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Abstract. A major obstacle to virtualizing HPC workloads is a concern
about the performance loss due to virtualization. We will demonstrate
that new features significantly enhance the performance and scalabil-
ity of virtualized HPC workloads on VMware’s virtualization platform.
Specifically, we will discuss VMware’s ESXi Server performance for vir-
tual machines with up to 64 virtual CPUs as well as support for exposing
virtual NUMA topology to guest operating systems, enabling the operat-
ing system and applications to make intelligent NUMA aware decisions
about memory allocation and process/thread placement. NUMA support
is especially important for large VMs which necessarily span host NUMA
nodes on all modern hardware. We will show how the virtual NUMA
topology is chosen to closely match physical host topology, while pre-
serving the now expected virtualization benefits of portability and load
balancing. We show that the benefit of exposing the virtual NUMA topol-
ogy can lead to performance gains of up to 167%. Overall, we will show
close to native performance on applications from SPEC MPI V2.0 and
SPEC OMP V3.2 benchmarks virtualized on our prototype VMware’s
ESXi Server.

Keywords: Non Uniform Memory Architecture (NUMA), ESXi, High
Performance Computing (HPC), virtual NUMA (vNUMA), virtualization.

1 Introduction

Interest in system virtualization technologies for HPC applications is increas-
ing |12, 14, 57, 4, |9]. While much of this interest stems from a desire to ex-
ploit cloud computing approaches, virtualization offers additional values for HPC
[11, 16, 10]. These include both proactive and reactive application resiliency; dy-
namic resource management for scheduling efficiency and power management;
multi-tenant security; and operational flexibilities.

Despite these potential values, adoption of virtualization for HPC will be
determined in large part by the performance achievable on relevant workloads
in virtualized environments. And that performance will be determined primarily
by two factors: the hardware support for virtualization and the capabilities of
the virtual infrastructure that provides the virtual machine (VM) abstraction to
the guest operating system instance and its applications.
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While there are many aspects of the VM abstraction that contribute to the
delivered performance of an application, this paper focuses on two such capabil-
ities of particular importance to HPC. The first is support for VMs with many
virtual CPUs which is required to allow thread-parallel OpenMP and other sim-
ilar codes including hybrid MPI/OpenMP applications to take full advantage of
the underlying cores in modern multi-core systems. The second is support for
exposing the NUMA topology of the underlying hardware to the guest operating
system so that it, along with any NUMA-aware runtime libraries, can optimally
co-locate compute and data where possible.

The paper presents a brief overview of ESXi server, VMware’s commercial
hypervisor, with an emphasis on its scalability properties. We then describe how
ESXi exposes a virtual NUMA topology to guest operating systems, and finally
present experimental results using SPEC OMP and SPEC MPI as representative
workloads.

2 ESXi Server Architecture

VMware ESXi Server is VMware’s bare-metal hypervisor which runs directly
on physical hardware. It multiplexes physical hardware among multiple VMs
and works in conjunction with the virtual machine monitor (VMM), an instance
of which runs per VM. By managing hardware resources directly, ESXi Server
achieves high performance by reducing virtualization overhead [13].

In about a decade of existence, VMware’s server virtualization platform has
undergone many advancements to increase its scalability and performance. The
scalability improvements have led to support for larger physical and virtual pro-
cessor counts and memory sizes, as well as higher VM consolidation rates. These
scalability increases have been enabled by advancements in both the virtual
machine monitor and ESXi hypervisor. Some key features which have enabled
these advances are architectural changes to support large virtual processor counts
(large SMP VMs), support for 64 bit x86 architecture and efficient use of hard-
ware virtualization support |2], along with advanced physical CPU, memory and
IO management [13]. Supporting large SMP VMs required careful data structure
design, coscheduling improvements [3], fine-grained locking, and best software
engineering practices to enable support for 64 virtual CPUs in a VM with mini-
mal virtualization overhead. In the next section, we discuss the presentation of a
virtual NUMA topology to guest operating systems running inside VMs, which
proved crucial to the performance of virtualized HPC workloads.

3 Virtual NUMA Support

Current generation operating systems, runtime libraries and applications are ex-
pected to be NUMA-aware for improved performance, e.g. they would allocate
memory and schedule execution threads to take advantage of the NUMA topol-
ogy. To support this within a virtual environment, we introduce the concept of
a virtual NUMA topology which can be exposed to a guest operating system.
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This abstraction is then mapped by the ESXi NUMA scheduler to an intermedi-
ate level of abstraction physical NUMA node, which is in turn dynamically bound
to specific machine NUMA node resources on the host system. This hierarchy of
(virtual, physical, machine) is analogous to that used to implement virtual mem-
ory in a virtualized environment. It should be noted that there is not necessarily
a one-to-one correspondence between virtual and physical NUMA nodes since
multiple physical NUMA nodes may be required to provision the required CPUs
and interleaved memory for a virtual NUMA node. Similarly, multiple physical
NUMA nodes may be scheduled on the same machine NUMA node, and even
over-commit available CPU and memory resources.

The number of virtual NUMA nodes, the number of virtual CPUs (vCPUs)
and the amount of memory associated with the virtual nodes normally remain
fixed for the lifetime of a VM. We also support hot-plug add of CPU and memory
resources, though not all OSes support hot-plug remove or dynamic changes to
NUMA topology. Our virtual BIOS exposes the ACPI Static Resource Affinity
Table (SRAT) |1] and ACPI PXM methods to guest OSes to reveal which mem-
ory regions and vCPUs belong to which virtual NUMA node. Minimally NUMA
aware OSes only distinguish between local vs remote allocation; most modern
ones take into account the minimal inter node latencies (or number of hops); yet
more advanced OSes need to track maximum link bandwidths, and ultimately
total system bandwidth for optimal scheduling. There are no standard facilities
for exposing the actual link topology connecting NUMA nodes, e.g. Intel QPI
or AMD HyperTransport frequency, number of lanes, lane widths, and for par-
tially connected systems the routes and congestion policies that determine the
maximum total interconnect bandwidth. We don’t expose ACPI System Local-
ity Information Table (SLIT) [1] information which would only provide fixed
latency information. Most modern guest OSes measure during initialization the
unidirectional access costs for a vCPU from one virtual NUMA node accessing
memory on another virtual NUMA node.

There are several scenarios in which the NUMA topology deduced by the
guest OS may become inaccurate over the lifetime of the virtual machine and
the remote memory access latency and bandwidth may change. First, the VM
might get powered on, suspended and resumed, or live migrated to hosts with
different machine NUMA topology than the original system. If different number
of physical nodes may be needed, e.g. if originally 4 nodes were used and now
8 nodes are needed, memory interleaving across pairs of physical nodes will
be necessary. The physical NUMA node abstraction accommodates even a VM
started with 8 vCPUs per NUMA node after it is migrated to a node with 6
PCPUs per NUMA node with best efforts to minimize the performance impact.
Second, even if the same number of physical nodes are needed they may use a
different NUMA topology. For example, when no subset of 4 machine nodes on
an 8-socket host is fully connected, a 4-node VM would need more hops for some
remote accesses, instead of symmetric accesses on a fully connected 4-socket host.

It is also possible for the ESXi NUMA scheduler to choose different actual
NUMA nodes for placement based on the system workload. Physical NUMA
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nodes belonging to the same VM which are smaller than the machine NUMA
node may be either consolidated or spread over multiple machine nodes. For
example, a single VM workload may benefit from spreading over four NUMA
nodes to gain higher memory bandwidth and cache capacity, but two such VMs
should each be using two non-overlapping NUMA nodes and links.

Trading off maximum single VM performance versus optimal total system
performance and overall fairness across VMs can add additional constraints.
While the optimal choices are specific to the VM workload, the best physical
NUMA topology and placement on machine nodes depends on the overall load
on the system and each NUMA node load. Other VMs’ CPU utilization, cache
capacity, and memory bandwidth consumption may impact the scheduler choices
as well. We expose manually configurable policies that affect both the fixed
virtual NUMA topology, initial physical NUMA topology placement, and load
balancing.

If the memory bandwidth demands of the VM are very high, then using multi-
ple memory controllers will be more beneficial and thus spreading over multiple
machine NUMA nodes would be favored. If there are high levels of inter-thread
communication, sharing the same last level cache will be preferred and thus
consolidation over fewer machine nodes will be favored. Finally, a VM may be
configured to favor using SMT hyperthreads instead of full cores - appropriate
when the lower latency of local memory may outweigh the disadvantage of not
using the full resources of a core. This benefits workloads with higher level of
inter-thread communication or external I/O, where cores will otherwise be un-
derutilized. So, for example, a VM with 16 vCPUs, on a host with four 8-core
(16 SMT) sockets will perform best with either one, two, or four NUMA nodes,
depending on the workload.

The above complexities and potential divergence over time of guest OS deter-
mined topology are most pronounced for heterogeneous workloads consolidated
on hosts in heterogeneous clusters. Maximum performance of a single VM run-
ning on hosts with identical machine NUMA topology is an equally important
scenario. In our experimental evaluation we discuss performance of VMs with
maximum vCPU count with matching virtual, physical and machine topology.
We expect these to be typical configurations for virtualized HPC environments
which generally will not over-subscribe hardware resources and which employ
homogeneous clusters.

4 Experimental Evaluation

We evaluated our prototype ESXi Server using four applications from the SPEC
MPI V2.0 suite and seven applications from SPEC OMP V3.2 suite. SPEC
MPI workloads are meant to be evaluated on distributed memory machines
but can be useful for performance evaluation on shared memory machines as
well. SPEC OMP is designed for use on shared-memory machines and is well-
suited to evaluate the performance of large SMP virtual machines for HPC.
All the experimental results reported here were gathered on 2.27 GHz Intel(R)
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Xeon(R) CPU X7560 processors based on the Nehalem-EX architecture. All the
benchmarks were compiled using gecc-4.3 and gfortran. We present three types
of results in this paper:

— Gains obtained due to vYNUMA
— Native to virtual runtime ratio showing virtual performance
— Native and virtual scaling

Our virtual NUMA (vNUMA) results start at 16 vCPUs since this represents the
two-socket case on our test system. Native to virtual ratio is obtained by dividing
the completion time of an application in the native case by the completion time
of the virtual run. A ratio greater than 1 indicates that a VM runs faster than
the native. Scaling results are reported starting at four vCPUs / processes /
threads because some MPI tests failed to run using fewer than four processes.
All of the SPEC benchmark applications were run for two iterations, which is not
SPEC-compliant. Run-to-run variation was within 1-2%. The numbers reported
here are the average of the two runs.

4.1 SPEC MPI Results

The SPEC MPT applications were evaluated on a Dell PowerEdge R910, which
has four sockets and a total of 256 GB memory. RHEL 5.4 was used as a native
and guest OS with kernel version 2.6.18-164. All VMs were configured with 128
GB of virtual RAM. We used Open MPI v1.4 [§] and the SPEC MPI medium
dataset for our tests.
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Fig.1. SPEC MPI Virtualization performance, and Interleaving vs vNUMA with
vCPU count = Number Of Physical Cores = 32

We conducted two sets of experiments. In the first set, the number of vCPUs
is equal to the number of physical cores in the system (32 in this case) and the
number of processes spawned is the same as in the case of native. This config-
uration is similar to the native setup in the sense that the guest OS scheduler
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would schedule as it would on a native system with the minor difference that in
the native case it would schedule on 64 logical threads, while in the virtual case,
it would schedule on 32 vCPUs and the 32 vCPUs would then be scheduled by
the ESXi scheduler on the 64 logical threads. We do not expose hyper-threading
information to the guest and for this workload we need full cores for each vCPU.
While this configuration has the best performance, we discuss alternative VM
size configurations later in our evaluation. In the second set of experiments, the
number of vCPUs configured for a VM is set equal to the number of processes
spawned in each SPEC MPI run — we size the VM equal to the size of the MPI
job.

Figure[l[a) shows the native to virtual runtime ratio for four applications from
the SPEC MPI V2.0 suite. The ratio for most of the applications is close to one
which indicates that virtualization is adding little or no overhead in this case.
In certain cases we see up to 20% better virtual performance than native as in
the case of the milc application run with 32 processes. We observed that native
Linux scheduler gives better performance if HT is OFF versus when it is ON
(32-process SPEC MPI applications on the 64 logical threads). We also observed
that many SPEC MPI applications on a native system with 64 processes on a
64 logical core system like the Nehalem-EX system were not gaining much over
the performance of the 32-process run. Hence we sized the VM with 32 vCPUs
(because there were 32 physical cores in the system). Also typically in HPC
applications, processes/threads are spawned based on number of physical cores
rather than logical cores.

Figure [[b) shows the performance gain obtained due to exposing to the
guest OS a virtual NUMA topology matching the machine topology. In this fig-
ure, Default-16 means that vNUMA is disabled (memory is interleaved over the
physical NUMA nodes) and the suffix 16 means that sixteen MPI processes were
spawned within the MPI application, whereas vNUMA-16 means that vNUMA
is enabled (virtual NUMA nodes match physical NUMA nodes). The gain due
to VINUMA for milc were 12.3% and 25% for the 16 and 32 vCPU cases, respec-
tively. Similarly for LU, the gains are 9.3% and 24% for 16 and 32vCPU VMs.
Noticeable gains were also observed for the pop2 and lammps applications.

In order to better understand the trade-offs in performance, we modified the
virtual experiments so that the number of vCPUs configured for a VM is equal to
the number of processes spawned in SPEC MPI applications. Figure 2l(a) shows
the results with the number of vCPUs equal to number of processes.

In Figure 2(a), milc and LU actually lose performance for 4, 8 and 16 rank
runs when compared to results in Figure [[[a). This is because the scheduling
decisions in native and virtual environments were different. For example, in the
native four-process case the Linux scheduler spreads the workload across multiple
sockets, which increases the effective cache size and delivers better performance
for applications that benefit from larger cache sizes. ESXi instead will schedule
the four virtual processors on a single socket for better consolidation and to
increase cache sharing effects. That is the reason why LU’s native to VM ratio
is in between 0.7 and 0.9 for 4, 8 and 16vCPU runs. In the light of these results,
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the best practice would be to size your VMs depending on your application’s
cache footprint.

Both Figure[la) and Figure[2(a) show that native suffers performance degra-
dation with HT. To test whether HT is responsible for this degradation, we
disabled HT from the system BIOS. Figure 2(b) shows the native to virtual ra-
tio with HT OFF in both the VM and the native case with vCPU count equal
to 32. The ratio is less than one for almost all cases (expect lammps which is
slightly higher). Given the fact that both native and virtual configurations rep-
resented in Figure 2(b) have same amount of cache, we conclude that the ESXi
scheduler is more optimal than the native scheduler in this case.

Figure [3(a) shows native and virtual scaling of the four applications from the
SPEC MPI V2.0 suite. The suffix ”-N” means native run and ”-V” means virtual
run. In this figure, HT is ON, which explains why virtual numbers are sometimes
better than native, e.g., the 32-process data point.

In the light of the above results, for the virtual runs, HT ON and number of
vCPUs being equal to the physical cores in the system is the best configuration.
We used this configuration for SPEC OMP V3.2 benchmarks in the next section.

4.2 SPEC OMP Results

SPEC OMP applications were evaluated on an HP ProLiant DL.980 G7, with
eight sockets and 512 GB RAM. RHEL 6.0 was used as a native and guest OS
with kernel version 2.6.32-71.el6. All VMs were configured with 128 GB of virtual
RAM. The large data sets were used for all SPEC OMP experiments. Figure[a)
shows the virtualization performance for SPEC OMP V3.2 benchmarks. The
native to virtual runtime ratio was close to one for all applications expect for
equake (four process and 64 process run) and fma3d (4 process run) where
the ratio was greater than one. As was explained earlier, this is because native
scheduling with HT ON is sub-optimal.
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Figure @l(b) shows performance gains due to vNUMA for seven different ap-
plications from the SPEC OMP V3.2 suite.

Strikingly, swim with 16 threads and virtual NUMA performs better than 32
or even 64 threads without virtual NUMA topology! This shows the memory
bandwidth demands of this benchmark are much more critical than the thread
count. With 16 threads the gains on swim from vNUMA are 167%, but with
64 threads the benefit is down to 72%, probably because of saturated memory
bandwidth.
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Art starts with 56% vNUMA gains at 16 threads, and the benefits increase to
71% at 64 threads. Most likely memory bandwidth becomes a bigger bottleneck
at higher thread counts and bandwidth is still available.

Fma3d and Wupwise have a relatively constant gain from vNUMA at different
thread counts respectively 17% and 30% where both peak at 32 threads. Given
that the increased memory bandwidth demand of higher number of threads
doesn’t affect performance, these applications are probably latency-sensitive but
not bandwidth-sensitive. Our hypothesis is that instead of 12.5% locality when
using 8 sockets, the lower latency for accessing up to 100% local memory is the
main reason for these gains.

Applu and Equake gain significantly at 16-threads respectively 114% and 30%,
but at 64-threads the vNUMA gains drop to 2% and 5%. This implies that ini-
tially memory bandwidth was the biggest bottleneck but new bottlenecks emerge
at higher thread counts. Little gain in Apsi was observed probably because of a
smaller memory bandwidth demand.

Overall at 64 threads two applications get more than 70% gains from vINUMA,
and the geometric mean of the performance gains over all applications is 25%.
All applications achieve their best performance at 64 threads but don’t scale
equally well.

Figure Bi(b) shows native and virtual scaling for the seven applications. All
applications show similar trends for virtual and native scaling. Some virtual and
scaling data points were not close due to the difference in HT scheduling. One
important point to note here is that Apsi, Swim and Equake are not scaling as
nicely as other applications beyond 16 threads. Evaluating a multi-VM scenario
on a single host as well on a cluster of hosts will be covered in future work.

5 Conclusion

We demonstrated that HPC workloads on VMware’s virtualization platform
achieve close to native performance (in some cases even 20% better than na-
tive) with applications from SPEC MPI and SPEC OMP benchmarks. We eval-
uated the new features in VMware’s ESXi Server that significantly enhance the
performance and scalability of HPC workloads.

Exposing a virtual NUMA topology that closely matches the physical host
topology is a major feature, bridging the gap between native and virtual per-
formance for VMs with large memory and high vCPUs counts. Gains of up to
2.67x were observed.

Virtual machines with up to 64 virtual CPUs now achieve their best perfor-
mance when a virtual NUMA topology is exposed to guest operating systems.
This allows operating systems and applications to make intelligent decisions
about memory allocation and process/thread placement. We discussed the fea-
tures required for a production system that exposes virtual NUMA topology. We
preserve the now-expected virtualization benefits of portability and load balanc-
ing both within a host and a cluster, yet with with minimal overhead for a
single VM.
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