On Partitioning Problems
with Complex Objectives

Kamer Kaya!, Francois-Henry Rouet?, and Bora Ucar?

! CERFACS, Toulouse, France
Kamer .Kaya@cerfacs.fr
2 Université de Toulouse, INPT (ENSEETHT)-IRIT, France
frouet@enseeiht.fr
3 CNRS and ENS Lyon, France
bora.ucar@ens-lyon.fr

Abstract. Hypergraph and graph partitioning tools are used to parti-
tion work for efficient parallelization of many sparse matrix computa-
tions. Most of the time, the objective function that is reduced by these
tools relates to reducing the communication requirements, and the bal-
ancing constraints satisfied by these tools relate to balancing the work or
memory requirements. Sometimes, the objective sought for having bal-
ance is a complex function of a partition. We mention some important
class of parallel sparse matrix computations that have such balance ob-
jectives. For these cases, the current state of the art partitioning tools
fall short of being adequate. To the best of our knowledge, there is only
a single algorithmic framework in the literature to address such balance
objectives. We propose another algorithmic framework to tackle complex
objectives and experimentally investigate the proposed framework.

Keywords: Hypergraph partitioning, graph partitioning, sparse matrix
partitioning, parallel sparse matrix computations.

1 Introduction

Hypergraph and graph partitioning tools are used to partition work for efficient
parallelization of many sparse matrix computations. Roughly speaking, the ver-
tices represent the data and the computations, and the (hyper)edges represent
dependencies of the computations on the data. For a parallel system of K pro-
cessors, partitioning the vertices into K disjoint parts can be used to partition
the data and the total work among the processors by associating each part with
a unique processor. Therefore, a successful application of such partitioning tools
should assign almost equal work/data to processors and should reduce the com-
munication costs. The first of these goals is attained by associating weights to
vertices and then by guaranteeing that the K resulting parts have almost equal
weights, defined as a function of individual vertex weights. The second goal is
achieved by reducing a function related to the (hyper)edges that straddle two
or more parts. There are a number of widely used tools, including MeTiS [9],
Mondriaan [19], PaToH [6], Scotch [14], and Zoltan [5], to achieve these goals.

M. Alexander et al. (Eds.): Euro-Par 2011 Workshops, Part I, LNCS 7155, pp. 334 2012.
© Springer-Verlag Berlin Heidelberg 2012

On Partitioning Problems with Complex Objectives 335

Sometimes the objective sought for having balance is simple. By this, we mean
that one can assign weights to the vertices before partitioning, and then measure
the weight of a part by simply adding up the weights of vertices in that part.
For example, if a vertex represents a row of a sparse matrix, then the number of
nonzeros in that row can be used as the weight of the corresponding vertex. In a
given partition, the weight of a part corresponds to the total number of nonze-
ros assigned to that part, and hence balance can be obtained among processors
easily by using the standard partitioning tools listed above. This standard ap-
proach, however, is not sufficient for many important classes of sparse matrix
computations. We (in the accompanying technical report [I1]) and Pinar and
Hendrickson [15] discuss several class of computations (including the FETT class
of domain decomposition-based solvers, iterative methods with incomplete LU or
Cholesky preconditioners, overlapped Schwarz solvers, and direct methods based
on multifrontal solvers) for which the standard approach falls short of achieving
balance on the computational load of the processors. In these computations, the
objective sought for balancing is a complex function of a partition and cannot
be computed by looking at a set of a priori given vertex weights without taking
a partition into account—resembling to the chicken-egg problem [15]. We give a
toy example for this phenomena. Suppose that we want to partition a square ma-
trix rowwise for efficient parallel computation of y < Ax where the input vector
x and the output vector y are assigned to the processors conformally with the
rows of A, i.e., a processor holding row ¢ of A holds the vector entries y; and x;
as well. Suppose also that we want to obtain balance on the number of nonzero
entries with which the scalar multiply-add operations with the z-vector entries
can be computed without communication. The objective is complex, because
we cannot know which entries in a row will need an x-vector entry residing in
another processor.

We discuss three special forms of sparse matrices in the next subsection.
These forms embody most of the data partitioning approaches for efficient paral-
lelization of sparse matrix computations with complex balance requirements. In
Section [[L2] we survey the related work on similar problems and highlight our
contributions. Section Blincludes the background material. In Section [3, we pro-
pose a general framework for the problem of partitioning for complex objectives
and adjust it for two of the three matrix forms. For the third form, we just give a
short summary and refer the reader to the technical report [I1] for more details.
A brief experimental evaluation is given in Section @l We conclude the paper in
Section [f] with a summary.

1.1 Problem Definition

Consider the following three forms of an m X n sparse matrix A for a given
integer K > 1:

336 K. Kaya, F.-H. Rouet, and B. Ugar

A A
An Ais A Aig " '
Agp= (1) Apr= : (2) App= A A: (3) .
A Ao A KKAKs
KKAKS KR Asr - Ask Ass

The first form Agp () is called the singly bordered block-diagonal form (by
convention, we assume a columnwise border throughout the paper). The second
one Apr (@) is called the block form. The third one App (@) is called the
doubly bordered block diagonal form. These three forms have different uses in
parallel sparse matrix computations. We assume that they are going to be used
to partition the matrices among K processors. The following cases are common
(see for example [3§]). In the forms Agp and Apy, each processor holds a row
stripe, i.e., processor k holds, respectively, [Axr Ags| and [Ag1 -+ Agk - - - Ak].
In App, a processor holds the arrow-head formed by the blocks Agx, Ars and
Ag, and perhaps parts of or all of Agg.

The accompanying report [II] presents some applications which require a
matrix to be put in one of the above three forms with the following complex
partitioning requirements. In the Agp form, the size of the border should be
small, and the diagonal blocks should have an almost equal number of nonzeros.
In the Ay, form, the total communication volume (the total number of nonzero
off-diagonal column segments) should be small, the diagonal blocks should have
an almost equal number of nonzeros, and each row stripe should have an al-
most equal number of nonzeros. The requirements for the Ay form coincide
with those of the toy example mentioned earlier. In the App form, the size of
the border should be small, the border blocks should have a balanced number
of nonzeros, and the diagonal blocks should also have a balanced number of
NONZEros.

1.2 Related Work and Contributions

The problem of partitioning for complex objectives was studied before for specific
problems [4JT3]18] and in a general setting [I5] with some specific applications.
The algorithmic framework in these studies is very similar and is called the
predictor-corrector approach [I3]. In the predictor-corrector approach, a parti-
tion is obtained by using the standard tools, with the standard (simple) ob-
jectives in the predictor step. Then, the partition is evaluated for the complex
objectives and refinements to the current partition are performed in the corrector
step. Certain methods [4/I8] do not go back and forth between different objec-
tives, rather they fix one of them and try to improve the others. The specific
approach of [I3] and the general framework of [I5] apply move based improve-
ment heuristics to improve the partition for all objectives.

There are a few difficulties and challenges that arise in the corrector step.
Firstly, in order to efficiently compute and evaluate the complex functions, large
two-dimensional data structures are required where one of the dimensions is
K (also true for the simple objectives [2/16]). Secondly, efficient mechanisms

On Partitioning Problems with Complex Objectives 337

that avoid cycles in the move based improvement approaches are hard to design.
Furthermore, ties among the gains of moves arise almost always, and effective
and efficient tie-breaking mechanisms are hard to design for the K-way refine-
ment scheme (see [I] for those for the recursive bisection based approaches).
Therefore, vertices are usually visited in a random order and best moves are
performed (see [2/13]). This heuristic, although it can be helpful, can also be
very shortsighted.

Direct K-way partitioning methods can handle complex partitioning objec-
tives. This can be accomplished by replacing the standard refinement heuris-
tics with those for the complex objectives. However, this method is akin to the
predictor-corrector approach and suffers from the same difficulties.

We propose another approach for partitioning problems with complex objec-
tives. The main idea is to use the recursive bisection based partitioning scheme
and to evaluate the complex functions with respect to the existing coarser par-
tition obtained as a result of the preceding bisections. Once the functions are
evaluated, some weights can be assigned to the vertices, as the complex func-
tions with respect to the coarser partition are now simple. This allows us to use
available tools at each bisection step. The advantages of this framework is that
one does not need to write a refinement routine, and the framework is easily
applicable to graph and hypergraph models with differing objective functions.
We will apply the framework with the standard hypergraph partitioning tools
to address the complex partitioning problems for the Asp and Ap;, forms, and
give a summary for that of the App form.

2 Background

2.1 Hypergraph Partitioning

A hypergraph H = (V,N) is defined as a set of vertices V and a set of nets
(hyperedges) N. Every net n; € N is a subset of vertices. Weights can be
associated with the vertices. We use w(v;) to denote the weight of the vertex v;.
Given a hypergraph H = (V,N), II ={V1,...,Vk} is called a K-way partition
of the vertex set V if each part V} is nonempty, parts are pairwise disjoint, and
the union of parts gives V. A K-way vertex partition of H is said to be balanced
if VV“/;:” < (1+4¢€), where Wi, = maxeg{W(Vi)}, W(Vi) is the weight of the
part ng defined as the sum of the weights of the vertices in Vi, Wayy is the
average part weight, and e represents the allowed imbalance ratio.

In a partition IT of H, a net that has at least one vertex in a part is said
to connect that part. Connectivity \; of a net n; denotes the number of parts
connected by n;. A net n; is said to be cut (external) if A\; > 1, and uncut
(internal) otherwise. The set of external nets of a partition IT is denoted as Ng.
The partitioning objective is to minimize the cutsize defined over the cut nets.
There are various cutsize definitions. Two relevant definitions are:

cutsize(IT) = Z 1 (4 cutsize(IT) = Z (N—1) (5) .

n;ENE n;ENg

338 K. Kaya, F.-H. Rouet, and B. Ugar

The NP-complete hypergraph partitioning problem [12] is defined as the task
of dividing the vertices of a hypergraph into K parts such that the cutsize is
minimized, while the balance criterion given above is met.

A recent variant of the above problem is the multi-constraint formula-
tion [2I710/17) in which a set of T weights is associated with each vertex
v, e, w(v,1),...,w(,T). Let W(Vg,t) = 3,), w(v,t) denote the weight
of part Vi for constraint ¢t. Then, a partition IT is said to be balanced if
vt € {1,...,T} we have VV‘;’:";((E)) < (1+¢&(t)), where Winaz (t) = maxp {W (Vg 1)},
Wavg(t) = 32, ey w(vi, 1) /K, and £(t) is the allowed imbalance ratio for the
constraint ¢.

Different interpretations and applications of hypergraph partitioning can be
used to permute a matrix into the Agr, Asp and App forms (see Section [3).

2.2 Recursive Bisection Based Hypergraph Partitioning

We recall some important concepts in the recursive bisection based K-way hyper-
graph partitioning methods (see also [6]). The number of parts K is assumed to
be a power of 2 for the ease of presentation, otherwise this is not a requirement.
In this partitioning method, the vertices of a given hypergraph are partitioned
into two balanced parts recursively until K parts are obtained. The recursive
calls form a tree (called the bisection tree) with K leaves. The first bisection,
or the root of the bisection tree, corresponds to partitioning the vertices of the
original hypergraph into two. The leaf nodes correspond to the parts, and the
two parts having the same parent are said to be of the same bisection.

While optimizing the cutsize metric), after a bisection step, one discards
the cut nets and forms the two hypergraphs with two parts of vertices and the
internal nets. This is referred to as discarding the cut nets during bisections. On
the other hand, while optimizing for the other cutsize metric (Bl), one splits the
cut nets. Let V1 and Vs, be the two vertex partitions obtained at a bisection.
Then for any net n; N V; # (), one puts a net containing the vertices n; NV in
the hypergraph containing vertices Vy, and for any net n; N Vs #), one puts a
net containing the vertices n; NV, in the hypergraph containing vertices Vs.

3 A Framework for Complex Partitioning Objectives

We propose a framework within which standard tools of the hypergraph parti-
tioning problem can be used effectively to address complex partitioning objec-
tives. In this framework, we follow the recursive bisection paradigm. The first
bisection is performed as it would be done for a simple objective case. Then, the
subsequent recursive bisection steps use the partial (or coarse) partition infor-
mation to set secondary constraints and use multi-constraint bisection routines.
At each bisection step, the two parts will satisfy a balance constraint approx-
imately, as the real balance can only be determined after the bisection. The
abstract framework is given in Alg. [Il where concrete instantiations for the com-
plex partitioning problems described in Section [T are elaborated on in the next

On Partitioning Problems with Complex Objectives 339

subsections. The initial call has the arguments R = [1,...,m], C = [1,...,n],
K = 2¢ for some integer ¢, low = 1, and up = K for an m x n matrix A.

The advantage of this approach over the predictor-corrector approach is that
it enables multi-level refinement (by harnessing such heuristics available in the
standard tools) whereas the predictor-corrector approach does not. Writing down
a multi-level refinement heuristic for the predictor-corrector approach will indeed
be troublesome for the reasons outlined in Section[[.2l On the other hand, when
the secondary constraints are not as important as the first one or when different
and very loose imbalance ratios are used, predictions might well turn out to
be acceptable, and one would not need to reduce the solution space by using
multiple constraints.

3.1 The Singly Bordered Form

The off-the-shelf method to permute a matrix into the singly bordered form as
shown in () is to use the column-net hypergraph model. In this model, an m xn
matrix A is represented with a hypergraph H = (R, C), where for each row i of A
there is a vertex v; in R, for each column j of A there is a net n; in C, and v; € n;
iff a;; # 0. Each vertex v; is assigned a weight of |{j : a;; # 0}|, i.e., the number
of nonzeros in the corresponding row. Then, partitioning this hypergraph into K
parts under the objective function [@]) can be used to permute the matrix A into
the singly bordered form [3, Section 5]. The rows corresponding to the vertices
in part k are permuted before the rows corresponding to the vertices in part ¢
for 1 < k < ¢ < K. This defines a row permutation where the permutation of
the rows in a common block is arbitrary. The column permutation is found as
follows. The columns corresponding to the nets that are internal to the part k
are permuted before those corresponding to the nets internal to the part ¢ for
1 <k < ¢ < K. Then the coupling columns are permuted to the end. With this
approach, one thus reduces the number of coupling columns and obtains balance
on the number of nonzeros in the row stripes [Agr Ags]. This does not however
imply balance on the diagonal blocks Ag. In [3 Section 5], unit weighted vertices
in an unconventional partitioning formulation in which one enforces balance on
internal nets is used (the tool is not publicly available). This results in a singly
bordered form where the diagonal blocks have a balanced number of rows as
well as balanced a number of columns (but balance on the diagonal blocks is not
addressed).

Our alternative is to use the outlined recursive bisection based framework to
minimize the number of coupling columns while trying to obtain balance on the
number of nonzeros in the diagonal blocks as well as in the row stripes. For
this purpose, for each row vertex v;, we associate two weights (after the first
bisection) in the third line of Alg. [T}

w(vi, 1) = [{j : aij # 0},
w(v;,2) = [{j : ai; # 0 and column j is not cut yet}| .

Here w(v;, 1) is the number of nonzeros in row i and kept the same throughout
the bisections to have balance in the row stripes [Agr Ags]|. On the other hand

340 K. Kaya, F.-H. Rouet, and B. Ugar

Algorithm 1. RB(A, R, C, K, low, up)
Input: A: a sparse matrix. R: row indices. C: column indices. K: number of parts.
low, up: id of the lowest and highest numbered parts
Output: partition: partition information for the rows
form the column-net model of the matrix A(R,C)
if this is not the first bisection step then
use previous bisection information to set up the secondary constraints
partition into two (Ri, R2) <—BISECTROWS(A(R,C)) » with standard tools
set partition(Ry) + low and set partition(Rz2) + up
create the two column sets, using net splitting or net discarding, giving C; and Cs
RB(A,Ry,C1, K/2,low, (low +up — 1)/2) » recursive bisection
RB(A, R2,C2, K/2, (low+up —1)/2 + 1,up) » recursive bisection

w(v;, 2) relates to the diagonal block weight, and by changing w(-,2) at every
bisection we make these weights become closer to the exact weight that will be
seen at the end. Although each bisection step obtains two parts with a balanced
W (-,2), two parts from two different bisections are related only indirectly. The
coupling columns are discarded at the sixth line of the framework, as we are
interested in the cut-net metric ().

3.2 The Block Form

The off-the-shelf method for this problem is to use the column-net hypergraph
model with the objective function (Bl). The row permutation is done as in the
previous section. The column permutation is determined in a post-process [4/1§].
A straightforward post-process would be to first permute the internal columns
as is done in the previous section and then to permute a coupling column j to
the block which has the minimum number of nonzeros in the diagonal (so far)
among those blocks that the coupling column j touches.

The proposed recursive bisection based framework can be used as follows. As
the objective function is (B), we use the net splitting methodology. While doing
so, we keep the copy with the higher number of nonzeros as the main copy (uncut
nets are already main copies) with an intent to assign the associated columns
to one of the parts that will be resulting from the recursive calls on the part
of the main copy. That is, the net splitting operation marks either the copy in
C1 or the copy in Cs of a cut net as the main one (assuming the cut net was a
main copy). Consider a split net n; whose main copy is put in Cy. Then in the
following bisection RB(A, R1,C4,...), the vertex i € Ry for which a;; # 0 will
bear a weight of one for the split net n; (that nonzero entry is in the diagonal
block), whereas no vertex in Ro will bear a weight for the same net. Formally,
we propose assigning the following weights to the vertices:

w(vi, 1) = {7 : aij # 0}/,
w(v;,2) = |{j : a;; # 0 and column j is a main copy}| .

On Partitioning Problems with Complex Objectives 341

As before, keeping w(-,1) always equal to the number of nonzeros in the corre-
sponding row results in balance in the row stripes [Ax1, . .., Axk], whereas w(-, 2)
will approximate the number of nonzeros in the diagonal blocks. Therefore, the
last level bisections will be almost accurate. Again the weights of two distant
parts will be loosely related.

3.3 The Doubly Bordered Form

We have instantiated the framework for the problem of permuting a sparse sym-
metric matrix into Appg form with the complex objectives stated in Section [[.1l
The details are in the accompanying technical report [IT]. We give a short sum-
mary of what is achieved by the framework. The standard tools (based on graph
partitioning methods) are demonstrated to be susceptible to drastic imbalances
(up to 9, on diagonal blocks, and 32, on the border blocks, fold imbalance were
reported in a 128-way partitioning of a matrix). On the other hand, the frame-
work with some proper definition of vertex weights was able to improve the
balance on the diagonal blocks always (the maximum was about 183%) and the
balance on the border blocks by about (the maximum was about 137%). This
comes however with an increase of about 35% in the border size on average.

In a recent study [20], the framework is adapted to attain some other complex
partitioning objectives for the App form (in which the border size should be
small and linear system solves with the diagonal blocks and border blocks should
be balanced). In that study, it has been demonstrated in practical experiments
that the improved load balance can result in reduced execution time in spite of
the increased border size.

4 Experiments

We have used three rectangular, nine square and pattern unsymmetric, and 23
pattern symmetric matrices from University of Florida sparse matrix collection
(www.cise.ufl.edu/research/sparse/matrices/). The names and the prop-
erties of these matrices can be seen in [11]. We have partitioned the matrices
into K = {32,64, 128} parts using the hypergraph partitioning tool PaToH [6].
As PaToH includes randomized algorithms, we run each experiment 10 times
and report the average result. Below, we give a summary of results and refer the
reader to [II] for detailed results, including those for the App form.

4.1 The Singly Bordered Form

We compare the framework with the standard method (SM) of partitioning
the column-net hypergraph model on all matrices in the data set. Both of the
approaches obtained good balance on the number of nonzeros per row stripe
(both are less than 0.04 on average). In 60 instances (among 35 x 3 = 105
partitioning instances), both of the methods obtained balance on the number
of nonzeros in the diagonal blocks within 10% of the perfect balance—those

www.cise.ufl.edu/research/sparse/matrices/

342 K. Kaya, F.-H. Rouet, and B. Ugar

instances are discarded. We normalized the cutsize and the imbalance obtained
by the framework to those obtained by SM on the remaining instances. Some
statistical indicators, the minimum, the median, the maximum, the average and
the geometric mean (gmean), of these results are given in Table [I1

Table 1. Statistical indicators of the ratio of the results of the framework to the results
of SM. “Cutsize” refers to the number of coupling columns and “Imbal(A)” refers to
the imbalance on the number of nonzeros on the diagonal blocks.

min median max avg gmean
Cutsize 0.78 1.08 174 1.11 1.10
Imbal(Agg) 0.36 0.64 1.57 0.70 0.67

As seen in Table[I], the framework obtains 30% better balance on the number
of nonzeros in the diagonal blocks, on average. This comes with an increase of
about 11% on the number of coupling columns. This degradation in the cutsize
is expected as the standard method has only one constraint. Previously, the
average increase in the cutsize with the metric (@) is reported to be around 34%
(compare tables 2 and 5 in [2]) in the two-constraint case. We think therefore
that the increase of 11% in the cutsize is well spent to reduce the imbalance of
the diagonal blocks by 30%.

4.2 The Block Form

We compare the framework with the standard method (SM) of partitioning
the column-net hypergraph model with the objective of minimizing the cutsize
given in (B on all square matrices of the data set. In all of these experiments,
both of the approaches obtained balance on the number of nonzeros per row
stripes quite satisfactorily (both are less than 0.06 on average). In 85 partitioning
instances, both of the methods obtained balance on the number of nonzeros in the
diagonal blocks within 10% of the perfect balance—those instances are discarded.
We normalized the cutsize and the imbalance obtained by the framework to
those obtained by SM on the remaining instances. Some statistical indicators,
the minimum, the median, the maximum, the average and the geometric mean
(gmean), of these results are given in Table

Table 2. Statistical indicators of the ratio of the results of the framework to the results
of SM. “Cutsize” refers to the total volume of communication and “Imbal(Axx)” refers
to the imbalance on the number of nonzeros on the diagonal blocks.

min median max avg gmean
Cutsize 1.00 1.10 153 1.15 1.16
Imbal(Agg) 0.35 0.78 2.00 0.84 0.75

On Partitioning Problems with Complex Objectives 343

As in the singly bordered case, we were expecting an increase in the cutsize.
Compared to again previously reported results [2], 15% increase in the cutsize
is acceptable. This resulted in 16% improvement in the balance on the number
of nonzeros on the diagonal blocks. The small geometric mean indicates a few
outliers with a large value. We have looked at the results closely and spotted
only a few such cases (on one matrix the standard method and the framework
obtained, respectively 0.08 and 0.10 imbalance, implying 25% better balance in
favor of the standard method). Upon discarding those, the framework resulted
in about 20% better balance, on average.

5 Conclusion

We have discussed three sparse matrix forms (the block form, the singly bor-
dered block diagonal form, and the doubly bordered block diagonal form). These
forms exemplify a broad range of sparse matrix computations whose efficient
parallelization need some complex partitioning objectives to be attained. We
have presented a framework to address such kinds of complex partitioning ob-
jectives, and evaluated the framework within hypergraph partitioning methods.
We presented results for the singly bordered and block forms and reported results
from [II] and another current study [20] in which the framework of the current
paper was adapted to meet some objectives in the doubly bordered block di-
agonal form. In all cases, the framework is demonstrated to be able to trade
an increase in the objective function with better load balance, and it improved
running times in practical experiments with the doubly bordered form.

In general, the proposed framework is more effective with the increasing num-
ber of parts. The case K = 2, in particular, is not addressed at all.

References

1. Alpert, C.J., Kahng, A.B.: Recent directions in netlist partitioning: A survey. In-
tegration, the VLSI Journal 19, 1-81 (1995)

2. Aykanat, C., Cambazoglu, B.B., Ucar, B.: Multi-level direct k-way hypergraph
partitioning with multiple constraints and fixed vertices. J. Parallel Distr. Com 68,
609-625 (2008)

3. Aykanat, C., Pmar, A., Catalytirek, UV Permuting sparse rectangular matrices
into block-diagonal form. STAM J. Sci. Comput. 25, 1860-1879 (2004)

4. Bisseling, R.H., Meesen, W.: Communication balancing in parallel sparse matrix-
vector multiplication. ETNA 21, 47-65 (2005)

5. Boman, E., Devine, K., Fisk, L.A., Heaphy, R., Hendrickson, B., Vaughan, C.,
Catalyurek, U., Bozdag, D., Mitchell, W., Teresco, J.: Zoltan 3.0: Parallel Par-
titioning, Load-balancing, and Data Management Services; User’s Guide. Sandia
National Laboratories, Albuquerque, NM (2007)

6. Catalytrek, v, Aykanat, C.: PaToH: A multilevel hypergraph partitioning tool,
ver. 3.0. Tech. Rep. BU-CE-9915, Bilkent Univ., Dept. Computer Eng. (1999)

7. Catalytirek, v, Aykanat, C., Ugar, B.: On two-dimensional sparse matrix parti-
tioning: Models, methods, and a recipe. SIAM J. Sci. Comput. 32, 656-683 (2010)

344

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

K. Kaya, F.-H. Rouet, and B. Ugar

Hendrickson, B., Kolda, T.G.: Partitioning rectangular and structurally unsymmet-
ric sparse matrices for parallel processing. STAM J. Sci. Comput. 21, 2048-2072
(2000)

. Karypis, G., Kumar, V.: MeTiS: A software package for partitioning unstructured

graphs, partitioning meshes, and computing fill-reducing orderings of sparse ma-
trices, version 4.0. Univ. Minnesota, Dept. Comp. Sci. Eng. (1998)

Karypis, G., Kumar, V.: Multilevel algorithms for multi-constraint graph parti-
tioning. Tech. Rep. 98-019, Univ. Minnesota, Dept. Comp. Sci. Eng. (1998)
Kaya, K., Rouet, F.H., Ucar, B.: On partitioning problems with complex objectives.
Tech. Rep. RR-7546, INRIA, France (2011)

Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout.
Wiley—Teubner, Chichester (1990)

Moulitsas, I., Karypis, G.: Partitioning algorithms for simultaneously balancing
iterative and direct methods. Tech. Rep. 04-014, Univ. Minnesota, Dept. Comp.
Sci. Eng. (2004)

Pellegrini, F.: SCOTCH 5.1 User’s Guide. Laboratoire Bordelais de Recherche en
Informatique (LaBRI) (2008)

Pinar, A., Hendrickson, B.: Partitioning for complex objectives. In: IPDPS 2001,
CDROM, p. 121. IEEE Computer Society, Washington, DC (2001)

Sanchis, L.A.: Multiple-way network partitioning with different cost functions.
IEEE T. Comput. 42, 1500-1504 (1993)

Schloegel, K., Karypis, G., Kumar, V.: Parallel Multilevel Algorithms for Multi-
constraint Graph Partitioning. In: Bode, A., Ludwig, T., Karl, W.C., Wismdiller,
R. (eds.) Euro-Par 2000. LNCS, vol. 1900, pp. 296-310. Springer, Heidelberg (2000)
Ucgar, B., Aykanat, C.: Encapsulating multiple communication-cost metrics in par-
titioning sparse rectangular matrices for parallel matrix-vector multiplies. STAM
J. Sci. Comput. 25, 1827-1859 (2004)

Vastenhouw, B., Bisseling, R.H.: A two-dimensional data distribution method for
parallel sparse matrix-vector multiplication. SIAM Rev. 47, 67-95 (2005)
Yamazaki, 1., Li, X.S., Rouet, F.H., Ugar, B.: Combinatorial problems in a parallel
hybrid linear solver. In: Becker, M., Lotz, J., Mosenkis, V., Naumann, U. (eds.) Ab-
stracts of 5th STAM Workshop on Combinatorial Scientific Computing. pp. 87-89.
RWTH Aachen University (2011)

	On Partitioning Problems
with Complex Objectives
	Introduction
	Problem Definition
	Related Work and Contributions

	Background
	Hypergraph Partitioning
	Recursive Bisection Based Hypergraph Partitioning

	A Framework for Complex Partitioning Objectives
	The Singly Bordered Form
	The Block Form
	The Doubly Bordered Form

	Experiments
	The Singly Bordered Form
	The Block Form

	Conclusion
	References

