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Abstract. Obtaining highly accurate predictions on properties of light
atomic nuclei using the Configuration Interaction (CI) method requires
computing the lowest eigenvalues and associated eigenvectors of a large
many-body nuclear Hamiltonian, H . One particular approach, the J-
scheme, requires the projection of the H matrix into an invariant sub-
space. Since the matrices can be very large, enormous computing power
is needed while significant stresses are put on the memory and I/O sub-
systems. By exploiting the inherent localities in the problem and making
use of the MPI one-sided communication routines backed by RDMA op-
erations available in the new parallel architectures, we show that it is
possible to reduce the I/O overheads drastically for large problems. This
is demonstrated in the subspace projection phase of J-scheme calcula-
tions on 6Li nucleus, where our new implementation based on one-sided
MPI communications outperforms the previous I/O based implementa-
tion by almost a factor of 10.

1 Introduction

The direct solution of the quantum many-body problem transcends several areas
of physics and chemistry. Nuclear physics faces the multiple hurdles of a very
strong interaction, three-nucleon interactions, and complicated collective motion
dynamics. The configuration interaction (CI) method requires computing the
many-body wavefunctions associated with the discrete energy levels of nuclei by
partially diagonalizing the nuclear many-body Hamiltonian, H , in a many-body
basis space constructed from harmonic oscillator single-particle wavefunctions
[1]. Typically, one is only interested in a limited number of low energy states
[2,3], but for certain applications, computing a relatively large number of states
(and their wavefunctions) with a prescribed total angular momentum J is crucial.
We will refer to this type of calculation as a total-J calculation throughout this
paper. Investigating nuclear level densities as a function of J and excitation
energy, and evaluating scattering amplitudes for different values of J [4,5] are
among the target applications for total-J calculations.

In the total-J approach, eigenvalues and eigenvectors associated with a given
J value are computed through a diagonalization of the total angular momentum
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square operator Ĵ2 [6], followed by a diagonalization of the projection of H onto
a desired (and common) invariant subspace of H and Ĵ2. There are three major
stages in this approach:

1. Computing the invariant subspace of Ĵ2 for a given eigenvalue λ = J(J+1),
2. Projecting the H matrix into this subspace,
3. Finally, extracting the desired spectral information from the resulting lower

dimensional Hamiltonian.

In [6], we present a multi-level method based on a greedy load-balancing al-
gorithm to compute the invariant subspace Z of Ĵ2 efficiently on a large-scale
distributed memory machine. Here we tackle the second stage of the total-J cal-
culation, namely the projection of the H matrix into the subspace spanned by
the columns of Z, i.e., H ′ = ZTHZ.

Subspace projection calculation consists of two successive matrix multiplica-
tions, where the many-body Hamiltonian H is a square sparse symmetric matrix
and Z has a block diagonal structure. These special properties of the matrices
involved allow the subspace projection task to be divided into many independent
subproblems of smaller sizes (see Sect. 2). However, due to the large dimensions
of H and Z, such calculations demand significant amounts of computational re-
sources, especially in terms of storage spaces. For example, in the problems that
we study in Sect. 4, the dimensions of the H matrix becomes as large as 1.7×108

and the number of columns of Z is approximately 2.7×107.
In this paper, we describe an efficient scheme for performing large-scale

invariant subspace projections on distributed memory machines. To exploit par-
allelism, we decompose the projection calculation into a number of smaller com-
putational tasks, each of which can be completed by a single processing unit,
as described in Sect. 3. A major decision that we must make is where to store
the Z matrix, whose size can be on the order of terabytes, and how to access its
diagonal blocks efficiently. We discuss and compare two strategies for storing Z.
In the first scheme, which we describe in Sect. 4, Z is stored on the disk. Each
processing unit reads in the required blocks of Z whenever they are needed. We
will refer to this scheme as the out-of-core (OOC) implementation. Clearly, the
OOC implementation is prone to severe I/O overheads (see Sect. 4). Our alter-
native scheme described in Sect. 5 is based on distributing the diagonal blocks
of Z among all processors and fetching data from potentially remote memory by
efficient one-sided MPI calls. However, our incore implementation suffers from
another kind of overhead: communication latency, which can easily be overcome
by buffering. Our experiments and observations are summarized in Sect. 5.

2 The Strutures of H and Z Matrices

Figure 1 illustrates the structures of matrices H and Z. Each row (and column)
of H corresponds to, what is known in nuclear configuration interaction calcula-
tion as, a many-body basis state, which is a Slater determinant of single-particle
states (anti-symmetrized product of single-particle states). The total number of
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many-body states, D, is determined by the number of particles in the nucleus,
npart, and a truncation parameter, Nmax. A higher Nmax value yields a more ac-
curate finite dimensional approximation to the nuclear many-body Hamiltonian
at the expense of an exponential growth in its dimension. As shown in Fig. 1,
H is sparse. Its sparsity pattern is determined by the type of interaction used: a
3-body potential leads to a less sparse matrix than a 2-body potential. We use a
2-body interaction potential for the simulations presented in this paper, which
means an entry Hij of the Hamiltonian is non-zero only when the number of
different single-particle states corresponding to row i and column j of H is at
most 2.

 
 
 

Fig. 1. Overview of the invariant subspace projection problem

The block structure of H seen in Fig. 1 results from a particular grouping
of the many-body basis states based on their single particle quantum numbers
(see [6] for details). Each non-zero block in H is itself sparse, and thus can be
stored in a sparse matrix format. What is worth noting here is that each group
of many-body basis state is invariant under the Ĵ2 operator. Consequently, such
a grouping scheme produces a block diagonal representation of the Ĵ2 operator.

3 Task Decomposition for Parallel Processing

The special structures ofH and Z matrices allow us to decompose the projection
calculation into smaller tasks. Let i and j denote the block indices, then each non-
zero Hij block defines a subtask for the invariant subspace projection problem:

H ′
ij = Zi

THijZj , a sparse matrix multiplied with two dense blocks, resulting in
a dense block of smaller dimensions (see Fig. 1). Accomplishing each small task
involves construction of the Hij block based on the interaction between the ith
and jth many-body state groups and bringing the Zi and Zj blocks into local
memory.
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Fig. 2. Decomposition of the invariant subspace projection problem

BecauseH is symmetric, we configure processors into an nr×nr lower triangu-
lar grid T as shown in Fig. 2, so that the lower triangular part of the matrix can
be distributed among nr(nr+1)/2 processors. The partitioning of H is based on
a cyclic distribution of the many-body basis groups over the diagonal processors
of T . This partitioning also yields a logical partitioning of the Z blocks among
the diagonal processors. Row and column processor groups are created within
T to facilitate data communication. The partitioned Z blocks are to be shared
(logically) among all processors within the same row and column groups. Such a
distribution scheme maximizes the data locality during the subspace projection
calculations.

Directly associated with the partitioning of the H matrix is the distribution
of the subspace projection subtasks, ZT

i HijZj . Each processor is responsible for
computing the projection of non-zero Hij blocks within its partition. In order
to accomplish these subtasks, each off-diagonal processor needs only two sets of
diagonal blocks of Z (one mapped to its row group, the other one mapped to its
column group), while a diagonal processor needs only a single set of Z blocks.
We will refer to the blocks of Z mapped to a processor’s row group as that
processor’s row data blocks, similarly to the blocks of Z mapped to a processor’s
column group as its column data blocks.

4 An Out-of-Core Approach

A ZT
i HijZj subtask has three steps: (i) construction of the non-zero Hij based

on the interaction between the many-body groups i and j, (ii) bringing the as-
sociated row data block Zi and column data block Zj into local memory, (iii)

and finally computing Zi
THijZj . Ideally, we would like to store all blocks of Z
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that will be needed by a processor to perform all its projection subtasks in its
local memory. However, for large problems, this is generally not possible due to
the limited amount of memory on each processor. Therefore, it is important to
carefully consider where to store the diagonal blocks of Z and how to bring them
to local memory.

One approach we examined is to store the diagonal blocks of Z on the disk
and let each processor read them from there whenever necessary. Algorithm1
gives the pseudo-code for our out-of-core approach, which we will refer to as the
OOC implementation. In order to reduce read contention on a single file, nr files
(one file per diagonal processor) are created to store the diagonal blocks of the
Z matrix. To reduce I/O overheads in OOC, once a column data block Zj is
read from the disk, all subtasks associated with that data block are processed,
i.e., we follow a column-major order for processing non-zero blocks of H .

input : Processor column and row group indices: mycol and myrow
output: Projection of the part of H assigned to the processor

Open colfile that contains Zj ’s mapped to the mycolth diagonal processor;
Open rowfile that contains Zi’s mapped to the myrowth diagonal processor;

foreach Zj ∈ colfile do
Read Zj from colfile;
foreach Zi ∈ rowfile do

if Hij �= 0 then
Read Zi from rowfile;
Construct Hij ;
H ′

ij = Zi
THijZj ;

end

end

end

Algorithm 1. An OOC algorithm for computing H ′
ij = ZT

i HijZj

We tested the performance of the OOC implementation on the Hopper sys-
tem at the National Energy Research Scientific Computing Center (NERSC) 2.
Table 1 summarizes the performance of the OOC implementation on some of the
real problems that we typically solve using the total-J code. OOC performs well
when the size of the Z matrix is relatively small. We suspect that this is due
to the availability of I/O buffers managed by the OS kernel, where the entire
column and (more importantly) row files that contain the needed blocks of Z
can be buffered effectively, when these files are small in size. However, as the Z
matrix becomes larger, the efficiency of the OOC implementation drops sharply
– the useful work done, which corresponds to the time spent when processors
are not idle, for the Nmax=14, J=3 case is only about 1%.

2 See http://www.nersc.gov/users/computational-systems/hopper/

http://www.nersc.gov/users/computational-systems/hopper/
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Table 1. Performance of the OOC implementation on total-J calculations of 6Li with
various parameters. |Z| denotes the size of the Z matrix, ndblks is the number of Z
(data) blocks, ntasks is the number of non-zero blocks in H . For each calculation, the
total execution time (in seconds) and the percentage of overhead (i.e., I/O time) is
given.

calculation |Z| (GB) ndblks ntasks np overhead (%) total (s)

Nmax=12, J=0 2.7 2.5 ×105 1.12 ×108 946 45% 159

Nmax=12, J=1 7.5 2.5 ×105 1.36 ×108 946 47% 204

Nmax=12, J=2 10.6 2.5 ×105 1.52 ×108 946 63% 319

Nmax=12, J=3 11.3 2.5 ×105 1.60 ×108 946 69% 358

Nmax=12, J=4 10.0 2.5 ×105 1.60 ×108 946 83% 551

Nmax=14, J=3 67.1 7.4 ×105 7.04 ×108 10,011 99% 9200

5 Distributed In-Core Approach

An alternative to the OOC implementation is to distribute and store a single copy
of the blocks of Z in the local memory available to the processors. In a sense, we
utilize the global address space available to the compute nodes as “disk”. Our
goal is to be able to tackle problems much bigger than the ones presented in
Tab. 1 (e.g., 6Li, Nmax=16, J=5 where we expect |Z| ≈ 1TB excluding any aux-
iliary data structures) and to develop an implementation that can withstand the
current trend of decreasing memory space per processor ratio. However, such
an approach would require each processor to fetch data from remote memory
belonging to a different processor during the projection calculation. The com-
munication overhead may increase the turn-around time significantly, if regular
MPI send/receives are used for fetching data. This overhead can be reduced by
making use of one-sided MPI communication routines. On Hopper, each node
is equipped with an RDMA engine which can handle remote memory access
requests without interrupting the computation performed on processors resid-
ing on that node. So we take advantage of the one-sided MPI Get operations
available with Cray’s xt-mpich2 MPI library on Hopper.

Our incore implementation balances the memory load among processors by
distributing the blocks of Z logically mapped to the ith diagonal processor cycli-
cally among processors that belong to the ith row and column communication
groups. Before starting the projection calculations based on this distribution,
each processor reads its share of Z blocks from its row and column data files
into the memory. Contrary to our expectations, the incore version did not pro-
duce any improvements in terms of performance for the test cases listed in Tab. 1.
A relatively small calculation for 6Li, Nmax=12, J=0 took over 400 seconds on
946 processors. This performance compares unfavorably to the 159 seconds re-
quired in the OOC implementation. A detailed performance analysis reveals that
reading the blocks of Z takes only about 20 seconds. The wall clock time spent
in waiting for the completion of MPI Get calls is about 250 seconds on average
(more than 60% of the total completion time).
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We believe that this unexpectedly large communication overhead is largely
due to network latency, rather than the inadequacy of network bandwidth. Be-
cause in the 6Li, Nmax=12, J=0 case, individual Z blocks are not large in size,
but there are over 100 million small tasks, each of which typically requires two
different blocks of the Z matrix. Column major processing of tasks helps keeping
the number of MPI Get calls roughly equal to the number of tasks, which is
still prohibitively high. MPI-2 specification [7] requires even read-only accesses
to remote memory locations, which is the exclusive usage of MPI one-sided calls
in our incore algorithm, to happen inside an epoch. The only way to start and
end an epoch in MPI-2 without synchronization is to enclose remote memory
accesses within a pair of MPI Win lock and MPI Win unlock calls. This
locking–unlocking protocol incurs an overhead of 4α, where α denotes the net-
work latency, for each MPI Get call. As discussed by Gropp et. al. [8], it is
possible to detect this special access pattern and reduce the latency overhead to
0 by combining the locking–unlocking phase with the MPI Get call itself. But
to the best of our knowledge, this optimization has not been included in Cray’s
xt-mpich2 implementation.

Algorithm2 illustrates the final version of the incore implementation. To
reduce the latency overheads associated with starting and ending epochs, all
MPI Get calls destined to the same remote memory address space are consol-
idated within a single epoch. Consequently, instead of looping over the column
and row files as in the OOC algorithm, the incore algorithm loops over proces-
sor sub-groups which now store the needed Z blocks. Each processor maintains
a list of destinations for the Z blocks it needs and issues MPI Get calls to
easily fetch them. Note that the MPI Getv call in Alg. 2 is not actually an
MPI-library call, it is a wrapper which initiates an epoch, issues a sequence of
MPI Get calls destined to a target processor, and terminates the epoch. So
between the initial version of the incore algorithm described above and its final
version given here, the number of MPI Get calls stays the same. However, the
number of epochs created by a processor is reduced from being roughly equal
to the number of tasks assigned to it down to n2

r . The effect of this reduction
can be seen immediately in 6Li, Nmax=12, J=0 calculations on 946 processors
where the running time of the final incore algorithm is 250 seconds (down from
400 seconds) and the communication overhead is reduced to 40% (down from
over 60%).

In Fig. 3, we compare the performance of the OOC and the final distributed
incore implementations for different J values in 6Li, Nmax=12 calculations on
946 processors. While the OOC version initially outperforms the incore imple-
mentation due to the small size of the Z matrix, the incore implementation
delivers up to 2.8x speed-up over the OOC version for larger values of J where
the size of the Z matrix is considerably larger (see Tab. 1). But the real ad-
vantage of the incore implementation becomes evident during the much larger
6Li, Nmax=14, J=3 calculations, where we obtain almost 10x speed-up over the
OOC implementation, see Fig. 4.
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input : column & row group ids: mycol, myrow
input : column & row group communicators: row comm, col comm
input : manybody groups (non-empty only on diagonal processors)
output: Projection of the part of H assigned to the processor

if diagonal processor then
ids← pids ∈ row comm ∪ pids ∈ col comm;
host← distribute manybody groups cyclically over ids;

end
host← Bcast(host, ids);
my mb groups← Scatter(manybody groups, ids);

cpids← Bcast(ids, col comm); // processor subgroup to look for Zis

rpids← Bcast(ids, row comm); // processor subgroup to look for Zjs

my dblks← Load from column data file based on my mb groups;
my dblks← Load from row data file based on my mb groups;

foreach c ∈ cpids do
cdlist← {Zi|need(Zi) ∧ host(Zi) = c};
MPI Getv(c, cdlist, cdblks);
foreach r ∈ rpids do

rdlist← {Zj |need(Zj) ∧ host(Zj) = r};
MPI Getv(r, rdlist, rdblks);
foreach Zi ∈ cdblks, Zj ∈ rdblks do

Construct Hij ;
H ′

ij = Zi
THijZj ;

end

end

end

Algorithm 2. Pseudo-code for the incore implementation

Fig. 3. Comparison of the performances of the incore and the OOC implementations.
Total computation time (as denoted by the height of each bar) is examined in 6 parts:
average CPU time (cpu), cpu load imbalance (cpu-imb), IO time (IO), IO time imbal-
ance (IO-imb), communication time (comm), communication time imbalance (comm-
imb). Note that, the OOC implementation does not do any communication. In the
incore implementation, no IO-imb is measured.
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Fig. 4. Comparison of the performances of incore and OOC implementations for the
6Li, Nmax=14, J=3 calculations on 10,011 processors, showing a 10x speed-up

6 Future Challenges

A detailed examination of the performance of incore algorithm reveals that the
incore implementation is still prone to severe overheads. For example, for the
Nmax=14, J=3 calculations on 10,011 processors, the percentage of useful com-
putation (as measured by the ratio of average CPU time per processors to total
wallclock time) is merely 10%. Out of the total 970 s, on average about 400 s is
spent for reading the diagonal blocks of Z to memory and about 300 s is spent
on communication. Another source of the inefficiency in the incore algorithm is
the potential load imbalances among processors. Load imbalance caused by the
basic round-robin distribution of tasks is not severe for 6Li calculations where
variations among task sizes are not drastic. But for heavier nuclei, we observe
that there is a large variation among task sizes which could potentially cause
severe load imbalances.

Some communication overheads may be reduced through further optimiza-
tions on Alg. 2. For example, one can pack multiple MPI Get calls that are
made to retrieve data from consecutive memory locations into one. Other one-
sided communication libraries (such as ARMCI [10]) remains to be explored as
they offer optimizations not present in the current MPI-2 implementations.

However, in order to alleviate the problems described above and further reduce
overheads that were encountered in the subspace projection phase of total-J
calculations, smarter heuristics, such as the technique presented in [9], which try
to balance the task and memory load while minimizing communication overheads
are necessary.

7 Conclusions

In this paper, we explore different approaches to tackle the challenging problem
of large-scale invariant subspace projection problem arising in the context of
total-J calculations and analyze their performances on real problems of inter-
est to the nuclear physics community. We show that, by exploiting the inherent
localities in the problem and making use of the MPI one-sided communication
routines, it is possible to reduce the I/O and communication overheads drasti-
cally for large-scale data dependent problems. Despite the significant speed-ups
achieved with the final version of the total-J code, our analysis shows that the
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useful work to total execution time ratio is still low (as low as 10%). We identify
the sources of inefficiencies through a careful examination of the performance
profiles of individual processors and lay out future research directions that may
reduce overhead and provide better scalability to this important problem.

We realize that eigenvalue calculations are central to several problems in the
area of computational science and engineering. Also high performance data-
intensive computing is a field with growing interest. Therefore we believe that
the results of this work and insights we have gained can be of much broader
interest.
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