
Enhancing an Autonomic Cloud Architecture

with Mobile Agents�

A. Cuomo1, M. Rak2, S. Venticinque2, and U. Villano1

1 Università del Sannio, Benevento, Italy
{antonio.cuomo,villano}@unisannio.it

2 Seconda Università di Napoli, Aversa (CE), Italy
{massimiliano.rak,salvatore.venticinque}@unina2.it

Abstract. In cloud environments application scheduling, i.e., the match-
ing of applications with the resources they need to be executed, is a hot
research topic. Autonomic computing provides viable solutions to imple-
ment robust architectures that are enough flexible to tackle scheduling
problems. CHASE is a framework based on an autonomic engine, designed
to optimize resource management in clouds, grids or hybrid cloud-grid
environments. Its optimizations are based on real-time knowledge of the
status of managed resources. This requires continuous monitoring, which
is difficult to be carried out in distributed and rapidly-changing environ-
ments as clouds. This paper presents a monitoring system to support
autonomicity based on the mobile agents computing paradigm.

1 Introduction

Cloud computing [15] is evolving at a steady pace, putting itself forward as a
convenient way for structuring and deploying applications and infrastructures
both in the commercial and in the academic world. The crosscutting nature
of the cloud paradigm (“everything as a service”) has promoted its diffusion
into many different areas of computer engineering, ranging from applications
(Software-as-a-Service) to development platforms (Platform-as-a-Service) to the
provisioning of basic computing resources as processing units, storage and net-
works (Infrastructure-as-a-Service). It could be argued that the very basic con-
cept of “resource”, whether it is a piece of software, a developing platform or
a hardware component, has changed due to the use of resource virtualization,
the driving technological force behind the cloud paradigm. Virtualization of
resources brings new opportunities (e.g., the acquisition of virtually infinite com-
puting elements) which are partly balanced by new issues and challenges (assess-
ing the effect of virtualization on system performance, extracting information on
the physical resources “hidden” behind a virtual interface, . . . ).

� The work described in this paper has been partially supported by the MIUR-PRIN
2008 project “Cloud@Home: a New Enhanced Computing Paradigm” and by the
FP7-ICT-2009-5-256910 (mOSAIC) EU project.

M. Alexander et al. (Eds.): Euro-Par 2011 Workshops, Part I, LNCS 7155, pp. 94–103, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Enhancing an Autonomic Cloud Architecture with Mobile Agents 95

In the HPC context the current trend is the integration of grids and clouds
into unified architectures [9,11,2,17]. To this aim, we have recently proposed
cloudgrid, a novel architecture for the integration of clouds and grids, and de-
veloped its implementation, PerfCloud [13,4]. Among other things, PerfCloud
makes it possible to set up a cloud-based provision of computing resources
taken from an existing grid. The leased virtual resources are usually organized
in virtual clusters, which are automatically integrated in the underlying
grid [4].

One of the main open issues in hybrid cloud-grid architectures is application
scheduling, that is, the matching of applications to the resources they need to be
executed. There exists a wide and consolidated body of literature dealing with
the scheduling of applications in grids, which is a complex problem by itself. But,
nowadays, schedulers should also address the highly dynamic nature of hybrid
cloud-grid architectures.

We are currently working on a scheduler which leverages the principles of
autonomic computing to add self-optimization capabilities to hybrid cloud/grid
architectures [18]. Autonomic computing [10] has emerged as a paradigm able
to cope with complex and rapidly-mutable environments. Currently, high re-
search effort is directed to investigate how to design cloud and grid environ-
ments endowed with autonomic management capabilities [3,11,16]. CHASE, our
prototype implementation of autonomic engine, has been designed to tackle the
scheduling problem in PerfCloud. However, its design is not tied to the architec-
ture of a cloudgrid, but it is sufficiently general to be integrated with any cloud,
grid or hybrid cloud-grid environment.

This paper takes a further step towards the definition of an autonomic cloud
architecture by showing how some common tasks which are required in this
architecture, namely system configuration mining and monitoring may be eas-
ily achieved by employing mobile agents. Mobile agents are the last evolution of
mobile code-based systems. They add mobility to the well-known and largely ap-
preciated features of ordinary software agents systems, such as reactivity, proac-
tivity, communication and social ability. In essence, a mobile agent is a program,
which is able to migrate across the network bringing over its own code and exe-
cution state. To support our autonomic architecture, a set of specialized agents
has been devised that can extract information about the system configuration
and perform monitoring tasks.

The rest of the paper is organized as follows. First of all, a synthetic overview
of the architecture of CHASE, originally presented in [18], is given, focusing
on the requirements for extracting system information and monitoring. Then
the mobile agent platform is presented, showing how it can satisfy these re-
quirements. A concrete use case is dealt with in section 4. After a presentation
of related work, the paper closes with our final considerations and a sketch of
future work.



96 A. Cuomo et al.

2 An Autonomic Engine for Managing Clouds

The CHASE architecture (Figure 1) has been described in [18]. At its core, it
is a resource manager whose choices are driven by the predictive evaluation of
the application performance for different possible resource assignment scenar-
ios. Performance predictions are obtained by simulation of the application for a
given resource assignment by means of a discrete-event simulator which acts on
the basis of information both static (essentially, the system configuration) and
dynamic (system load).

Fig. 1. CHASE architecture

The engine is designed as an autonomic manager capable of controlling dif-
ferent elements as clouds or grids. Figure 1 shows the logical mapping from the
CHASE components to the corresponding autonomic building blocks described
in [10]. The Input to the autonomic engine consists of an Application Descrip-
tion, which is a synthetic representation of the application behavior used for
driving the simulations, and one or more Autonomic Performance Parameters,
which can be application performance goals, or constraints on the selection of
the resources. The input section is more thoroughly described in [18].

The architectural building blocks are:

– Planning, consisting of the Optimization Unit (OU). This is the “smart”
component of the architecture. It selects a minimal set of possible resource
assignments that have to be simulated in order to find the best one.



Enhancing an Autonomic Cloud Architecture with Mobile Agents 97

– Analysis, which is the component capable of performing system evaluation.
For a given system configuration, the performance prediction is performed by
the Discrete-event Simulator. This is a Java-based prototype that represents
the evolution of our previous heterogeneous system simulator, HeSSE [14].

– Knowledge, the module responsible for obtaining information about the
configuration of the controlled system. We will generally call such informa-
tion resource metadata. The Knowledge module is implemented by the Sys-
tem Information Unit. Subsection 2.1 introduces the requirements for this
module, whereas the next section introduces the proposed solution based on
mobile agents.

– Monitor, which is implemented by a monitoring unit responsible for obtain-
ing dynamic information about the system. The unit can possibly generate
alerts when failures or degradations that may cause violations of performance
contracts have occurred or are about to occur, thus making it possibly to
apply countermeasures.

– Execute. The Execute module, implemented by the CHASE Controller, is
the system actuator. It is interfaced with the underlying cloud/grid plat-
form, and translates the devised resource assignment plan into actual cloud
resource management commands (e.g., virtual machine creation/start/stop,
application launch/termination).

2.1 Gathering Resource Metadata

To perform the predictions, the autonomic engine needs information about the
the resources of the underlying cloud/grid system. These resource metadata can
be classified in two macro areas: system configurations and system benchmarks
figures. Table 1 reports the current organization of these metadata, as used by
our autonomic system.

System configuration is the set of resource parameters that describe how a
specific element (system, node, network) is configured. This comprises, for exam-
ple, frequencies and microarchitecture for the computing elements or latencies
and bandwidths for the networks.

System benchmark figures are selected measurements of the system. The
outcome of the benchmarks are used to tune the simulator for accurate perfor-
mance prediction.

The main requirements for resource metadata gathering are:

– Flexible Structure. It is not easy, neither desirable, to impose a rigid structure
to the classes of information that must be gathered. As an example, new
hardware may be introduced that has not been taken into account in the
system configuration specification.

– Mining Capabilities. While some cloud/grid systems directly expose resource
metadata, this is not generally true. Even when some metadata are present,
they may be not detailed enough to serve as a basis for configuring the
simulations. After all, the intrinsic goal of a cloud is to hide the complexity



98 A. Cuomo et al.

of the underlying infrastructure. Thus, methods as general as possible must
be devised to extract these information directly from the system.

– Support for Extending the Benchmarks. Defining once and for all which
benchmarks will be supported is not a viable solution. It is widely recog-
nized that no single benchmark can represent how the system will behave
with every possible application. Better benchmarks may be defined later in
time, and the possibility of dynamically changing the measurements to be
performed is of paramount importance.

Table 1. Resource metadata as gathered by the Knowledge Module

System Configuration

Scope Name Description
System No. of nodes Number of nodes that are available to the system
System Networks Available networks (e.g. 10Gb Ethernet, Infiniband)
Node Hypervisor Virtual machine monitor of a node (e.g. Xen, KVM,

VirtualBox, or none for physical nodes)
Node No. of CPU Number of CPUs, number of cores per CPU
Node Amount of memory Amount of main memory, amount and configuration

of cache memories
Node Network interface cards Per-node interfaces to the system networks

System Benchmark Figures

Benchmark Class Description
CPU Raw computational speed benchmarks (includes

FLOPS and MIPS measurements)
Memory Sequential/Random read/write access, cache access

times
Network Includes latency and bandwidth benchmarks
Disk File creation/read/write benchmarks

2.2 Requirements for Monitoring

Static configuration of the resources is just a part of the whole picture: measure-
ments are needed to gain knowledge about the current status of the resources. A
monitoring infrastructure is required to evaluate at least two parameters: system
load and system availability.

System load refers to all the metrics that can be gathered to measure the load
of the different resources (CPUs, networks). These data are fed to the simulator
to contextualize the performance prediction process to a specific system load
(current or future).

System availability comprises data about the liveness of the resources. Peri-
odical checks must be performed to verify that an entire virtual machine or a
single application are still up and running.



Enhancing an Autonomic Cloud Architecture with Mobile Agents 99

3 Introducing Mobile Agents

3.1 The mAGDA Toolset

The mAGDA toolset runs on an agent-enabled cloud composed of one or more
virtual machines, and accessible by a WSRF/REST interface that is available to
all authenticated users. Service binding is statically defined, but service execution
can take place on any nodes belonging to the cloud. An agent-enabled cloud
consists of a mobile agents platform distributed on different virtual machines
which are connected by a real or a virtual network. Figure 2 shows how a client
can use a WSRF/REST stub to invoke agent based services. A software agent,
to be installed on a front-end, acts as a proxy between the WSRF/REST and
agents technology by translating incoming requests into ACL messages (ACL:
Agent Communication Language). Specialized agents are distributed in the cloud
to perform their specific role. An agent platform is composed of Jade containers.
Jade is a FIPA1 compliant agent technology developed in Java. A container is
a peer-to-peer application that supports execution of agents. We will call agent-
node a machine that hosts at least an agent container.

Fig. 2. mAGDA architecture

Any type of agent service can be built on top of this infrastructure: in the
following, the set of agent based services that has been conceived to support
monitoring and management of cloud resources at infrastructure level will be
described. Agents will be in charge of configuring the system, performing mea-
sures, computing statistics, collecting and managing information, detecting crit-
ical situation and applying reactions according to the decisions notified by the
CHASE autonomic engine.

1 Foundation of Intelligent Physical Agents, www.fipa.org

www.fipa.org


100 A. Cuomo et al.

3.2 Supporting the Knowledge Function with mAGDA

The expected output from mAGDA is a profile of the cloud that is composed of
a static and a dynamic part. The static part corresponds to resource metadata,
as described in section 2.1. It includes information about what are the available
resources, how they are connected and their qualitative and quantitative tech-
nological parameters. An example could be a virtual machine with 2 dual core
x64 CPUs, a given amount of memory and storage, a 100Mb/s network con-
nection and a software installation. The knowledge of the available computing
infrastructure is necessary to be aware of the expected application performance
and how the resource can be managed optimally. When this information is not
made available by the infrastructure, it can be collected by sending agents on the
target resource, at start-up or in course of its operation. mAGDA mobile agents
can also carry with them benchmark codes, which are executed on the target
resource producing benchmark figures which are collected in the cloud profile.
The profile also includes information about the configuration of the monitor-
ing infrastructure, as the number of agents, the monitored resources, the active
statistics and the controlled performance indexes.

3.3 Supporting the Monitoring Function with mAGDA

Besides the static configuration, mAGDA has to provide a dynamic knowledge
about the actual usage of resources. The dynamic part of the cloud profile is up-
dated during the monitoring activity, whose requirements have been described
in section 2.2. The monitoring data is composed of statistics of performance
parameters which are periodically measured by dedicated agents. To support
autonomic behavior, the choice of performance parameters and statistics to be
gathered is not fixed, but can be tailored with the configuration of the agent.
The monitoring service of mAGDA has been designed as a multi-agent sys-
tem that distributes tasks among specialized agents. It contemplates both static
and mobile agents: the former are responsible for performing complex reasoning
on the knowledge base, so they are statically executed where the data reside;
the latter usually need to move to the target resources in order to perform lo-
cal measurements or to get system information. The Archiver is a static agent
that configures the monitoring infrastructure, collects and stores measurements,
computes statistics. According to the parameters to be monitored, the kind of
measurement and the provider technology, the archiver starts different Meters,
which are implemented as mobile agents that the Archiver can dispatch where
it needs. Observers periodically check a set of rules to detect critical situations.
They query the Archiver to know about the statistics and eventually notify ap-
plications if some checks have failed. Applications can use a Agent-bus service to
subscribe themselves for being alerted about each detected event. They can also
invoke mAGDA services to start, stop or reconfigure the monitoring infrastruc-
ture. Finally, applications can access the complete knowledge base to retrieve
information about cloud configuration, monitoring configuration, statistics and
the history of past failed checks.



Enhancing an Autonomic Cloud Architecture with Mobile Agents 101

4 An Example Use Case: The Cloud@Home System

Cloud@Home [5] is a project, funded by the Italian Government, which aims at
merging the cloud and volunteer computing paradigms. Cloud@Home collects
infrastructure resources from many different resource providers and offers them
through a uniform interface, with an Infrastructure as a Service (IaaS) model.
The resource providers can range from commercial cloud providers to academic
partners, or even to individually volunteered desktop machines. Cloud@Home
gives great emphasis to the management of Service Level Agreements (SLAs)
and Quality of Service (QoS), and provides dedicated components for these
tasks. Through these components, Cloud@Home is capable of performing virtual
machine creation on the resource it manages, possibly governed by a resource-
oriented Service Level Agreement. CHASE and mAGDA have been designed to
enrich the Cloud@Home system with application-oriented performance predic-
tion capabilities and a monitoring infrastructure. A prototype implementation
has been realized to verify the effectiveness of the approach. In the prototype sce-
nario, a Cloud@Home installation has been deployed on two academic clusters,
PoweRcost and Vega, respectively placed at University of Sannio and Second
University of Naples. As a test case, CHASE had to provide an application
scheduling for a well-known HPC code, the NAS/MPI 2.4 LU Benchmark, on
the IaaS cloud provided by Cloud@Home. This cloud was composed of 8 virtual
machines which had been previously obtained from the system. The scheduling
goal was the minimization of execution time. The engine workflow went on as
described in the following:

1. Input - The performance goal, together with an application description, is
fed to the CHASE engine.

2. Knowledge - CHASE instructs mAGDA to launch mobile agents on the C@H
virtual machines to recover system configuration. The agents recover infor-
mation about the structure of the nodes and the network and launch bench-
marks to obtain performance data. Most of this information does not vary
between executions and is thus stored to allow immediate retrieval in future
application requests.

3. Monitoring - CHASE instructs mAGDA to launch mobile monitoring agents
on every virtual machines. The agents periodically report information about
system load and availability.

4. Planning - CHASE begins selecting possible variations of resource assign-
ments that have to be simulated. Techniques to reduce the number of con-
figurations have been described in [18].

5. Analysis- Every chosen configuration, together with system load data, is fed
to the simulator, which reports predicted execution time to the engine.

6. Planning - The planning unit compares the predictions and chooses the best
configuration.

7. Execute - The engine schedules the launch of the application on the selected
resources.

The correct minimized execution time was selected: results of these execution
have been reported in [18].



102 A. Cuomo et al.

5 Related Work

A wide body of literature deals with resource management in physical grids [12].
The resource provisioning problem in virtualized systems has been tackled in
the Shirako system from Duke University [8] and in the Haizea architecture from
University of Chicago/Argonne National Laboratory [19]. Both systems hinge on
the concept of leases, contracts that define which resources are assigned to users
and the duration of these assignments. Compared to these solutions, our engine
presents an application centric perspective, where the user has not to provide
direct resource requests, but can express his needs in terms of desired application
performance. An approach more similar to the CHASE one is used in AppLeS [1],
a methodology for adaptive application scheduling on physical Grids. In AppLeS,
applications are associated with a customized scheduling agent that monitors and
predicts available resource performance an dynamically generates a schedule for
the application. Some previous work has been done on the application of mobile
code to monitoring and management of resources, mainly in the grid context
[20,7]. Few applications of mobile agents to cloud systems are starting to spread,
most of which tackle issues different than the ones covered here, like intrusion
detection [6] and cloud federation [21].

6 Conclusions

In this paper we have shown how some key parts of an autonomic system can be
implemented through the use of mobile agents. These enhancements have been
applied to CHASE, an autonomic engine for the development of self-optimizing
applications in cloud environments. Two key functions in the CHASE architec-
ture are system configuration mining and resource monitoring. These have been
implemented through mAGDA, a mobile agent based platform. A prototypal use
case has been developed on the Cloud@Home platform. Future work will focus
on testing the engine on a larger set of real applications and cloud platforms.

References

1. Berman, F., Wolski, R., Casanova, H., Cirne, W., Dail, H., Faerman, M., Figueira,
S., Hayes, J., Obertelli, G., Schopf, J., et al.: Adaptive computing on the grid using
AppLeS. IEEE Transactions on Parallel and Distributed Systems 14(4), 369–382
(2003)

2. Blanco, C., Huedo, E., Montero, R., Llorente, I.: Dynamic provision of computing
resources from grid infrastructures and cloud providers. In: Proceedings of the 2009
Workshops at the Grid and Pervasive Computing Conference, pp. 113–120. IEEE
Computer Society (2009)

3. Brandic, I.: Towards self-manageable cloud services. In: 33rd Annual IEEE Inter-
national Computer Software and Applications Conference, pp. 128–133 (2009)

4. Casola, V., Cuomo, A., Rak, M., Villano, U.: The CloudGrid approach: Security
and performance analysis and evaluation. Future Generation Computer Systems
(to be published, 2012), special section: Quality of Service in Grid and Cloud
Computing



Enhancing an Autonomic Cloud Architecture with Mobile Agents 103

5. Cuomo, A., Di Modica, G., Distefano, S., Rak, M., Vecchio, A.: The Cloud@Home
Architecture - Building a Cloud infrastructure from volunteered resources. In:
CLOSER 2011, The First International Conference on Cloud Computing and
Service Science, Noordwojkerhout, The Netherlands, May 7-9 (2011)

6. Dastjerdi, A.V., Bakar, K.A., Tabatabaei, S.: Distributed intrusion detection in
clouds using mobile agents. In: 2009 Third International Conference on Advanced
Engineering Computing and Applications in Sciences, pp. 175–180. IEEE (2009)

7. Di Martino, B., Rana, O.F.: Grid performance and resource management using
mobile agents. In: Performance Analysis and Grid Computing, pp. 251–263. Kluwer
Academic Publishers, Norwell (2004)

8. Grit, L., Irwin, D., Yumerefendi, A., Chase, J.: Virtual machine hosting for net-
worked clusters: Building the foundations for autonomic orchestration. In: Proceed-
ings of the 2nd International Workshop on Virtualization Technology in Distributed
Computing, p. 7. IEEE Computer Society (2006)

9. Keahey, K., Foster, I.T., Freeman, T., Zhang, X.: Virtual workspaces: Achieving
quality of service and quality of life in the grid. Scient. Progr. 13(4), 265–275 (2005)

10. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

11. Kim, H., et al.: An autonomic approach to integrated hpc grid and cloud usage. In:
2009 Fifth IEEE International Conference on e-Science, pp. 366–373. IEEE (2009)

12. Krauter, K., Buyya, R., Maheswaran, M.: A taxonomy and survey of grid resource
management systems for distributed computing. Software: Practice and Experi-
ence 32(2), 135–164 (2002)

13. Mancini, E.P., Rak, M., Villano, U.: Perfcloud: Grid services for performance-
oriented development of cloud computing applications. In: WETICE, pp. 201–206
(2009)

14. Mazzocca, N., Rak, M., Villano, U.: The Transition from a PVM Program Simu-
lator to a Heterogeneous System Simulator: The HeSSE Project. In: Dongarra, J.,
Kacsuk, P., Podhorszki, N. (eds.) PVM/MPI 2000. LNCS, vol. 1908, pp. 266–273.
Springer, Heidelberg (2000)

15. Mell, P., Grance, T.: The nist definition of cloud computing (2009)
16. Murphy, M.A., Abraham, L., Fenn, M., Goasguen, S.: Autonomic clouds on the

grid. Journal of Grid Computing 8(1), 1–18 (2010)
17. Ostermann, S., Prodan, R., Fahringer, T.: Resource Management for Hybrid Grid

and Cloud Computing. Computer Communications, 179–194 (2010)
18. Rak, M., Cuomo, A., Villano, U.: CHASE: an Autonomic Service Engine for Cloud

Environments. In: WETICE 2011 - 20th IEEE International Conference on Col-
laboration Technologies and Infrastructures. pp. 116–121. IEEE (2011)

19. Sotomayor, B., Keahey, K., Foster, I.: Combining batch execution and leasing using
virtual machines. In: Proceedings of the 17th International Symposium on High
Performance Distributed Computing. pp. 87–96. ACM (2008)

20. Tomarchio, O., Vita, L.: On the use of mobile code technology for monitoring grid
system. In: CCGRID 2001: Proceedings of the 1st International Symposium on
Cluster Computing and the Grid, p. 450. IEEE Computer Society, Washington,
DC (2001)

21. Zhang, Z., Zhang, X.: Realization of open cloud computing federation based on
mobile agent. In: IEEE International Conference on Intelligent Computing and
Intelligent Systems, ICIS 2009, vol. 3, pp. 642–646. IEEE (2009)


	Enhancing an Autonomic Cloud Architecture 
with Mobile Agents
	Introduction
	An Autonomic Engine for Managing Clouds
	Gathering Resource Metadata
	Requirements for Monitoring

	Introducing Mobile Agents
	The mAGDA Toolset
	Supporting the Knowledge Function with mAGDA
	Supporting the Monitoring Function with mAGDA

	An Example Use Case: The Cloud@Home System
	Related Work
	Conclusions
	References





