
Efficient Zero-Knowledge Argument
for Correctness of a Shuffle

Stephanie Bayer and Jens Groth�

University College London
{s.bayer,j.groth}@cs.ucl.ac.uk

Abstract. Mix-nets are used in e-voting schemes and other applications that re-
quire anonymity. Shuffles of homomorphic encryptions are often used in the con-
struction of mix-nets. A shuffle permutes and re-encrypts a set of ciphertexts, but
as the plaintexts are encrypted it is not possible to verify directly whether the
shuffle operation was done correctly or not. Therefore, to prove the correctness
of a shuffle it is often necessary to use zero-knowledge arguments.

We propose an honest verifier zero-knowledge argument for the correctness
of a shuffle of homomorphic encryptions. The suggested argument has sublinear
communication complexity that is much smaller than the size of the shuffle itself.
In addition the suggested argument matches the lowest computation cost for the
verifier compared to previous work and also has an efficient prover. As a result
our scheme is significantly more efficient than previous zero-knowledge schemes
in literature.

We give performance measures from an implementation where the correctness
of a shuffle of 100,000 ElGamal ciphertexts is proved and verified in around 2
minutes.

Keywords: Shuffle, zero-knowledge, ElGamal encryption, mix-net, voting,
anonymous broadcast.

1 Introduction

A mix-net [4] is a multi-party protocol which is used in e-voting or other applications
which require anonymity. It allows a group of senders to input a number of encrypted
messages to the mix-net, which then outputs the messages in random order. It is com-
mon to construct mix-nets from shuffles.

Informally, a shuffle of ciphertexts C1, . . . , CN is a set of ciphertexts C′
1, . . . , C

′
N

with the same plaintexts in permuted order. In our work we will examine shuffle proto-
cols constructed from homomorphic encryption schemes. That means for a given pub-
lic key pk, messages M1,M2, and randomness ρ1, ρ2 the encryption function satisfies
Epk(M1M2; ρ1 + ρ2) = Epk(M1; ρ1)Epk(M2; ρ2). Thus, we may construct a shuffle
of C1, . . . , CN by selecting a permutation π ∈ ΣN and randomizers ρ1, . . . ρN , and
calculating C′

1 = Cπ(1)Epk(1; ρ1), . . . , C′
N = Cπ(N)Epk(1; ρN ).

A common construction of mix-nets is to let the mix-servers take turns in shuffling
the ciphertexts. If the encryption scheme is semantically secure the shuffle C′

1, . . . , C
′
N
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output by a mix-server does not reveal the permutation or the messages. But this also
means that a malicious mix-server in the mix-net could substitute some of the cipher-
texts without being detected. In a voting protocol, it could for instance replace all
ciphertexts with encrypted votes for candidate X. Therefore, our goal is to construct
an interactive zero-knowledge argument that makes it possible to verify that the shuf-
fle was done correctly (soundness), but reveals nothing about the permutation or the
randomizers used (zero-knowledge).

Efficiency is a major concern in arguments for the correctness of a shuffle. In large
elections it is realistic to end up shuffling millions of votes. This places considerable
strain on the performance of the zero-knowledge argument both in terms of communi-
cation and computation. We will construct an honest verifier zero-knowledge argument
for correctness of a shuffle that is highly efficient both in terms of communication and
computation.

1.1 Related Work

The idea of a shuffle was introduced by Chaum [4] but he didn’t give any method to
guarantee the correctness. Many suggestions had been made how to build mix-nets or
prove the correctness of a shuffle since then, but many of these approaches have been
partially or fully broken, and the remaining schemes sometimes suffer from other draw-
backs. None of these drawbacks are suffered by the shuffle scheme of Wikström [27]
and approaches based on zero-knowledge arguments. Since zero-knowledge arguments
achieve better efficiency they will be the focus of our paper.

Early contributions using zero-knowledge arguments were made by Sako and
Killian [23], and Abe [1–3]. Furukawa and Sako [10] and Neff [20, 21] proposed the
first shuffle arguments for ElGamal encryption with a complexity that depends linearly
on the number of ciphertexts.

Furukawa and Sako’s approach is based on permutation matrices and has been re-
fined further [7, 16]. Furukawa, Miyachi, Mori, Obana, and Sako [8] presented an im-
plementation of a shuffle argument based on permutation matrices and tested it on mix-
nets handling 100,000 ElGamal ciphertexts. Recently, Furukawa and Sako [9] have re-
ported on another implementation based on elliptic curve groups.

Wikström [28] also used the idea of permutation matrices and suggested a shuffle
argument which splits in an offline and online phase. Furthermore, Terelius and Wik-
ström [25] constructed conceptually simple shuffle arguments that allowed the restric-
tion of the shuffles to certain classes of permutations. Both protocols are implemented
in the Verificatum mix-net library [29].

Neff’s approach [20] is based on the invariance of polynomials under permutation
of the roots. This idea was picked up by Groth who suggested a perfect honest verifier
zero-knowledge protocol [14]. Later Groth and Ishai [15] proposed the first shuffle ar-
gument where the communication complexity is sublinear in the number of ciphertexts.

1.2 Our Contribution

Results. We propose a practical efficient honest verifier zero-knowledge argument for
the correctness of a shuffle. Our argument is very efficient; in particular we drastically
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decrease the communication complexity compared to previous shuffle arguments. We
cover the case of shuffles of ElGamal ciphertexts but it is possible to adapt our argument
to other homomorphic cryptosystems as well.

Our argument has sublinear communication complexity. When shuffling N cipher-
texts, arranged in an m× n matrix, our argument transmits O(m + n) group elements
giving a minimal communication complexity of O(

√
N) if we choose m = n. In com-

parison, Groth and Ishai’s argument [15] communicatesΘ(m2+n) group elements and
all other state of the art shuffle arguments communicate Θ(N) elements.

The disadvantage of Groth and Ishai’s argument compared to the schemes with lin-
ear communication was that the prover’s computational complexity was on the order of
O(Nm) exponentiations. It was therefore only possible to choose small m. In compar-
ison, our prover’s computational complexity is O(N logm) exponentiations for con-
stant round arguments and O(N) exponentiations if we allow a logarithmic number of
rounds. In practice, we do not need to increase the round complexity until m gets quite
large, so the speedup in the prover’s computation is significant compared to Groth and
Ishai’s work and is comparable to the complexity seen in arguments with linear commu-
nication. Moreover, the verifier is fast in our argument making the entire process very
light from the verifier’s point of view.

In Sect. 6 we report on an implementation of our shuffle argument using shuffles
of 100,000 ElGamal ciphertexts. We compare this implementation on the parameter
setting for ElGamal encryption used in [8] and find significant improvements in both
communication and computation. We also compare our implementation to the shuffle
argument in the Verificatum mix-net [29] and find significant improvements in commu-
nication and moderate improvements in computation.

New Techniques. Groth [13] proposed efficient sublinear size arguments to be used
in connection with linear algebra over a finite field. We combine these techniques
with Groth and Ishai’s sublinear size shuffle argument. The main problem in apply-
ing Groth’s techniques to shuffling is that they were designed for use in finite fields and
not for use with group elements or ciphertexts. It turns out though that the operations are
mostly linear and therefore it is possible to carry them out “in the exponent”; somewhat
similar to what is often done in threshold cryptography. Using this adaptation we are
able to construct an efficient multi-exponentiation argument that a ciphertext C is the
product of a set of known ciphertexts C1, . . . , CN raised to a set of hidden committed
values a1, . . . , aN . This is the main bottleneck in our shuffle argument and therefore
gives us a significant performance improvement.

Groth’s sublinear size zero-knowledge arguments also suffered from a performance
bottleneck in the prover’s computation. At some juncture it is necessary to compute the
sums of the diagonal strips in a product of two matrices. This problem is made even
worse in our setting because when working with group elements we have to compute
these sums in the exponents. By adapting techniques for polynomial multiplication such
as Toom-Cook [5, 26] and the Fast Fourier Transform [6] we are able to reduce this
computation. Moreover, we generalize the interactive technique of Groth [13] to further
reduce the prover’s computation.
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2 Preliminaries

We use vector notation in the paper, and we write xy = (x1y1, . . . , xnyn) for the entry-
wise product and correspondingly xz = (xz

1, . . . , x
z
n) for vectors of group elements.

Similar, we write xπ if the entries of vector x are permuted by the permutation π, i.e.,
xπ = (xπ(1), . . . , xπ(n)). We use the standard inner product x · y =

∑n
i=1 xiyi for

vectors of field elements .
Our shuffle argument is constructed with homomorphic encryption. An en-

cryption scheme is homomorphic if for a public key pk, messages M1,M2,
and randomness ρ1, ρ2 the encryption function satisfies Epk(M1M2; ρ1 + ρ2) =
Epk(M1; ρ1)Epk(M2; ρ2). We will focus on ElGamal encryption, but our construc-
tion works with many different homomorphic encryption schemes where the mes-
sage space has large prime order q. To simplify the presentation, we will use notation
from linear algebra. We define Ca =

∏n
i=1 C

ai

i for vectors (C1, . . . , Cn) ∈ H
n and

(a1, . . . , an)
T ∈ Z

n
q , where H is the ciphertext space.

Likewise, we need a homomorphic commitment scheme in our protocol. Again in-
formally, a commitment scheme is homomorphic if for a commitment key ck, messages
a, b, and randomizers r, s it holds that comck(a+ b; r + s) = comck(a; r)comck(b; s).
We also demand that it is possible to commit to n elements in Zq , where q is a large
prime, at the same time. I.e., given a vector (a1, . . . , an)T ∈ Z

n
q we can compute a

single short commitment c = comck(a; r) ∈ G, where G is the commitment space.
The length-reducing property of the commitment scheme mapping n elements to a sin-
gle commitment is what allows us to get sublinear communication complexity. Many
homomorphic commitment schemes with this property can be used, but for conve-
nience we just focus on a generalization of the Pedersen commitment scheme [22].
To simplify notation, we write cA = comck(A; r) for the vector (cA1 , . . . , cAm) =
(comck(a1; r1), . . . , comck(am; rm) when A is a matrix with column vectors
a1, . . . ,am.

2.1 Special Honest Verifier Zero-Knowledge Argument of Knowledge

In the shuffle arguments we consider a proverP and a verifier V both of which are prob-
abilistic polynomial time interactive algorithms. We assume the existence of a prob-
abilistic polynomial time setup algorithm G that when given a security parameter λ
returns a common reference string σ.

The common reference string will be σ = (pk, ck), where pk and ck are public
keys for the ElGamal encryption scheme and the generalized Pedersen commitment
scheme. The encryption scheme and the commitment scheme may use different under-
lying groups, but we require that they have the same prime order q. We will write G for
the group used by the commitment scheme and write H for the ciphertext space.

The setup algorithm can also return some side-information that may be used by an
adversary; however, we require that even with this side-information the commitment
scheme should remain computationally binding. The side-information models that the
keys may be set up using some multi-party computation protocol that leaks some infor-
mation, the adversary may see some decryptions or even learn the decryption key, etc.
Our protocol for verifying the correctness of a shuffle is secure in the presence of such
leaks as long as the commitment scheme is computationally binding.
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Let R be a polynomial time decidable ternary relation, we call w a witness for a
statement x if (σ, x, w) ∈ R. We define the language

Lσ := {x | ∃w : (σ, x, w) ∈ R}

as the set of statements x that have a witness w for the relation R.
The public transcript produced by P and V when interacting on inputs s and t is

denoted by tr ← 〈P(s),V(t)〉. The last part of the transcript is either accept or reject
from the verifier. We write 〈P(s),V(t)〉 = b, b ∈ {0, 1} for rejection or acceptance.

Definition 1 (Argument). The triple (G,P ,V) is called an argument for a relation R
with perfect completeness if for all non-uniform polynomial time interactive adversaries
A we have:
Perfect completeness:

Pr[(σ, hist)← G(1λ); (x,w)← A(σ, hist) : (σ, x, w) �∈ R or 〈P(σ, x, w),V(σ, x)〉 = 1] = 1

Computational soundness:

Pr[(σ, hist)← G(1λ);x← A(σ, hist) : x �∈ Lσ and 〈A,V(σ, x)〉 = 1] ≈ 0

Definition 2 (Public coin). An argument (G,P ,V) is called public coin if the verifier
chooses his messages uniformly at random and independently of the messages sent by
the prover, i.e., the challenges correspond to the verifier’s randomness ρ.

Definition 3 (Special honest verifier zero-knowledge). A public coin argument (G,P ,
V) is called a perfect special honest verifier zero knowledge (SHVZK) argument for R
with common reference string generator G if there exists a probabilistic polynomial time
simulator S such that for all non-uniform polynomial time interactive adversariesA we
have

Pr[(σ, hist)← G(1λ); (x,w, ρ)← A(σ, hist);
tr← 〈P(σ, x, w),V(σ, x; ρ)〉 : (σ, x, w) ∈ R andA(tr) = 1]

= Pr[(σ, hist)← G(1λ); (x,w, ρ)← A(σ, hist);
tr← S(σ, x, ρ) : (σ, x, w) ∈ R andA(tr) = 1]

To construct a fully zero-knowledge argument secure against arbitrary verifiers in the
common reference string model one can first construct a SHVZK argument and then
convert it into a fully zero-knowledge argument [11, 12]. This conversion has constant
additive overhead, so it is very efficient and allows us to focus on the simpler problem
of getting SHVZK against honest verifiers.

To define an argument of knowledge we follow the approach of Groth and Ishai [15]
and do it through witness-extended emulation first introduced by Lindell [19]. This
definition informally says that given an adversary that produces an acceptable argument
with some probability, there exist an emulator that produces a similar argument with the
same probability and at the same time provides a witness w.
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Definition 4 (Witness-extended emulation). A public coin argument (G,P ,V) has
witness extended emulation if for all deterministic polynomial time P∗ there exists an
expected polynomial time emulator X such that for all non-uniform polynomial time
interactive adversaries A we have

Pr[(σ, hist)← G(1λ); (x, s)← A(σ, hist); tr ← 〈P∗(σ, x, s),V(σ, x)〉 : A(tr)=1]

≈ Pr[(σ, hist)← G(1λ); (x, s)← A(σ, hist); (tr, w)← X 〈P∗(σ,x,s),V(σ,x)〉(σ, x, ρ) :
A(tr) = 1 and if tr is accepting then (σ, x, w) ∈ R].

In the definition, s can be interpreted as the state of P∗, including the randomness. So
whenever P∗ is able to make a convincing argument when in state s, the emulator can
extract a witness at the same time giving us an argument of knowledge. This definition
automatically implies soundness.

3 Shuffle Argument

We will give an argument of knowledge of a permutation π ∈ ΣN and randomness
{ρi}Ni=1 such that for given ciphertexts {Ci}Ni=1, {C′

i}Ni=1 we haveC′
i=Cπ(i)Epk(1; ρi).

The shuffle argument combines a multi-exponentiation argument, which allows us to
prove that the product of a set of ciphertexts raised to a set of committed exponents
yields a particular ciphertext, and a product argument, which allows us to prove that a
set of committed values has a particular product. The multi-exponentiation argument is
given in Sect. 4 and the product argument is given in Sect. 5. In this section, we will give
an overview of the protocol and explain how a multi-exponentiation argument can be
combined with a product argument to yield an argument for the correctness of a shuffle.

The first step for the prover is to commit to the permutation. This is done by com-
mitting to π(1), . . . , π(N). The prover will now receive a challenge x and commit to
xπ(1), . . . , xπ(N). The prover will give an argument of knowledge of openings of the
commitments to permutations of 1, . . . , N and x1, . . . , xN and demonstrate that the
same permutation has been used in both cases. This means the prover has a commit-
ment to x1, . . . , xN permuted in an order that was fixed before the prover saw x.

To check that the same permutation has been used in both commitments the ver-
ifier sends random challenges y and z. By using the homomorphic properties of the
commitment scheme the prover can in a verifiable manner compute commitments to
d1 − z = yπ(1) + xπ(1) − z, . . . , dN − z = yπ(N) + xπ(N) − z. Using the product
argument from Sect. 5 the prover shows that

∏N
i=1(di − z) =

∏N
i=1(yi+ xi − z). Ob-

serve that we have two identical degree N polynomials in z since the only difference is
that the roots have been permuted. The verifier does not know a priori that the two poly-
nomials are identical but can by the Schwartz-Zippel lemma deduce that the prover has
negligible chance over the choice of z of making a convincing argument unless indeed
there is a permutation π such that d1 = yπ(1)+xπ(1), . . . , dN = yπ(N)+xπ(N). Fur-
thermore, there is negligible probability over the choice of y of this being true unless
the first commitment contains π(1), . . . , π(N) and the second commitment contains
xπ(1), . . . , xπ(N).
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The prover has commitments to xπ(1), . . . , xπ(N) and uses the multi-exponentiation
argument from Sect. 4 to demonstrate that there exists a ρ such that

∏N
i=1 C

xi

i =

Epk(1; ρ)
∏N

i=1(C
′
i)

xπ(i)

. The verifier does not see the committed values and thus does
not learn what the permutation is. However, from the homomorphic properties of the en-
cryption scheme the verifier can deduce

∏N
i=1 M

xi

i =
∏N

i=1(M
′
i)

xπ(i)

for some permu-
tation π that was chosen before the challenge x was sent to the prover. Taking discrete
logarithms we have the polynomial identity

∑N
i=1 log(Mi)x

i =
∑N

i=1 log(M
′
π−1(i))x

i.
There is negligible probability over the choice of x of this equality holding true unless
M ′

1 = Mπ(1), . . . ,M
′
N = Mπ(N). This shows that we have a correct shuffle.

Common reference string: pk, ck.
Statement: C,C′ ∈ H

N with N = mn.
Prover’s witness: π ∈ ΣN and ρ ∈ Z

N
q such that C′ = Epk(1;ρ)Cπ.

Initial message: Pick r ← Z
m
q , set a = {π(i)}Ni=1 and compute cA = comck(a; r).

Send: cA
Challenge: x← Z

∗
q .

Answer Pick s ∈ Z
m
q , set b = {xπ(i)}Ni=1 and compute cB = comck(b; s).

Send: cB
Challenge: y, z ← Z

∗
q .

Answer: Define c−z = comck(−z, . . . ,−z;0) and cD = c y
AcB . Compute d = ya+

b, and t = yr+s. Engage in a product argument as described in Sect. 5 of openings
d1 − z, . . . , dN − z and t such that

cDc−z = comck(d− z; t ) and
N∏

i=1

(di − z) =

N∏

i=1

(yi+ xi − z) .

Compute ρ=−ρ·b and set x=(x, x2, . . . , xN )T . Engage in a multi-exponentiation
argument as described in Sect. 4 of b, s and ρ such that

Cx = Epk(1; ρ)C′b and cB = comck(b; s)

The two arguments can be run in parallel. Furthermore, the multi-exponentiation
argument can be started in round 3 after the computation of the commitments cB .

Verification: The verifier checks cA, cB ∈ G
m and computes c−z, cD as described

above and computes
∏N

i=1(yi+xi− z) and Cx. The verifier accepts if the product
and multi-exponentiation arguments both are valid.

Theorem 5 (Full paper). The protocol is a public coin perfect SHVZK argument of
knowledge of π ∈ ΣN and ρ ∈ Z

N
q such that C′ = Epk(1;ρ)Cπ.

4 Multi-exponentiation Argument

Given ciphertexts C11, . . . , Cmn, and C we will in this section give an argument of
knowledge of openings of commitments cA to A = {aij}n,mi,j=1 such that

C = Epk(1; ρ)
m∏

i=1

C ai

i and cA = comck(A; r) ,

where Ci = (Ci1, . . . , Cin) and aj = (a1j , . . . , anj)
T .
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To explain the idea in the protocol let us for simplicity assume ρ = 0 and the prover
knows the openings of cA, and leave the question of SHVZK for later. In other words,
we will for now just explain how to convince the verifier in a communication-efficient
manner that C =

∏m
i=1 C

ai

i . The prover can calculate the ciphertexts

Ek =
∏

1≤i,j≤m
j=(k−m)+i

C
aj

i ,

where Em = C. To visualize this consider the following matrix

(
a1 . . . am

)

⎛

⎜
⎜
⎜
⎝

C1

C2

...
Cm

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

C a1
1

. . . C am
1

C a1
2

. . . C am
2

. . .
. . .

. . .
. . .

C a1
m

. . . C am
m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

E2m−1

...
Em+1

E1 . . . Em−1 Em

The prover sends the ciphertextsE1, . . . , E2m−1 to the verifier. The ciphertextC = Em

is the product of the main diagonal and the other Ek’s are the products of the other
diagonals. The prover will use a batch-proof to simultaneously convince the verifier
that all the diagonal products give their corresponding Ek.

The verifier selects a challenge x ← Z
∗
q . The prover sets x = (x, x2, . . . , xm)T ,

opens c x
A to a =

∑m
j=1 x

jaj , and the verifier checks

Cxm
2m−1∏

k=1
k �=m

Exk

k =

m∏

i=1

C
(xm−ia)
i .

Since x is chosen at random, the prover has negligible probability of convincing the
verifier unless the xk-related terms match on each side of the equality for all k. In
particular, since a =

∑m
j=1 x

jaj the xm-related terms give us

Cxm

=
m∏

i=1

C

xm−i ∑
1≤j≤m

m=m−i+j

xjaj

i =

(
m∏

i=1

C ai

i

)xm

and allow the verifier to conclude C =
∏m

i=1 C
ai

i .
Finally, to make the argument honest verifier zero-knowledge we have to avoid leak-

ing information about the exponent vectors a1, . . . ,am. The prover therefore com-
mits to a random vector a0 ← Z

n
q and after she sees the challenge x she reveals

a = a0 +
∑m

j=1 x
jaj . Since a0 is chosen at random this vector does not leak any

information about the exponents.
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Another possible source of leakage is the products of the diagonals. The prover will
therefore randomize each Ek by multiplying it with a random ciphertext Epk(Gbk ; τk).
Now each Ek is a uniformly random group element in H and will therefore not leak
information about the exponents. Of course, this would make it possible to encrypt
anything in the Ek and allow cheating. To get around this problem the prover has to
commit to the bk’s used in the random encryptions and the verifier will check that the
prover uses bm = 0. The full argument that also covers the case ρ �= 0 can be found
below.

Common reference string: pk, ck.
Statement: C1, . . . ,Cm ∈ H

n , C ∈ H, and cA ∈ G
m

Prover’s witness: A = {aj}mj=1 ∈ Z
n×m
q , r ∈ Z

m
q , and ρ ∈ Zq such that

C = Epk(1; ρ)
m∏

i=1

C ai

i and cA = comck(A; r)

Initial message: Pick a0 ← Z
n
q , r0 ← Zq , and b0, s0, τ0 . . . , b2m−1, s2m−1, τ2m−1 ←

Zq and set bm = 0, sm = 0, τm = ρ. Compute for k = 0, . . . , 2m− 1

cA0 = comck(a0; r0) , cBk
= comck(bk; sk) , Ek = Epk(Gbk ; τk)

m,m∏

i=1,j=0
j=(k−m)+i

C
aj

i

Send: cA0 , {cBk
}2m−1
k=0 , {Ek}2m−1

k=0 .
Challenge: x← Z

∗
q .

Answer: Set x = (x, x2, . . . , xm)T and compute

a = a0 +Ax r = r0 + r · x b = b0 +

2m−1∑

k=1

bkx
k

s = s0 +

2m−1∑

k=1

skx
k τ = τ0 +

2m−1∑

k=1

τkx
k .

Send: a, r, b, s, τ .
Verification: Check cA0 , cB0 , . . . , cB2m−1 ∈ G, and E0, . . . , E2m−1 ∈ H, and a ∈

Z
n
q , and r, b, s, τ ∈ Zq , and accept if cBm = comck(0; 0) and Em = C, and

cA0c
x
A = comck(a; r) cB0

2m−1∏

k=1

cx
k

Bk
= comck(b; s)

E0

2m−1∏

k=1

Exk

k = Epk(Gb; τ)

m∏

i=1

C xm−ia
i .
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Theorem 6 (Full paper). The protocol above is a public coin perfect SHVZK ar-
gument of knowledge of openings a1, . . . ,am, r and randomness ρ such that C =
Epk(1; ρ)

∏m
i=1 C

ai

i .

4.1 The Prover’s Computation

The argument we just described has efficient verification and very low communication
complexity, but the prover has to compute

E0, . . . , E2m−1 .

In this section we will for clarity ignore the randomization needed to get honest verifier
zero-knowledge, which can be added in a straightforward manner at little extra compu-
tational cost. So let us say we need to compute for k = 1, . . . , 2m− 1 the elements

Ek =

m,m∏

i=1,j=1
j=(k−m)+i

C
aj

i .

This can be done by first computing the m2 products C
aj

i and then computing the
Ek’s as suitable products of some of these values. Since each product C aj

i is of the
form

∏n
�=1 C

aj�

i� this gives a total of m2n exponentiations in H. For large m this cost is
prohibitive.

It turns out that we can do much better by using techniques inspired by multiplica-
tion of integers and polynomials, such as Karatsuba [17], Toom-Cook [5, 26] and using
the Fast Fourier Transform [6]. A common theme in these techniques is to compute the
coefficients of the product p(x)q(x) of two degree m−1 polynomials p(x) and q(x) by
evaluating p(x)q(x) in 2m− 1 points ω0, . . . , ω2m−2 and using polynomial interpola-
tion to recover the coefficients of p(x)q(x) from p(ω0)q(ω0), . . . , p(ω2m−2)q(ω2m−2).

If we pick ω ∈ Zq we can evaluate the vectors

m∏

i=1

C ωm−i

i and
m∑

j=1

ωj−1aj .

This gives us

(
m∏

i=1

C ωm−i

i

)∑m
j=1 ωj−1aj

=
2m−1∏

k=1

⎛

⎜
⎜
⎝

m,m∏

i=1,j=1
j=(k−m)+i

C
aj

i

⎞

⎟
⎟
⎠

ωk−1

=
2m−1∏

k=1

E ωk−1

k .

Picking 2m− 1 different ω0, . . . , ω2m−2 ∈ Zq we get the 2m− 1 ciphertexts

2m−1∏

k=1

E
ωk−1

0

k , . . . ,

2m−1∏

k=1

E
ωk−1

2m−2

k .
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The ω0, . . . , ω2m−2 are different and therefore the transposed Vandermonde matrix
⎛

⎜
⎝

1 . . . 1
...

...
ω2m−2
0 . . . ω2m−2

2m−2

⎞

⎟
⎠

is invertible. Let yi = (y0, . . . , y2m−2)
T be the ith column of the inverse matrix. We

can now compute Ei as

Ei =

2m−2∏

�=0

(
2m−1∏

k=1

E
ωk−1

�

k

)y�

=

2m−2∏

�=0

(
( m∏

i=1

C
ωm−i

�
i

) ∑m
j=1 ωj−1

� aj

)y�

.

This means the prover can compute E1, . . . , E2m−1 as linear combinations of

( m∏

i=1

C
ωm−i

0

i

)∑m
j=1 ωj−1

0 aj

. . .
( m∏

i=1

C
ωm−i

2m−2

i

)∑m
j=1 ωj−1

2m−2aj

.

The expensive step in this computation is to compute
∏m

i=1 C
ωm−i

0

i , . . . ,
∏m

i=1 C
ωm−i

2m−2

i .
If 2m − 2 is a power of 2 and 2m − 2|q − 1 we can pick ω1, . . . , ω2m−2 as roots

of unity, i.e., ω2m−2
k = 1. This allows us to use the Fast Fourier Transformation “in

the exponent” to simultaneously calculate
∏m

i=1 C
ωm−i

k

i in all of the roots of unity
using only O(mn logm) exponentiations. This is asymptotically the fastest technique
we know for computing E0, . . . , E2m−2.

Unfortunately, the FFT is not well suited for being used in combination with multi-
exponentiation techniques and in practice it therefore takes a while before the asymp-
totic behavior kicks in. For small m it is therefore useful to consider other strategies.
Inspired by the Toom-Cook method for integer multiplication, we may for instance
choose ω0, ω1, . . . , ω2m−2 to be small integers. When m is small even the largest
exponent ω2m−2

k will remain small. For instance, if m = 4 we may choose ωk ∈
{0,−1, 1,−2, 2,−3, 3}, which makes the largest exponent ωm−1

k = 33 = 27. This

makes it cheap to compute each
∏m

i=1 C
ωm−i

k
i because the exponents are very small.

The basic step of Toom-Cook sketched above can be optimized by choosing the
evaluation points carefully. However, the performance degrades quickly as m grows.
Using recursion it is possible to get subquadratic complexity also for large m, however,
the cost still grows relatively fast. In the next section we will therefore describe an
interactive technique for reducing the prover’s computation. In our implementation, see
Sect. 6, we have used a combination of the interactive technique and Toom-Cook as the
two techniques work well together.

4.2 Trading Computation for Interaction

We will present an interactive technique that can be used to reduce the prover’s com-
putation. The prover wants to show that C has the same plaintext as the product of the
main diagonal of following matrix (here illustrated for m = 16).
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C a1
1 C a2

1 C a3
1 C a4

1

C a1
2 C a2

2 C a3
2 C a4

2

. . .
C a1

3 C a2
3 C a3

3 C a4
3

C a1
4 C a2

4 C a3
4 C a4

4

. . .
C a13

13 C a14
13 C a15

13 C a16
13

. . . C a13
14 C a14

14 C a15
14 C a16

14

C a13
15 C a14

15 C a15
15 C a16

15

C a13
16 C a14

16 C a15
16 C a16

16

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

In the previous section the prover calculated all m2 entries of the matrix. But we are
only interested in the product along the diagonal so we can save computation by just
focusing on the blocks close to the main diagonal.

Let us explain the idea in the case of m = 16. We can divide the matrix into 4 × 4
blocks and only use the four blocks that are on the main diagonal. Suppose the prover
wants to demonstrate C =

∏16
i=1 C

ai

i . Let us for now just focus on soundness and re-
turn to the question of honest verifier zero-knowledge later. The prover starts by sending
E0, E1, E2, E3, E4, E5, E6 that are the products along the diagonals of the elements in
the blocks that we are interested in. I.e., E0 =

∏4
i=1 C

a4i−3

4i , . . . , E6 =
∏4

i=1 C
a4i

4i−3

and E3 = C. The verifier sends a random challenge x and using the homomorphic
properties of the encryption scheme and of the commitment scheme both the prover
and the verifier can compute C′

1, . . . ,C
′
4 and cA′

1
, . . . , cA′

4
as

C ′
i = C x3

4i−3C
x2

4i−2C
x
4i−1C4i cA′

j
= cA4j−3c

x
A4j−2

c x2

A4j−1
c x3

A4j
.

They can also both compute C′ =
∏6

k=0 E
xk

k . The prover and the verifier now engage

in an SHVZK argument for the smaller statement C′ =
∏4

i=1 C
′ a′

i

i . The prover can
compute a witness for this statement with a′

i = a4i−3 + xa4i−2 + x2a4i−1 + x3a4i.
This shows

Cx3
6∏

k=0
k �=3

Exk

k =

4∏

i=1

(C x3

4i−3C
x2

4i−2C
x
4i−1C4i)

(a4i−3+xa4i−2+x2a4i−1+x3a4i) .

Looking at the x3-related terms, we see this has negligible chance of holding for a
random x unless C =

∏16
i=1 C

ai

i , which is what the prover wanted to demonstrate.
We will generalize the technique to reduce a statementC1, . . . ,Cm, C, cA1 , . . . , cAm

with a factor μ to a statement C ′
1, . . . ,C

′
m′ , C′, cA′

1
, . . . , cA′

m′ , where m = μm′. To
add honest verifier zero-knowledge to the protocol, we have to prevent the Ek’s from
leaking information about a1, . . . ,am. We do this by randomizing each Ek with a ran-
dom ciphertext Epk(Gbk ; tk). To prevent the prover to use the randomization to cheat
she will have to commit the bk’s before seeing the challenge x.
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Common Reference string: pk, ck.
Statement: C1, . . . ,Cm ∈ H

n and C ∈ H and cA1 , . . . , cAm ∈ G where m = μm′.
Prover’s witness: A ∈ Z

n×m
q , r ∈ Z

m
q and ρ ∈ Zq such that

C = Epk(1; ρ)
m∏

i=1

C ai

i and cA = comck(A; r) .

Initial message: Pick b = (b0, . . . , b2μ−2), s, τ ← Z
2μ−1
q and set bμ−1 = 0, sμ−1 =

0, τμ−1 = ρ. Compute for k = 0, . . . , 2μ− 2

cbk = comck(bk; sk) Ek = Epk(Gbk ; τk)

m′−1∏

�=0

μ,μ∏

i=1,j=1
j=(k+1−μ)+i

C
aμ�+j

μ�+i .

Send: cb = (cb0 , . . . , cb2μ−2) and E = (E0, . . . , E2μ−2).
Challenge: x← Z

∗
q .

Answer: Set x = (1, x, . . . , x2μ−2)T and send b = b · x and s = s · x to the verifier.
Compute for 
 = 1, . . . ,m′

a′
� =

μ∑

j=1

xj−1aμ(�−1)+j r′� =
μ∑

j=1

xj−1rμ(�−1)+j ρ′ = τ · x .

Define C ′
1, . . . ,C

′
m′ and cA′

1
, . . . , cA′

m′ and C′ by

C ′
� =

μ∏

i=1

C xμ−i

μ(�−1)+i cA′
�
=

μ∏

j=1

c xj−1

Aμ(�−1)+j
C′ = Epk(G−b; 0)Ex.

Engage in an SHVZK argument of openingsa′
1, . . . ,a

′
m′ , r′, and ρ′ such that C′ =

Epk(1; ρ′)
∏m′

�=1 C
′ a′

�

� .
Verification: Check cb ∈ G

2μ−1 and E0, . . . , E2μ−2 ∈ H and b, s ∈ Zq . Accept if

cbμ−1 = comck(0; 0) Eμ−1 = C c x
b = comck(b; s)

and if the SHVZK argument for C ′
1, . . . ,C

′
m′ , C′, cA′

1
, . . . , cA′

m′ is valid.

Theorem 7 (Full paper). The protocol above is a public coin perfect SHVZK argument
of knowledge of a1, . . . ,am, r such that C = Epk(1; ρ)

∏m
i=1 C

ai

i

5 Product Argument

We will sketch an argument that a set of committed values have a particular product.
More precisely, given commitments A1, . . . , Am to a11, . . . , amn and a value b we want
to give an argument of knowledge for

∏m
i=1

∏n
j=1 aij = b. Our strategy is to compute

a commitment

B = comck(

m∏

i=1

ai1, . . . ,

m∏

i=1

ain; s) .
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We give an argument of knowledge that B is true, i.e., it contains
∏m

i=1 ai1, . . . ,∏m
i=1 ain. Groth [13] described how to do this efficiently. Next, we give an argument

of knowledge that b is the product of the values inside B. This can be done using an
argument given in [14]. Here, we just give an overview of the protocol.

Common reference string: pk, ck.
Statement: A1, . . . , Am ∈ G and b ∈ Zq .
Prover’s witness: a11, . . . , amn, r1, . . . , rm ∈ Zq such that

A1 = comck(a11, . . . , a1n; r1)
...

...
Am = comck(am1, . . . , amn; rm) ,

and
m∏

i=1

n∏

j=1

aij = b .

Initial message: Pick s ← Zq and compute B = comck(
∏m

i=1 ai1, . . . ,
∏m

i=1 ain; s).
Send B to the verifier. Engage in an SHVZK argument of knowledge as described
in [13] of B = comck(

∏m
i=1 ai1, . . . ,

∏m
i=1 ain; s), where a11, . . . , amn are the

committed values in A1, . . . , Am. Engage (in parallel) in an SHVZK argument of
knowledge as described in [14] of b being the product of the values in B.

Verification: The verifier accepts if B ∈ G and both SHVZK arguments are valid.

Theorem 8. The protocol is a public coin perfect SHVZK argument of knowledge of
openings a11, . . . , amn, r1, . . . , rm ∈ Zq such that b =

∏m
i=1

∏n
i=1 aij .

The proof along with details of the underlying arguments can be found in the full paper.

6 Implementation and Comparison

We will now compare our protocol with the most efficient shuffle arguments for ElGa-
mal encryption. First, we compare the theoretical performance of the schemes without
any optimization. Second, we compare an implementation of our protocol with the im-
plementation by Furukawa et al. [8] and with the implementation in the Verificatum
mix-net library [29].

Theoretical Comparison. Previous work in the literature mainly investigated the case
where we use ElGamal encryption and commitments over the same group G, i.e.,
H = G × G. Table 1 gives the asymptotic behavior of these protocols compared to
our protocol for N = mn as m and n grows.

In our protocol, we may as detailed in Sect. 4.1 use FFT techniques to reduce the
prover’s computation to O(N logm) exponentiations as listed in Table 1. Furthermore,
by increasing the round complexity as in Sect. 4.2 we could even get a linear complexity
of O(N) exponentiations. These techniques do not apply to the other shuffle arguments;
in particular it is not possible to use FFT techniques to reduce the factor m in the shuffle
by Groth and Ishai [15].
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Table 1. Comparison of the protocols with ElGamal encryption

SHVZK Rounds Time P Time V Size
argument Expos Expos Elements
[10] 3 8N 10N 5N G+ N Zq

[8] 5 9N 10N 5N G + N Zq

[14] 7 6N 6N 3N Zq

[7] 3 7N 8N N G+ 2N Zq

[25] 5 9N 11N 3N G+ 4N Zq

[15] 7 3mN 4N 3m2
G+ 3n Zq

This paper 9 2 log(m)N 4N 11mG+ 5n Zq

As the multi-exponentiation argument, which is the most expensive step, already
starts in round 3 we can insert two rounds of interactive reduction as described in
Sect. 4.2 without increasing the round complexity above 9 rounds. For practical pa-
rameters this would give us enough of a reduction to make the prover’s computation
comparable to the schemes with linear O(N) computation.

The figures in Table 1 are for non-optimized versions of the schemes. All of the
schemes may for instance benefit from the use of multi-exponentiation techniques, see
e.g. Lim [18] for how to compute a product of n exponentiations using only O( n

logn )
multiplications. The schemes may also benefit from randomization techniques, where
the verifier does a batch verification of all the equations it has to check.

Experimental Results. We implemented our shuffle argument in C++ using the NTL
library by Shoup [24] for the underlying modular arithmetic. We experimented with
five different implementations to compare their relative merit:

1. Without any optimizations at all.
2. Using multi-exponentiation techniques.
3. Using multi-exponentiation and the Fast Fourier transform.
4. Using multi-exponentiation and a round of the interactive technique with μ = 4

and Toom-Cook for m′ = 4 giving m = μm′ = 16.
5. Using multi-exponentiation and two rounds of the interactive technique first with

μ = 4 and Toom-Cook for m′ = 4 giving m = μ2m′ = 64.

In our experiments we used ElGamal encryption and commitments over the same group
G, which was chosen as an order q subgroup of Z∗

p, where |q| = 160 and |p| = 1024.
These security parameters are on the low end for present day use but facilitate com-
parison with earlier work. The results can be found in Table 2 for N = 100, 000,
m = 8, 16, 64 on our machine. We see that the plain multi-exponentiation techniques
yield better results than the FFT method for small m; the better asymptotic behavior of
the FFT only kicks in for m > 16. As expected the Toom-Cook inspired version with
added interaction has the best running time and communication cost.
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Table 2. Run time of the shuffle arguments in seconds on a Core2Duo 2.53 GHz, 3 MB L2-Cache,
4 GB Ram machine for N = 100, 000 and m = 8, 16, 64

Optimization Total time Time P Time V Size
m = 8 Unoptimized 570 462 108 4.3 MB

Multi-expo 162 125 37
FFT 228 190 38

m = 16 Unoptimized 900 803 97 2.2 MB
Multi-expo 193 169 24
FFT 245 221 24
Toom-Cook 139 101 38

m = 64 Multi-expo 615 594 21 0.7MB
FFT 328 307 20
Toom-Cook 128 91 18

Comparison with Other Implementations. Furukawa, Miyauchi, Mori, Obana, and
Sako [8] gave performance results for a mix-net using a version of the Furukawa-
Sako [10] shuffle arguments. They optimized the mix-net by combining the shuffling
and decryption operations into one. They used three shuffle centers communicating with
each other and their results included both the process of shuffling and the cost of the
arguments. So, to compare the values we multiply our shuffle argument times with 3
and add the cost of our shuffling operation on top of that. The comparison can be found
in Table 3.

Table 3. Runtime comparison of [8] (CPU: 1 GHz, 256 MB) to our shuffle argument (Toom-Cook
with m = 64, CPU: 1.4 GHz, 256 MB)

N = 100, 000 [8] This paper
Single argument 51 min 15 min
Argument size 66 MB 0.7 MB
Total mix-net time 3 hrs 44 min 53 min

We expected to get better performance than they did and indeed we see that our
argument is faster and the communication is a factor 100 smaller. When adding the cost
of shuffling and decryption to our argument we still have a speedup of a factor 3 in
Table 3 when comparing the two mix-net implementations and taking the difference in
the machines into account.

Recently, Furukawa et al. [9] announced a new implementation based on elliptic
curve groups. Due to the speed of using elliptic curves this gave them a speedup of a
factor 3. A similar speedup can be expected for our shuffle argument if we switch to
using elliptic curves in our implementation.

Recently Wikström made a complete implementation of a mix-net in Java in [29]
called Verificatum, which is based on the shuffle argument in [25]. To produce compa-
rable data, we ran the demo file with only one mix party in the non-interactive mode
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Table 4. Runtime comparison of [25] to our shuffle argument on our machine (CPU: 2.53 GHz,
4 GB)

N = 100, 000 [25] This paper Toom-Cook
Single argument 5 min 2 min
Argument size 37.7 MB 0.7 MB

using the same modular group as in our protocol. Verificatum is a full mix-net imple-
mentation; for fairness in the comparison we only counted the time of the relevant parts
for the shuffle argument. As described in Table 1 the theoretical performance of Veri-
ficatum’s shuffle argument is 20N exponentiations, while our prover with Toom-Cook
and 2 extra rounds of interaction uses 12N exponentiations and our verifier 4N , so
in total 16N exponentiations. So we expect a similar running time for the Verificatum
mix-net. As shown in Table 4 we perform better, but due to the different programming
languages used and different levels of optimization in the code we will not draw any
conclusion except that both protocols are efficient and usable in current applications. In
terms of size it is clear that our arguments leave a much smaller footprint than Verifica-
tum; we save a factor 50 in the communication.

Acknowledgment. We would like to thank Douglas Wikström for discussions and help
regarding our comparison with the shuffle argument used in Verificatum [29].
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