating the discovery, selection, composition,
execution and other tasks related to the integration of web services. WSMO
is based on the Web Service Modeling Framework (WSMF) [I3] and has three
working groups: WSMO [11], Web Service Modeling Language (WSML) [12] that
represents a family of languages used as representation format for WSMO and
Web Service Execution Environment (WSMX) [16] that acts as a reference im-
plementation of WSMO. WSMO is composed of four elements: ontologies that
define the common representation of information, web services that represent
the services, goals that describes aspects of the requests to web services and
finally mediators that act like connector between the different layers of WSMO.
The major drawbacks of WSMO are that it is a quite complex framework that
uses proprietary technologies at almost every level. It does not use WSDL, but
instead a new representation formalism, it ignores UDDI for its own solution,
and uses a family of languages that are not XML conform and are meant to be
replacement to the already established languages such as OWL and RDF. An-
other work is OWL-S [14], an effort to define an ontology for semantic markup
of Web Services. OWL-S was meant to be a replacement to the WSDL, how-
ever this effort was not successful. Other works on semantic web services worth
mentioning here are IRS-II [17], Meteor-S [19] and SWSF [4U516].

7 Conclusion

The work presented in this paper aimed to bring a simple solution for rapid
prototyping of architectures on the Cloud. We brought simplicity by providing a
mechanism to model resource in a standard and uniform way using an expressive
language for the purpose of generating software components that would provide a
standard management interface to access and manage the resources represented
by these components. The simplicity is apparent in modeling the resources, in the
process by which the service artifacts were generated and the end-result: simple
manageable components. The use of semantics allowed to capture the character-
istics of the resources with simple and minimum set of descriptive classes and
relationships among them and yet powerful enough to allow the conversion to
other representation formats such as the service representation generated by the
MREF. The use of open standards and plug-in based architecture of MRF allow
for future extension of the system and ease of adaptation to other requirements.

Rapid Prototyping of Architectures 81

References

10.

11.

12.

13.

14.

15.

16.

17.

. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M., Sheth, A

Verma, K.: Web service semantics - wsdl-s. Technical report, World Wide Web
Consortium (November 2005)

Antony, J., et al.: Wsdm/ws-man reconciliation. Technical report, IBM (August
2006)

Banks, T.: Web services resource framework (wsrf) - primer v1.2. Technical report,
OASIS (May 2006)

Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M.,
Martin, D., Mcllraith, S., McGuinness, D., Su, J., Tabet, S.: Semantic web ser-
vices framework (swsf) overview. Technical report, World Wide Web Consortium
(September 2005)

Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M.,
Martin, D., Mcllraith, S., McGuinness, D., Su, J., Tabet, S.: Semantic web services
language (swsl). Technical report, World Wide Web Consortium (September 2005)
Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M.,
Martin, D., Mcllraith, S., McGuinness, D., Su, J., Tabet, S.: Semantic web services
ontology (swso). Technical report, World Wide Web Consortium (September 2005)
Bullard, V., Murray, B., Wilson, K.: An introduction to wsdm. Technical report,
OASIS Official Committee Specification (February 2006)

Bullard, V., Vambenepe, W.: Web services distributed management: Management
using web services (muws 1.1) part 1. Technical report, OASIS Web Services
Distributed Management TC (August 2006)

Bullard, V., Vambenepe, W.: Web services distributed management: Management
using web services (muws 1.1) part 2. Technical report, OASIS Web Services
Distributed Management TC (August 2006)

Chess, D.M., Hanson, J.E., Pershing, J.A., White, S.R.: Prospects for simplify-
ing itsm-based management through self-managing resources. IBM Systems Jour-
nal 46(3), 599-608 (2007)

de Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Kifer, M., Knig-Ries,
B., Kopecky, J., Lara, R., Oren, E., Polleres, A., Scicluna, J., Stollberg, M.: Web
service modeling ontology (wsmo). Technical report, WSMO (April 2005)

de Bruijn, J., Lausen, H., Krummenacher, R., Polleres, A., Predoiu, L., Kifer, M.,
Fensel, D.: The web service modeling language (wsml). Technical report, WSMO
(October 2005)

Fensel, D., Bussler, C.: The web service modeling framework (wsmf). Technical
report, Vrije Universiteit Amsterdam (2002)

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., Mcllraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara,
K.: Owl-s: Semantic markup for web services. Technical report, White Paper,
DARPA Agent Markup Language (DAML) Program

McCollum, R., Murray, B., Reistad, B.: Web services for management
(ws-management) specification. Technical report, DMTF (2008)

Moran, M., Zaremba, M.: Wsmx architecture. Technical report, WSMO (June
2004)

Motta, E., Domingue, J., Cabral, L., Gaspari, M.: Irs-ii: A framework and infras-
tructure for semantic web services. Technical report, Knowledge Media Institute
at the Open University, Milton Keynes, UK

82

18.

19.

20.

H. Haitof

Srinivasan, L., Banks, T.: Web services resource lifetime 1.2 (ws-resourcelifetime).
Technical report, OASIS (April 2006)

Verma, K., Gomadam, K., Sheth, A.P., Miller, J.A., Wu, Z.: The meteor-s approach
for configuring and executing dynamic web processes. Technical report, LSDIS Lab,
University of Georgia (June 2005)

Wilson, K., Sedukhin, I.: Web services distributed management: Management of
web services (wsdm-mows) 1.1. Technical report, OASIS Web Services Distributed
Management TC (August 2006)

	Rapid Prototyping of Architectures on the Cloud
Using Semantic Resource Description
	Introduction
	Description and Knowledge Levels
	The Need for SOA
	The Need for Semantics

	Semantic Resource Description and Resource Management
	Lack of Information Effects
	Semantically Augmented Resources
	Managing Resources
	Representing Resources as Services

	Managed Resource Framework (MRF)
	Implementation
	SEROM
	Under the Hood

	Related Works
	Conclusion
	References

