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Abstract. Virtual machines are becoming commonplace as a stable and
flexible platform to run many workloads. As developers continue to move
more workloads into virtual environments, they need ways to analyze the
performance characteristics of those workloads. However, performance
efforts can be hindered because the standard profiling tools like VTune
and the Linux Performance Counter Subsystem do not work in most
modern hypervisors. These tools rely on CPUs’ hardware performance
counters, which are not currently exposed to the guests by most hyper-
visors. This work discusses the challenges of performance counters due
to the trap and emulate method of virtualization and the time sharing of
physical CPUs among multiple virtual CPUs. We propose an approach
to address these issues to provide useful and intuitive information about
guest performance and the relative costs of virtualization overheads.

1 Introduction

Virtualization is a method to decouple physical hardware from an operating
system by running the guest OS in a virtual machine, or VM. Virtualization
has found uses in both development, to isolate systems-under-test, and in data
centers, to provide server consolidation, migration, and manageability functions.
Workloads are increasingly likely to be virtualized. Many companies are using
remote desktop viewing products to replace developers’ and users’ dedicated
desktop machines. With these trends, developers face an increasing need to use
native performance tools like VTune[I3], CodeAnalyst[3], and the Linux Perfor-
mance Counter Subsystem[6] inside VCPUs.

VMware is investigating the virtualization of hardware performance counters
for its future products. This paper discusses the typical use cases for the coun-
ters and the ways to properly represent a useful view of performance events.
The typical uses of virtualization present several challenges not present on non-
virtualized (native) systems. For example, a virtual CPU (VCPU) does not oc-
cupy a physical CPU (PCPU) 100% of the time, which breaks many assumptions
a profiler may make about the passage of time. Sharing the PCPU with mul-
tiple VMs requires that the hypervisor not only context switch the hardware
counter resources, but also adjust some of the results to match what the profiler
is expecting.

These event count adjustments are also required to expose the resource and
time consumption of emulated instructions, and to match the semantics of a
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small set of counters that relate to instruction retirement. For example, a hy-
pervisor often completes a trapped privileged instruction on behalf of the guest.
Without additional hypervisor bookkeeping, this emulation would not appear as
having consumed execution resources or retired any instructions if the counters
are paused while the hypervisor is running. Conversely, if counters are allowed to
freely run in both contexts, confusing results may arise when hypervisor events
are counted. Our work seeks to find the best mix of performance counter emula-
tions to represent performance events in a way that supports existing profiling
tools.

The hypervisor strives to provide a virtual CPU as similar as possible to phys-
ical hardware; it should present virtualized performance counters that enable a
guest to profile itself as well as it could on a native system. This work treats the
hypervisor itself as an opaque extension of the CPU with respect to the in-guest
profiling system; this enables the hypervisor to agnostically support all profilers
that use the standard CPU interface to performance counters.

Enabling performance counter use in guests allows profilers to use hardware
performance counters to measure metrics including cache misses, translation
lookaside buffer (TLB) pressure, and instructions per cycle (IPC). These profil-
ing tools produce per-process and system metrics based on sampled hardware
counts to indicate where performance improvement opportunities exist. High
performance computing developers frequently use such performance tools to find
bottlenecks and inefficiencies. Virtualization is under discussion in HPC contexts
to provide abstraction, migration, and reliability, and hypervisor vendors must
support the same performance monitoring capabilities that developers use to
tune native systems.

2 x86 Performance Counter Hardware

Intel[8] and AMDI[I] provide similar interfaces to their performance counting
hardware. Each CPU has its own set of performance counters and performance
event select registers. The event select register is used to specify which microar-
chitectural event is to be counted, and contains bits to enable, filter the count
results, and raise interrupts if the counter overflows from negative to positive.
Typical modern hardware has between 2 and 8 general purpose counters and up
to 3 fixed counters, each dedicated to a single event.

The encodings of events are generation-specific, though Intel has defined a
small set of events that are encoded consistently across generations, and sim-
ilar events on AMD appear consistent as well. Events common across many
architectures include cycle counts (relative to core cycles and to constant-rate
cycles), TLB accesses and misses, last-level cache accesses and misses, and in-
struction and branch retired counts. In addition to these common events, each
CPU generation has its own assortment of architecture-specific events including
store-to-load forwarding failure counts and functional unit stall events. AMD and
Intel each have mechanisms to enable and disable individual counters during the
state transition between the hypervisor’s own code and running the guest.
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A typical usage of the performance counters could include configuring Event
Select 0 to count Last-Level Cache misses in all privilege levels with the overflow
interrupt disabled and configuring Event Select 1 to count Last-Level Cache ac-
cesses with identical privilege and interrupt settings. A profiler then samples the
Event Counts 0 and 1 and calculates per-sample period differences to track the
ratio of cache misses to accesses. In addition, the interrupt facility of the hard-
ware counters can be enabled to cause interrupts after a set number of events.
In this example, setting the Event Select’s interrupt-enable bit and setting the
corresponding counter to -10,000 would cause the hardware to raise an interrupt
after the 10,000th cache miss.

Extensions such as PEBS (Precise Event-Based Sampling) and LWP (Light-
weight Profiling) are not discussed in detail in this paper, but may be virtualized
with similar methods. However, each of these has memory-access characteris-
tics that present more virtualization challenges than the simple Model-Specific
Register (MSR) interface of the core event counters. Uncore or Northbridge
counters are shared among multiple PCPUs and thus are less amenable to time-
multiplexing.

3 Profilers

Profilers commonly use a sampling mode where one or more events are allowed
to raise interrupts after a specified number of counts. The user or profiler sets
the overflow limit to achieve a desired approximate frequency of events, based
on an estimated expected rate of events. For example, if 1000 TLB misses occur
per second on average, and a 10Hz sampling rate is desired, the event counter is
initialized to -100.

The profilers are given knowledge of a binary’s code layout and symbols and
are often integrated with an IDE programming environment like Visual Studio
or Eclipse. They run one or multiple passes of a program and record the in-
struction pointer and possibly the call stack information in place at the time
of a performance counter interrupt. The profilers present a visualization of the
average cost of a given function or even an individual instruction based on this
information.

A programmer commonly writes a program and runs it under the profiler, pro-
viding a typical input set. The programmer can iteratively apply optimizations
based on profiler results.

4 Time-Sharing Physical CPUs

Many datacenters perform CPU overcommittment using hypervisors, running
multiple VMs on a single computer where the total VCPU count exceeds the
total number of PCPUs. The hypervisor must share PCPUs among all the VC-
PUs, giving each VCPU a fraction of the total runtime of the system. The shar-
ing of hardware resources requires the hypervisor to apply heuristics to enable
guest operating systems to accurately keep track of absolute time, often called
wall-clock time.[I4]
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The guest operating system wall-clock should track absolute time over the long
term. To achieve this, while the VM is descheduled, VMware’s virtual timer de-
vices that are used by the guest operating system for timekeeping are allowed
to fall behind real time and later catch up faster than real time when the VM
is rescheduled. This way, over the longer term, these devices track absolute real
time. Profilers, on the other hand, are more concerned with relative time differ-
ences over the short term, and want to count only the time that the VCPU is
scheduled on a PCPU.

This tension over the desired semantics of a timer device requires the hypervi-
sor to carefully trade off keeping a guest’s notion of wall-clock time correct and
giving a notion of time appropriate for profilers’ use. Both Intel and AMD CPUs
provide an event called core cycles not halted, which tracks the CPU cycle count
independently of wall-clock time. CPU frequency can increase or decrease due
to power saving modes, and CPU cycles can stop entirely if the OS has executed
the HLT instruction. The notion of core cycles not halted is thus a convenient
hardware interface that can be extended for profiling in a virtual environment.
The hypervisor can define core cycles not halted to count only core clock cycles
when the VCPU is in context on a PCPU, including time spent in the hypervisor
on that VCPU’s behalf. Fortunately, the use of core cycles not halted appears to
be common practice in profilers, and our extension of its meaning is consistent
with common calculations of events per unhalted cycle ratios.

The RDTSC instruction is a common source of total elapsed time. However, an
instructions per cycle calculation that uses RDTSC results for elapsed time as its
denominator might under-count the IPC. In this case, the hypervisor is actively
managing the RDTSC instruction to track absolute real time. The more correct
method would be to measure instructions retired in one performance counter
while measuring core-cycles not halted in another. Fortunately, there is incentive
on native systems for that practice, as most modern processors support some
form of hardware-mediated cycle speed boosting that the OS does not control.
Boosting provides a similar distortion as hypervisor time manipulation when
RDTSC is used as a cycle count.

Sharing hardware leads to other, less direct effects. Just as multiple processes
may compete for cache and other resources, multiple VCPUs and other unrelated
hypervisor threads that share a physical core can pollute each other’s caches,
branch predictors, TLBs, and other microarchitectural state. This work inten-
tionally avoids attempting to condition these types of counters, both due to
the difficulty of properly recalculating the non-sharing values of such dynamic
counts, and due to a desire to appropriately show the effects of sharing resources.
While a program may not be causing cache misses itself, it may still experience
them in a time-shared machine, and the programmer could benefit from such
knowledge.

The hypervisor context switches all relevant CPU state when each VCPU is
scheduled and descheduled. To virtualize performance counters as we describe,
the hypervisor must context switch the active performance counter state, in



Virtualizing Performance Counters 227

addition to the context switching of general purpose registers and control state.
This serves to time-multiplex the CPU and performance counter hardware re-
sources and guarantee that virtual counters do not advance while that VCPU is
out of context. The context switching of the counter state satisfies our extended
definition of unhalted core-cycles.

5 Trapping and Emulation

When a non-privileged guest instruction is executed by the physical CPU, the
guest is said to be in direct execution mode. Modern hypervisors trap and
emulate[I2] to handle privileged guest instructions and events. In well-tuned
systems, the rate of traps is low and guests spend most of their time in di-
rect execution. However, a guest may execute a trapped instruction, such as the
CPUID instruction, which is then intercepted by the hypervisor. The hypervisor
decodes and emulates the instruction, and resumes with direct execution begin-
ning at the next guest instruction. Other mandatory traps include IN and 0UT
instructions, page faults that are induced by lazy context evaluation in shadow
or nested paging modes, and accesses to virtual devices.

If a hypervisor were to naively pause the virtual counters when exiting direct
execution, an emulated instruction would never cause any counters to increment.
Conversely, if the hypervisor were to allow all counters to continue running while
emulating the instruction, the instructions retired count would match the num-
ber of hypervisor instructions executed. For example, if the following code snip-
pet were in an inner loop, a non-virtualized profiler would discover that many
cycles were spent executing the CPUID instruction (which is fairly expensive at
approximately 100 cycles on modern CPUs) and that IPC is very low. How-
ever, a hypervisor that paused virtual counters would fail to increment cycles
or even instruction retired counts for the CPUID instruction, and the profiler
would interpret the event counts as saying the CPUID instruction had zero cost.
Alternatively, if all counters increment freely during emulation of the CPUID in-
struction, IPC may appear to be high since most of the hypervisor instructions
used to emulate CPUID will be normal high-throughput instructions. This design
choice would also hide the cost of executing CPUID in a VM. Our work aims to
categorize ways to appropriately and efficiently emulate performance events in
such cases.

int popcnt(int i) {
if (cpuid(1).ecx & POPCNT_MASK != 0) {
return __builtin_popcnt(i);
} else {
return SoftwarePopcnt(i);

}
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6 Speculative and Non-speculative Events

Many performance events are subject to run-to-run variation due to processor
speculation, varying cache and branch predictor temperature, variable cache miss
costs, and other non-deterministic effects. These speculative [I] events include
cache, branch predictor, and TLB statistics as well as microarchitecture-specific
events. A cache miss counter, for instance, could experience run-to-run variation
due to execution of mispredicted code, OS context switch costs, cache misses due
to thread migration to different cores, and memory bandwidth competition due
to other cores.

Other events can be considered deterministic and non-speculative: for a given
program execution, the counts of retired instructions and branches can be ex-
pected to be repeatable and determined from an in-order execution of the pro-
gram. For example, after a 3-instruction code loop that executes 1000 times,
the retired branch instruction event should report 1000 branches and the retired
instruction event should report 3000 instructions.

7 Combining Native and Emulated Performance
Counters

As discussed above, one approach is to allow the counters to run during execution
of the inner portions of the emulation code, and to pause the counters only on
context switches away from the current VCPU. Another approach pauses all
counters at the boundary between hypervisor and hardware execution of guest
code.[d] Finally, a third approach emulates the hardware counters to attempt to
represent the microarchitecture’s counts for a small subset of events.[5]

This paper proposes a hybrid approach: for non-speculative events, the em-
ulation code will ensure correctness, while speculative counters will present a
view of the hypervisor’s effect on hardware even for emulated guest instructions
and events.

When the hypervisor is emulating one or more guest instructions, it has full
knowledge of the counts of non-speculative guest events and can increment the
counters. However, it is impractical to provide a CPU simulator in order to
properly represent cache miss rates, TLB hits, cycle counts, and other speculative
events. Instead, this work allows speculative events to count both in the guest
context and during hypervisor emulation of the instruction. As discussed above,
if the hypervisor switches context to another VCPU, the virtual counters are
paused. When the current VCPU context is restored, the virtual counters resume.

Our approach gives the guest a glimpse into the costs of the hypervisor’s
implementation, but does not propose to expose hypervisor addresses or sym-
bols. Instead, hypervisor effort for emulation is attributed to the instruction that
required the emulation by allowing the non-speculative events to continue count-
ing in the hypervisor. In the code example above, our approach causes CPUID
to appear to consume the number of cycles that were required to emulate the
instruction, and to increment the retired instruction count by one.
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This design leads to some interesting surprises. For example, a natively-
executed CPUID instruction never causes TLB misses or cache misses. However,
the emulation code does require memory accesses and is likely to induce both
TLB and cache events. We deliberately pass such counts through to the guest.
This kind of induced event incrementing is visible only to a spot inspection of a
particular instruction. A typical profiler must tolerate imprecision including the
variable number of cycles a performance counter interrupt can require to arrive.
Therefore, such surprising events like unexpected cache misses on non-memory
instructions, which do not occur on native hardware, are unlikely to confuse the
profiler’s results.

Our design results in approximate correctness: expensive events do appear
expensive when viewed in the profiler, whether the instruction causing that event
was trapped-and-emulated or executed by hardware.

7.1 Hybrid Performance Counter Example

Figure [Ml demonstrates how the various classes of performance events can be-
have under our design. Instructions retired is a non-speculative event, so does
not increment while the VCPU is descheduled. However, at the point indicated
by the arrow, the hypervisor has emulated one or more instructions and has
incremented the counter accordingly. The hypervisor (VMM) runs between the
VMexit and VMentry times. TLB accesses is a speculative event and is allowed
to run during that time. Cycles not halted, while not related to speculative ex-
ecution, is treated in the same manner. All VCPU counters are stopped when
the VCPU is descheduled.
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Fig. 1. Example graph of speculative and nonspeculative counters
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8 Performance Counter Hardware Virtualization
Methods

VMware hypervisors have historically largely avoided paravirtualized interfaces
to basic hardware features in an effort to focus performance optimization at sup-
porting a wide range of virtualization-unaware guests. In general, guest accesses
to privileged state are trapped and emulated by the hypervisor. The hypervisor’s
handling of guest performance counter resource accesses follows this pattern: each
guest performance counter MSR access is trapped and proxied, largely unaltered,
to the underlying hardware[] A guest performance counter that is configured to
raise an interrupt will cause the hypervisor to enable the interrupt on the corre-
sponding hardware resource. The hypervisor will trap the resulting performance
monitor interrupt and forward it synchronously to the guest.

The hypervisor configures the hardware performance counters with a few small
differences to enable the hypervisor to share performance counters with other
hypervisor software services, and to enable the guest-only filtering capabilities
of the hardware when appropriate for the event type.

9 Discussion

An open item of discussion for this workshop is to explore whether these design
choices are correct and adequate.

One question is how the hypervisor should properly filter events that a profiler
might use in a ratio. If the profiler mixes speculative and non-speculative events
in the same ratio, the speculative events will have been allowed to increment
during hypervisor emulation code, while the non-speculative events will count
only guest events. Example ratios include TLB misses or accesses per retired
instruction. A hypervisor cannot predict whether the profiler or user wants to
include only events incurred while running guest code, but a modification to our
design could assume the use of retired instruction events implies such a ratio
and thus conditionally pause speculative event counts during emulation.

Generally, it is expected that unmodified profiling tools will function cor-
rectly under this virtualization scheme. Directed tests running natively and in
VMs observe performance counter results that match within close tolerances,
and it is expected that variances due to the timesharing and virtualization will
cause similarly minor disruptions to profiling tools’ results. The user bears some
responsibility for understanding profiler results in the native case, and some ad-
ditional understanding about the nature of virtualized workloads will be vital to
effective performance tuning.

Certain phases of a workload should be minimally impacted by virtualization,
while others may experience a range of performance effects. For example, a
computation-heavy workload phase that does not pressure the TLB significantly

! Optimizations to allow the guest to write some MSRs directly are not the focus of this
paper. The hypervisor can usually allow the guest to write the count MSRs directly,
but often must mediate access to configuration and interrupt control registers.
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should provide the same profile results when run in a VM or natively. The
profiler would be expected to show significant profile differences if, for example,
the VM’s memory is misconfigured and resides on an inappropriate memory
controller. The shape of the profile for other workloads can be expected to change
under virtualization. For example, using hardware page table virtualization (Intel
EPT or AMD Nested Paging) can increase the cost of a TLB miss.[2] A garbage-
collected workload with a large working set could experience greater performance
degradations while virtualized, and the costs will be visible in the profile.

The profilers discussed here are often considered vertical profilers[7], in that
they have sampling and symbol visibility to multiple layers of the system, includ-
ing hardware, operating system, various middle layers, language virtual machine,
and application. While software counters can be used for the upper layers of the
system, the hardware’s own performance counters are typically used for measur-
ing the hardware layer. This work can be considered to support vertical profiling
by extending the definition of hardware to include the CPU emulation efforts of
the hypervisor. This definition serves to abstract away specific knowledge of the
hypervisor from the guest profiler while exposing the related costs, in a manner
analogous to the level of visibility into the CPU’s hardware itself.

10 Future Work

This work focuses on enabling existing unmodified performance tools. By infer-
ring the appropriate way to emulate speculative and non-speculative counters,
we assume knowledge of the profiler’s intentions. A virtualization-aware profiler
could express its interest in how a hypervisor should emulate its counters.

Analogous to the commonality of many of the basic microarchitectural events,
hypervisors could expose synthesized events that are common to most hypervisor
implementations, especially events that pertain to implementation of CPU em-
ulations. For example, a shadow-paging hypervisor could expose the number of
hidden page faults that required hypervisor intervention for events like accessed
and dirty bit setting. A hypervisor in any paging mode, including hardware-
supported nested paging, can expose an event containing the number of hidden
page faults due to lazy population of guest memory or copy-on-write collisions.

Timeslicing a machine is a fertile area of exploration for adding performance
metrics. A guest may be interested in estimating the number of cycles stolen due
to resource sharing (for example, to understand video frame rates or other time-
sensitive measurements). Disk events, hypervisor lock statistics, and NUMA mi-
gration counts are other potential events that could provide insight into the
system.

11 Related Work

Generally, existing profiling tools that can be used with virtual machine environ-
ments are modified and either run on the host or have some cooperation from
and communication with the hypervisor. [9] discusses a system-wide profiling
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framework, Xenoprof, implemented in Xen. It includes a hypervisor component
and a domain level component that coordinate to provide a system-wide profiler.
OProfile has been ported to the Xenoprof interface. [16] allows a Linux host run-
ning the KVM VMM to collect guest OS statistics using the Linux perf utility.
[15] can count hardware performance events on an ESX hypervisor.

[4], [5] and [II] discuss recent performance counter extensions to KVM and
Xen, respectively. [4] and [5] discuss guest-wide profiling, which is similar in in-
tent to our approach. [4] and [5] also discuss two choices for multiplexing the
performance counter hardware: CPU switch and domain switch. [I1] describes
an infrastructure for Xen, perfctr-xen, that allows access to the hardware per-
formance counters in a virtual environment. The infrastructure relies on a hy-
pervisor component along with modifications to the guest OS kernel.

[4] mentions the requirement of synchronous interrupt delivery, which should
be straightforward for all hypervisors: each performance counter interrupt is
generated locally on the PCPU where the VCPU currently resides, and the
hypervisor must have a fault injection mechanism that can be leveraged for
interrupt injection. [10] describes whole-system profiling with the help of agents
at each level of the virtualization hierarchy.

12 Conclusion

This paper presented a proposed solution for virtualizing and time-sharing per-
formance counters while providing reasonable and intuitive counter results. The
proposed implementation distinguishes between speculative events, which are al-
lowed to count while a hypervisor is emulating guest code, and non-speculative
events, which are faithfully emulated to match in-order program flow. In this way,
unmodified profiling tools can be used inside a VM to gather useful performance
profiles that do not conceal overheads caused by virtualization.

Acknowledgements. The authors would like to thank Hussam Mousa of Intel
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