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Abstract. Software evolution often requires the untangling of code.
Particularly challenging and error-prone is the task of separating com-
putations that are intertwined in a loop. The lack of automatic tools for
such transformations complicates maintenance and hinders reuse. We
present a theory and implementation of fine slicing, a method for com-
puting executable program slices that can be finely tuned, and can be
used to extract non-contiguous pieces of code and untangle loops. Unlike
previous solutions, it supports temporal abstraction of series of values
computed in a loop in the form of newly-created sequences. Fine slicing
has proved useful in capturing meaningful subprograms and has enabled
the creation of an advanced computation-extraction algorithm and its
implementation in a prototype refactoring tool for Cobol and Java.

1 Introduction

Automated refactoring support is becoming common in many development envi-
ronments. It improves programmer productivity by increasing both development
speed as well as reliability. This is true in spite of various limitations and errors
due to insufficiently detailed analysis. In a case study we performed [I], we recast
a manual transformation scenaridl as a series of 36 refactoring steps. We found
that only 13 steps out of these 36 could be performed automatically by mod-
ern IDEs. Many of the unsupported cases were versions of the Extract Method
refactoring, mostly involving non-contiguous code.

The example of Figure [[a) shows the most difficult case we encountered. At
this point in the scenario, we want to untangle the code that outputs the selected
pictures to the HTML view (lines 1, 7, and 9) from the code that decides which
pictures to present. The subprogram that consists only of these three lines does
not even compile, because the variable picture is undefined. However, the more
serious defect is that it does not preserve the meaning of the original program,
since the loop is missing, and this program fragment seems to use only one
picture. To preserve the semantics, the extracted subprogram needs to receive
the picures to be shown in some collection, as shown in Figure [[{b). The rest
of the code needs to create the collection of pictures and pass it to the new
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1 out.println("<table>");

2 int start = page * 20;

3 int end = start + 20;

s+ end = Math.min(end, album.getPictures().size());
(a) s for (int i = start; i < end; i++) {

6 Picture picture = album.getPicture(i);
7 printPicture(out, picture);
s }

9 out.println("</table>");

1 public void display(PrintStream out, int start,

2 int end, Queue<Picture> pictures) {
3 out.println("<table>");
(b) e for (int i = start; i < end; i++)
5 printPicture(out, pictures.remove());
6 out.println("</table>");
7}

1 int start = page * 20;

2 int end = start + 20;

s end = Math.min(end, album.getPictures().size());

s+ Queue<Picture> pictures = new LinkedList<Picture>();
(c) s for (int i = start; i < end; i++) {

6 Picture picture = album.getPicture(i);
7 pictures.add(picture);
s }

s display(out, start, end, pictures);

Fig. 1. (a) A program that tangles the logic of fetching pictures to be shown with their
presentation. (b) Presentation extracted into a separate method. (¢) Remaining code
calls the new method.

method, as in Figure [[c). This transformation is crucial in the scenario, as it
forms the basis of the separation of layers. The code that deals with the HTML
presentation is now encapsulated in the display method, and can easily be
replaced by another type of presentation.

One possibility for specifying the subprogram to be extracted is just to select
a part of the program, which need not necessarily be contiguous. In fact, the
subprogram need not even contain complete statements; it is quite common to
extract a piece of code replacing some expression by a parameter [I, Fig. 2].
However, in most cases the subprogram to be extracted is not some arbitrary
piece of code, but has some inherent cohesiveness. In the example of Figure [I]
the user wanted to extract the computations that write to the out stream, but
without the computations of start, end, and picture.

This description is reminiscent of program slicing [I7]. A (backward) slice of a
variable in a program is a subprogram that computes that variable’s value. The
smallest such subprogram is of course desirable, although it is not computable
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in general. However, a full slice is often too large. In our example, the slice of
out at the end of the program in Figure[I{a) is the whole program, since all of
it contributes to the output that will be written to out. In general, a slice needs
to be closed under data and control dependences. Intuitively, one statement or
expression is data-dependent on another if the latter computes a value used by
the former. A statement is control-dependent on a test if the test determines
whether, or how many times, the statement will be executed.

In this paper we present the concept of fine slicing, a method that can produce
executable and extractable slices while restricting their scopes and sizes in a way
that enables fine control. This is done by allowing the user (or an application
that uses fine slicing) to specify which data and control dependences to ignore
when computing a slice. In particular, the subprogram we wanted to extract
from Figure[I{a) can be specified as a fine slice of the variable out at the end of
the program, ignoring data dependences on start, end, and picture.

Our fine-slicing algorithm will add to the slice control structures that are
needed to retain its semantics, even when these control structures embody de-
pendences that were specified to be ignored. For example, suppose that instead
of line 1 in Figure[Il(a) the following conditional appeared:

if (album.pictureSize() == SMALL)
out.println("<table cellspacing=’10">");
else
out.println("<table>");

The conditional will be added to the fine slice even if control dependences
on it were specified to be ignored, since the subprogram that does not contain
it will always execute both printing statements instead of exactly one of them.
However, the data that the test depends on will not be included in the fine slice
in that case. This part of the fine-slicing algorithm is called semantic restoration.

Fine slicing has many applications. For example, it can be used to make
an arbitrary subprogram executable by adding the minimum necessary control
structures. (This can be construed as a fine slice that starts from the given
subprogram and ignores all dependences it has on other code.) In this paper we
show in detail how fine slicing can be used in a generalization of Extract Method,
which we call Extract Computation, that can handle non-contiguous code and
other difficult transformations.

The contributions of this paper include:

— a theory of fine slicing, with an oracle-based semantics;

— an algorithm for fine slicing, including semantic restoration;

— a demonstration of the utility of fine slicing for the Extract Computation
refactoring; and

— a prototype implementation of fine slicing and Extract Computation for
Cobol and Java in Eclipse.

2 In this context, we use the word “test” to refer to any conditional branch in the
program’s flow of control.



474 A. Abadi, R. Ettinger, and Y.A. Feldman

1.1 Fine Slicing

Slicing algorithms typically use some representation of the program with pre-
computed data and control dependences. In order to compute a (backward) slice,
the algorithm starts from an initial slice containing the user-selected locations
(also called the slicing criteria). It then repeatedly adds to the slice any program
location on which some part of the current slice has a data or control dependence.
The final slice is available when the process converges. In the case of backward
slices, the result is executable. (Forward slices are usually not executable.)

A fine slice can be computed in the same way, except that those dependences
specified to be ignored are not followed. This, however, can result in a slice
that has compilation errors, is not executable, or does not preserve the original
semantics. This may be due to two types of problems: missing data, and missing
control. Missing data manifests itself as the use of a variable one or more of
whose sources (the assignments in the original program from which it receives
its value) are unavailable. We consider the variable to have missing sources when
it is disconnected from its sources in the original program, even if the subprogram
appears to supply other sources for it.

Missing control creates control paths in the subprogram that are different
from those in the original program, as in the case of the two table-header printing
statements that would appear to be executed sequentially without the surrouding
conditional.

We offer two different ways to deal with these problems. For missing data, we
provide an oracle-based semantics, where the oracle supplies the missing values.
In order to make the subprogram executable, the oracle can be simulated by
appropriate variables or sequences. For missing control, our semantic restoration
algorithm adds to the subprogram just those control structures that are necessary
to make it preserve its original semantics. However, the data for these control
structures is not added, being supplied by the oracle instead. These notions are
formalized in Section [2

While fine slicing can be used directly by a user using a tool that displays slices
based on various criteria, we expect fine slicing to be used as a component by
other applications, such as Extract Computation. In particular, we do not expect
users to directly specify control dependences to be ignored. Data dependences
are much easier for users to understand, and our graphical user interface for
Extract Computation provides a convenient way to specify data dependences to
be ignored.

1.2 Extract Computation

The example of Figure[Ilshows the two types of difficulties involved in untangling
computations. First, it is necessary to identify the relevant data sources as well as
the control structures the subprogram to be extracted needs in order to preserve
its semantics. This information can be used to generate the method encapsulating
the extracted subprogram: the control structures are included in the new method,
and the data sources are passed as parameters. This is achieved by the fine slicing
algorithm.
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Second, it is necessary to modify the original code; among other things, it
needs to prepare any parameters and call the new method. As shown in the
example, some parts of the original code (such as the loop) need to be duplicated.
A co-slice, or complement slice [6], is the part of the program that should be
left behind once a slice has been extracted from it. As shown above, the co-slice
may contain some code that is also part of the extracted fine slice. It turns out
that a co-slice is a special case of a fine slice, which starts from all locations not
extracted and ignores data values to be returned. In the example, it is the slice
from lines 2—4 and 6 of Figure[Il(a), ignoring the final value of out.

The Extract Computation refactoring extracts the selected code and replaces
it with an appropriate call. It computes the two fine slices and determines where
the call to the extracted code should be placed. Some of the parameters need
to aggregate values computed through a loop. The Extract Computation algo-
rithm determines which data values are multiple-valued, and creates the code to
generate the lists containing these values.

The Extract Computation refactoring is general enough to support all the
cases in our case study [I] that were not supported by existing implementations
of Extract Method. In particular, it can support the extraction of non-contiguous
code in several varieties. In addition to the example above, demonstrating the ex-
traction of part of a loop with the minimal required duplication of the loop, they
include: extracting multiple fragments of code; extracting a partial fragment,
where some expressions are not extracted but passed as parameters instead; and
extracting code that has conditional exits (caused by return statements in the
code to be extracted) [2]. A detailed description of the algorithm appears in
Section [3

2 A Theory of Fine Slicing

We assume a standard representation of programs, which consists of a control-
flow graph (CFG), with (at least) the following relationships defined on it: dom-
ination and post-domination, data dependence and control dependence. We use
dflowp(d1, ds2) to denote the fact that a variable definition d; reaches the use dy
of the same variable in program P. We require that variable definitions include
assignments to the variable as well as any operation that can modify the object
it points to. In the example of Figure[Il any method applied to out can modify
the output stream, and needs to be considered a definition of out. We assume a
standard operational semantics, in which each state consists of a current location
in the CFG of the program, and an environment that provides values of some of
the program’s variables. We also assume some mechanism that makes states in
the same execution unique; for example, a counter of the number of times each
node was visited.

We extend this representation to open programs, in which some variable uses
can be marked as disconnected; these have no definitions reaching them. After
defining the notion of a subprogram, we extend the operational semantics with
oracles for disconnected variables, show how an oracle for an open subprogram is
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induced from the corresponding execution of the original program, and formalize
fine slices as open subprograms that, given the induced oracle, compute the same
values for all variables of interest.

Definition 1 (subprogram). A (possibly open) program @Q is a subprogram
of a program P if

1. all CFG nodes of Q belong to P;

2. for every variable definition point d and variable use point u in Q) that is not
disconnected, dflowg(d,w) is true iff dflowp(d,u) is true; and

3. there is an edge from CFG node n1 € Q to ny € Q iff there is a non-empty
path from nq to no in P that does not pass through other nodes in Q, except
when ny is the exit node of Q and no is the entry node of Q.

We define a state s of P and a state s’ of @) to be equivalent with respect to
the connected variables (denoted E(s,s’)) if their environments coincide on all
common variables, except possibly for those that are disconnected in the current
node. The initial states of ) will be restricted to those that are equivalent to
states of P that can be reached by executions of P without visiting any nodes
of @ before reaching those states.

An oracle O(s,u) for an open program (@ is a partial function that provides
values for each disconnected variable u at each possible state s of the program. An
execution of an open program is defined by extending the operational semantics
of programs so that at any point where the value of a disconnected variable v is
required in an execution state s, the value used will be O(s,u). If this value is
undefined, the execution is deemed to have failed.

The execution of P provides the oracle that can be used to supply the missing
values in a corresponding execution of (). Denote a single step in the operational
semantics of P by stepp(s), and the value of a variable use u in state s by
envp(s,u).

Definition 2 (induced oracle). The oracle induced by a program P on an
open subprogram ) of P from an initial state sg of P is defined as follows:
if stepk(sg) = s for some k > 0, the current location in state s belongs to
Q, u is a disconnected variable use in the current location, and E(s,s’), then
oracleg’s‘) (s',u) = envp(s,u).

Under this definition, any open subprogram of P is executable with an oracle
and preserves the behavior of P.

Theorem 1 (correctness of execution with oracle). Let Q be an open sub-
program of P, so an initial state of P, and qy the corresponding initial state of
Q (assuming one exists). If P haitd] (i.e., reaches its exit node) when started at
po, then Q will also halt when started at qo with the induced oracle, oracleg’so,

and will compute the same values for all common variable occurrences.

3 Tt is possible to relax this condition to specify that P reaches a state from which it
cannot return to Q.
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This theorem does not imply that an arbitrary sub-graph of the CFG of P
is similarly executable and semantics-preserving, since the theorem only applies
to subprograms (Def. [Il), whose structure is constrained to preserve the data
and control flow of P. The semantic restoration algorithm can be applied to
any collection of CFG nodes, and will complete it into a subprogram by adding
the required tests, even when control dependences on them were specified to be
ignored. This is a crucial feature that makes fine slices executable and semantics-
preserving. However, the data on which this control is based may still be discon-
nected. Therefore, adding these tests will not require the addition of potentially
large parts of the program involved in the computation of the specific conditions
used in these tests.

There are different ways to specify the dependences to be ignored by a partic-
ular fine slice, but ultimately these must be cast in terms of a set D of variable
uses to be disconnected, and a set C' of control dependences to be ignored (each
represented as a pair (¢,n) where a node n depend on a test t). As usual, the
slice is started from a set of slicing criteria, which we represent as a set S of
nodes in the CFG of P.

Definition 3 (fine slice). Let P be a program, S a set of slicing criteria, D a
set of variable uses to be disconnected in P, and C a set of control dependences
from P to be ignored. A fine slice of P with respect to S, D, and C is an open
subprogram @ of P that contains all nodes in S, and in which every disconnected
variable use d satisfies at least one of the following conditions:

1. the variable use d was allowed to be disconnected: d € D; or

2. d is variable use in a test node t on which all control dependences from
elements in the slice are to be ignored: if n € Q is control-dependent on t
then (t,n) € C.

We now present an algorithm that computes fine slices. The algorithm accepts
as inputs a program P, a set S of slicing criteria, a set D of input variable uses
that are allowed to remain disconnected in the fine slice, and a set C' of control
dependences that may be ignored.

The algorithm consists of the following main steps:

1. Compute the core slice @ by following data and control dependence relations
backwards in P, starting from S. Traversal of data dependences does not
continue from variable uses in D, and traversal of control dependences does
not follow dependences that belong to C.

2. (Semantic Restoration) Add necessary tests to make the slice executable.

3. Connect each node n1 € @ to a node ng € @ iff there is a path from n; to
ng in P that does not pass through any other node in Q.

As explained above, in order to turn the fine slice into a subprogram, it is
necessary to add some tests from the original program even though all their
control dependences have been removed. This is the purpose of the semantic-
restoration step, which comprises the following sub-steps:
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if (q10)

if (q20) | Qun

£0| [x=g0]

if (q10)

if (q20)) | Qun(1)

=0 [x=90]|

Qmin(z)

Fig. 2. Semantic restoration: original program (left); after separation of merges (right)

Pl1 Let Qumin be the lowest node in P that dominates all the nodes of Q. Add
Qumin to @ if it is not already there.

212 Let Quax be the highest node in P that postdominates all the nodes of Q.
Add Quax to Q if it is not already there.

B3 Add to Q all tests ¢ from P that are on a path from some q € Q to ¢’ € Q
where ¢’ is control-dependent on ¢, except when ¢ = Qumax and ¢ = Qmin.
Do not add any data these tests depend on.

2l4 Repeat steps ZITH2L3] taking into account the new nodes added each time,
until there is no change.

In step L1 the “lowest” node is the one that is dominated by all other nodes
in P that dominate all the nodes in Q. Similarly, in step B2 the “highest” node
is the one that is postdominated by all other nodes in P that postdominate
all nodes in @. The smallest control context surrounding the fine slice is given
by the part of the program between Quin and Quax, and this determines the
extraction context. This computation may need to be iterated for unstructured
programs (including unstructured constructs in so-called structured languages);
this is the purpose of step BI4l When choosing Qmax, the algorithm may need to
add dummy nodes so as to separate merge points that are reachable from @ from
those that are not. This will ensure that the new value of Q. will not move
Qmin to include unnecessary parts of the program. In the example of Figure [2
Q consists of the two assignments to x (with emphasized borders). On the left
side of the figure, no separation of merges has been done. Initially, Quni, will be
the second conditional (marked Qmin(1)), and Quax will be the assignment to y.
This will force Qi to move to the first conditional (marked Qpin(2)), making @
contain the whole program. With the optimization of separating merges, shown
on the right of the figure, Qumax is the new dummy node, and @i, remains at
the second conditional, making the fine slice smaller.

Step excludes paths from Quax t0 Qmin, since these correspond to loops
that contain the whole fine slice, and should not be included in it. When the fine
slice is extracted, the call will appear inside any such loops.
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Step is only necessary for unstructured programs; with fully structured
code a single iteration is always sufficient.

Theorem 2. The fine slicing algorithm is well defined (i.e., nodes in steps[Z1l
and 22 always exist), and produces a valid fine slice.

Because the result of the algorithm is an open subprogram of P, it will compute
the same values as P given the induced oracle (Theorem [I]).

Theorem 3. The worst-case time complezity of the fine-slicing algorithm is lin-
ear in the size of the program-dependence graph (i.e., the size of the control and
data dependence relations).

3 Extract Computation

The Extract Computation refactoring starts with a (possibly open) subprogram
@ to be extracted from a program P. The subprogram can be a fine slice, chosen
by the user or by another application; it can also be the result of applying
semantic restoration to an arbitrary collection of statements. As a subprogram,
it preserves the original semantics given the appropriate values from the induced
oracle. Not all the code of @ can be removed from its original location, since
some of it may be used for other purposes in P, as in the case of the common loop
in Figure[Il The algorithm needs to compute the co-slice, replace the extracted
code with an appropriate call, and implement the data-flow to the extracted
code in the form of parameters and return values. Some of these values may be
sequences, and the algorithm determines which they are and how to compute
them.

The co-slice will contain all parts of the program that have not been extracted;
it must also contain all the control and data elements required to preserve its
semantics. However, any data it uses that is computed by the extracted program
need not be part of the co-slice; instead, it can be returned by the extracted
method. These values can therefore be disconnected, making the co-slice an
instance of a fine slice. Many modern languages do not allow a function or
method to return more than one value. When more than one value needs to
be returned to the co-slice in such languages, they can be packed into a single
object. Alternatively, it is possible to selectively disconnect only one such value,
making the others be recomputed by the co-slice. Another inhibitor for many
languages would be the necessity of passing sequences to the extracted code
and back to the co-slice. This can only be done in languages (or frameworks)
that support coroutines, since it requires intertwining of the computations of the
co-slice and the extracted code.

Consider a disconnected variable use u in @. In order to determine whether
it requires a single value or a sequence, we need to know whether there is a loop
in P but not in @ that contains the original source of w in P and its use in
Q. If there is such a loop, a sequence is necessary. We define the source of u to
be the CFG node in P at which the value to be used in w is uniquely determined.
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This can be a definition of the same variable, but it can also be a join in the flow
at which one of several definitions is chosen. For example, a variable x may be
set to different values in two sides of a conditional; in this case, the source of a
use of x following the conditional is the first node that joins the flow from both
assignments. Formally, we define the source of u to be the node n such that:
(1) » dominates the node of u; (2) the value of the variable does not change on
every path from n to the first occurrence of the node of u; and (3) n dominates
every other node that fulfills conditions (1) and (2). (This will put the source of
u at the same point in which a ¢-function will be generated in the Static Single
Assignment form [5].)

Theorem 4. Given a variable use u in Q, let Gg be the smallest strongly-
connected component of Q) that contains the node of u. Fach edge in Q corre-
sponds to a set of paths in P; let Gp be the sub-graph of the CFG of P that
contains all the nodes and edges in P that correspond to the edges of Q. If the
source of u is not in Gp, then u has a single value in the induced oracle for @
m P.

In the example of Figure[I], the extracted code has a disconnected input picture
in the node for printPicture, which is contained in a single cycle. The source
of this input in the full program is the getPicture node, which is on the same
cycle. Theorem @l does not apply, and therefore a sequence needs to be generated
for it. In contrast, the use of end in the predicate i < end is on the same cycle,
but its source is the node for Math.min, which is not on this cycle. Therefore the
theorem applies, and no sequence is necessary.

Sequences can be implemented in various ways. For simplicity of the exposition
we will consider a queue, but extensions to other data structures are trivial. For
those parameters that are sequences, the algorithm needs to decide where to put
the call that enqueues elements in the co-slice, and where to put the call that
dequeues the elements in the extracted code. This is done by locating the unique
place where the data passes into @. This place is represented by a control edge
in P whose target is in @ but whose source is not, such that all control paths
from the source of u to the node of u itself pass through that edge. We call this
edge the injection point for u in Q.

Theorem 5. The injection point for every disconnected input of an open sub-
program always exists and is unique.

Consider now the variant P’ of P in which an enqueue operation immediately
followed by a dequeue operation is inserted at the injection point for u. This
obviously does not change the behavior of P, since the queue is always empty
except between the two new operations. We now define @’ to be the subprogram
of P’ that, in addition to Q itself, contains the dequeue operation, and in which
the input of the dequeue operation is disconnected instead of u. When perform-
ing Extract Computation on P’ and @', the enqueue operation will belong to
the co-slice, while the dequeue operation will be extracted. The behavior of the
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resulting program will still be the same, since the same values are enqueued and
dequeued as in P’; the only difference is that now all enqueue operations precede
all dequeue operations.

In order to select a location in the co-slice in which to place the call to the
extracted code, it is necessary to identify a control edge in the co-slice where the
call will be spliced. Such an edge is uniquely defined by its source node ¢, which
must satisfy the following conditions (in the context of P):

— ¢ is contained in exactly the same control cycles as Qmax;

— ¢ must be dominated by all sources of parameters to the extracted code;

— every path from c¢ to any of the added enqueue operations must pass through
Qmin; and

— c dominates each node containing any input data port that is disconnected in
the co-slice (and therefore expects to get its value from the extracted code).

The first condition ensures that the call will be executed the same number of
times as the extracted code was in the original program. The next two conditions
ensure that all parameters will be ready before the call (since passing through
Qmin initiates a new pass through the extracted code). There may be more than
one legal place for the call, in which case any can be chosen; if there is no
legal place, the transformation fails (this can happen when sequences need to be
passed in both directions, as mentioned above). Note that the control successor
of Qmax satisfies the first three conditions, and the call can always be placed
there unless there are results to be returned from the extracted code to the
co-slice. In the example, the only valid ¢ is the exit node.

Given a subprogram and a set of expected results, the Extract Computation
algorithm proceeds as follows: (1) extract the subprogram into a separate proce-
dure; (2) identify parameters and create sequences as necessary; (3) replace the
original code by the co-slice together with a call to the extracted procedure. The
Extract Computation transformation is provably correct under the assumption
that all potential data flow is represented by the data dependence relation. This
is relatively easy to achieve for languages such as Cobol, but may not be the case
in the presence of aliasing and sharing, as in Java. In all the cases we examined
as part of our evaluation (Section 2)) this has not been an issue.

4 Discussion

4.1 Implementation

We have implemented the Extract Computation and fine-slicing algorithms on
top of our plan-based slicer [3]. They are therefore language-independent, and
we are using them for transformations in Cobol as well as Java in Eclipse. In
particular, the example of Figure [l is supported by our tool for both languages.

For Extract Computation, our implementation uses an extension of the Eclipse
highlighting mechanism, allowing the selection of non-contiguous blocks of text.
Variables or expressions that are left unmarked indicate inputs to be discon-
nected. In addition, we disconnect all control dependences of marked code on
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unmarked code. However, as mentioned above, semantic restoration will add
control structures as necessary to maintain the semantics of the extracted code.

We are investigating other applications of fine slicing. For example, clone
detectors identify similar pieces of code. The obvious next step is to extract
them all into one method, taking their differences into account [9]. In this case,
no user input is necessary, since the parameters of the fine-slicing algorithm, and
in particular, which dependences should be ignored, can be determined based on
the similarities between the clones in a way that will make the extracted part
identical.

Another application of fine slicing is described in the next section.

4.2 Evaluation

We conducted an initial evaluation of fine slicing in the context of a prototype
system that can automatically correct certain kinds of SQL injection security
vulnerabilities [4] by replacing Statement by PreparedStatement objects. A
vulnerable query is constructed as a string that contains user input, and should
be replaced with a query that contains question-mark placeholders for the inputs;
these are later inserted into the prepared statement via method calls that sanitize
the inputs if necessary. However, sometimes the query is also used elsewhere;
typically, it is written to a log file. The log file should contain the actual user
input; in such cases, the proposed solution is to extract the part of the code that
computes the query string into a separate method, which can be called once with
the actual inputs, to contstuct the log string, and again with question marks, to
construct the prepared statement.

In order to automate this process, we need to determine the precise part of the
code that computes the query string, with all relevant tests. The test conditions,
however, should not be extracted; they can be computed once and their values
passed as parameters to the two calls. This describes a fine slice that starts at the
string given to the query-execution method, and ignores all data dependences
on non-string values and all control dependences.

In a survey of 52 real-world projects used to test a commercial product that
discovers security vulnerabilities, we found over 300 examples of the construction
of SQL queries. Most of these consisted of trivial straight-line code, but 46 cases
involved non-trivial control flow. In these cases, we computed a full backward
slice, a fine slice according to the criteria stated above, and a data-only slice.
The fine slice was computed intra-procedurally, for soundness assuming that
called methods may change any field. We compared these results to the code
that should really be extracted, based on manual inspection of the code.

In 21 cases, the construction of the query contained conditional parts, where
the condition was the result of a method call. In all these cases, the fine slice
was the same as the full slice, except that it didn’t contain the method call in
the conditional. In terms of lines of code, the fine slice had the same size as the
full slice, although it always contained the minimal part of code that needed to
be extracted. In all these cases, the data slice was too small. In practical terms,
if the condition is simple and quick to compute, has no side effects, and does
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not depend on any additional data, a developer may include it in the extracted
code. An automatic tool, such as the one we are developing, has no information
about computational complexity, and so should by default choose the minimal
code, which is the fine slice.

Twenty-five cases contained more interesting phenomena, where the fine slice
was strictly smaller than the full slice even in terms of lines of code. The size of
the full slice was between 5 and 23 lines, with an average of 13. The fine slices
were between 1 and 14 lines, with an average of 6, and always coincided with
the minimal part of the code that should be extracted. The data slices were
sometimes larger and sometimes smaller than the fine slices, but were correct
only in three cases.

As can be seen from these results, fine slicing has proved to be the correct tool
for this application. Many other applications seem to require this technology, and
we will continue this evaluation on other cases as well.

4.3 Related Work

Full slices are often too large to be useful in practice. The slicing literature in-
cludes a wide range of techniques that yield collections of program statements,
including forward slicing [7], chopping [§], barrier slicing [I2], and thin slicing
[15]. These can be used for code exploration, program understanding, change im-
pact analysis, and bugs localization, but they are not intended to be executable,
and do not preserve the semantics of the selected fragment in the original pro-
gram. In particular, they do not add the required control structures. We believe
that all these techniques for finding interesting collections of statements could
benefit from the added meaning given by semantic restoration, not only for use
in program transformations, where executability with semantics preservation is
a must, but also in assisting program understanding and related programming
tasks such as debugging, testing, and verification.

Tucking [13] extracts the slice of an arbitrary selection of seed statements
by focusing on some single-entry-single-exit region of the control flow graph
that includes all the selected statements. They refer to this limited-scoped slice
as a wedge. A tuck transformation adds to the identified region a call to the
extracted wedge and removes from it statements that are not included in the
full slice starting from all statements outside the wedge. Our computation of
the co-slice by starting a fine slice from all nodes not in the extracted code is
similar in this respect.

Using block-based slicing, Maruyama [14] extracts a slice associated with a
single variable in the scope of a given block into a new method. The algorithm
disconnects all data dependences on the chosen variable; this could lead to in-
correct results in some cases. Tsantalis and Chatzigeorgiou [I6] extended this
work in several ways, including rejecting the transformation in such problematic
cases. They still use the same framework of limiting the slice to a block. Fine
slicing provides much finer control over slice boundaries.

A procedure-extraction algorithm by Komondoor and Horwitz [10] considers
all permutations of selected and surrounding statements. Their following paper
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[11] improves on that algorithm by reducing the complexity and allowing some
duplication of conditionals and jumps but not of assignments or loops. Instead
of backward slicing, this algorithm completes control structures but only some
of the data. If a statement in a loop is selected, all the loop is added.

Sliding [6] computes the slice of selected variables from the end of a selected
fragment of code, and composes the slice and its complement in a sequence.
The complement can be thought of as a fine slice of all non-selected variables,
ignoring all dependences of final uses of the selected variables. Our Extract
Computation refactoring is more general by possibly ignoring other dependences,
and by allowing more flexible placement of the slice. The concept of a final use of
a variable can also help choosing which dependences to ignore when extracting
a computation.

None of these approaches support passing sequences of values to what we call
an oracle variable.

4.4 Future Work

This work is part of a long-term research project focusing on advanced enterprise
refactoring tools, aiming to assist both in daily software development and in
legacy modernization. The Extract Computation refactoring is a crucial building
block in this endeavor. It will be used to enhance the automation for complex
code-motion refactorings in order to support enterprise transformations such as
the move to MVC [1I2]. As the prototype matures, it will be possible to evaluate
to what extent such enterprise transformations can be automated.

We intend to make a number of improvements to the underlying analysis.
Most important are interprocedural analysis and some form of pointer analysis.
These will also support interprocedural transformations. The semantic restora-
tion algorithm is useful on its own in order to make any subprogram executable.
Based on our preliminary investigation we believe that an interprocedural ex-
tension of this algorithm is straightforward. It only requires pointer analysis in
the presence of polymorphism, in order to compute the most accurate calling
chain to be restored.

Acknowledgments. We are grateful to Mati Shomrat for his help with the
implementation, and to Moti Nisenson for the name fine slicing.
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